검색
-
-
[신소재 신기술(17)] 탄소 배출량 25만 톤 감소! 탄소 네거티브 복합 데크로 건설 산업의 탄소 발자국 줄이기
- 건축 자재에 이산화탄소(CO₂)를 저장해 보다 친환경적인 건축 자재를 만드는 혁신적인 기술이 개발됐다. 건물과 건축에 사용되는 자재의 생산은 일반적으로 지구 온난화와 기후 변화에 영향을 미치는 강력한 온실가스인 이산화탄소를 다량 배출한다. 기술 전문매체 테크익스플로어는 18일(현지시간) 과학자들이 새로 개발한 복합 데크는 제조 과정에서 배출되는 이산화탄소보다 더 많은 이산화탄소를 저장함으로써 탄소 네거티브 특성을 구현했다고 보도했다. 이는 기존 복합 데크의 한계를 극복하는 중요한 성과다. 연구팀은 미국 화학회(ACS) 춘계 회의에서 이번 연구 결과를 발표했다. 이 프로젝트의 수석 연구자 중 한 명인 유기 화학자 데이비드 헬데브란트에 따르면 페록 등 몇 가지 유형의 시멘트를 제외하고는 탄소 네거티브 복합재가 거의 없는 상태다. '페록'은 돌과 철을 결합한 것으로 콘크리트 보다 강도가 5배 높은 친환경 차세대 건축자재다. 시멘트 대용품으로 사용되는 친환경 건축 자재인 페록은 주로 폐철강 분진과 유리 분쇄물에서 나온 실리카 등 재활용 재료로 생산된다. 철강 분진은 이산화탄소와 반응해 탄산철을 생성하고, 이것이 응고되면 페록이 된다. 건축, 전체 탄소 배출량의 11% 차지 헬데브란트는 그의 팀이 개발한 복합 데크는 "사용 기간 동안 이산화탄소를 배출하지 않는 최초의 복합 재료 중 하나"라고 말했다. 데이비드 힐데브란트는 미국 태평양 북서부 국립연구소(PNNL)에서 일하며 CO₂ 포집을 위한 특수 액체를 개발하고 있다. 세계그린빌딩위원회에 따르면 건물 건설에 사용되는 자재와 공정은 전체 에너지 관련 탄소 배출량의 11%를 차지한다. 그로 인해 업계에서는 재활용 또는 식물 유래 제품을 사용하는 등 탄소 배출량을 상쇄할 수 있는 건축 자재를 개발하는 데 많은 노력을 기울이고 있다. 그러나 대부분의 경우 이러한 지속 가능한 건축 자재는 기존 자재보다 비싸거나 강도나 내구성과 같은 특성을 따라갈 수 없는 경우가 많다. 건축 자재의 한 유형인 데크는 수십억 달러 규모의 산업이다. 목재 플라스틱 합성물로 만든 데크 보드는 자외선에 의한 손상이 적고 오래 사용할 수 있기 때문에 목재 보드의 대안으로 인기가 높다. 합성 데크는 일반적으로 목재 칩 또는 톱밥과 고밀도 폴리에틸렌(HDPE)과 같은 플라스틱을 혼합하여 제작한다. 이러한 복합재를 보다 지속가능하게 만들기 위한 대안은 폐기물 또는 태워버릴 수 있는 필러를 사용하는 것이다. 헬데브란트의 동료인 키르티 카파간툴라가는 저품질의 갈탄과 제지 과정에서 남은 목재 유래 제품인 리그닌을 데크 합성물의 충전재로 사용했다. 연구팀은 석탄과 리그닌 입자를 플라스틱과 혼합하여 플라스틱에 부착되게 하기 위해 입자의 표면에 에스테르 기능기를 첨가했다. 헬데브란트는 "에스테르는 본질적으로 카복실산이며, 이는 CO₂가 포집된 상태"라고 설명했다. 연구팀은 이 과정을 검증하기 위해 CO₂와 석탄, 리그닌과 같은 목재 제품에 풍부한 페놀 사이에 새로운 화학 결합을 형성하는 고전적인 화학 반응으로 전환했다. 이 반응을 거친 후 리그닌과 석탄 입자는 무게 기준으로 2~5%의 CO₂를 함유했다. 이어서 연구팀은 이 입자들을 다양한 비율로 고밀도 폴리에틸렌(HDPE)과 혼합해 갈색을 띠는 검은색 복합재를 제작하고 그 성질을 평가했다. 필러를 80%까지 포함한 복합재는 CO₂ 함량을 최대화하면서도 국제적인 건축 자재 규정에 부합하는 강도와 내구성을 보였다. 이 소재는 PNNL의 전단 보조 가공 및 압출(ShAPETM) 기계를 사용해 마찰 압출 공정으로 제조됐다. 연구원들은 이 기술을 이용해 데크나 야외 가구에 적합한, 표준 목재 복합재와 유사한 외형과 질감을 지닌 10피트(약 3m) 길이의 복합재 패널을 제작했다. 이 새로운 합성 데크 재료는 우수한 물리적 성질뿐만 아니라, 상당한 경제적 및 환경적 이점을 제공한다. 이 데크는 표준 합성 데크 재료보다 18% 더 저렴하다. 헬데브란트는 이 데크가 제조 과정과 사용 기간 동안 발생하는 이산화탄소 양보다 더 많은 이산화탄소를 저장할 수 있는 능력을 갖추고 있다고 말했다. 미국, 1년간 목재 데크 판매량은? 미국에서 매년 판매되는 데크의 양은 35억 5000만피트(약 108만 2040km)에 달한다. 헬데브란트는 연구팀이 개발한 CO₂ 네거티브 복합 데크가 이를 대체하게 되면, 연간 약 25만 톤의 CO₂를 격리할 수 있으며, 이는 5만4000대의 자동차가 1년 동안 배출하는 CO₂량과 맞먹는다고 설명했다. 연구팀은 향후 더 다양한 복합재 조합을 개발하고 그 특성을 실험할 계획이다. 또한 울타리나 사이딩(건물 외벽 마감재)과 같은 여러 건축 자재에 대한 탄소 네거티브 복합재를 개발할 수 있을 것으로 기대하고 있다. 동시에, 연구팀은 이 새로운 탄소 네거티브 데크의 상용화를 위해 노력 중이다. 이 혁신적인 데크는 이르면 내년 여름부터 건축 자재 전문 매장에서 판매될 수 있을 것으로 예상된다.
-
- 포커스온
-
[신소재 신기술(17)] 탄소 배출량 25만 톤 감소! 탄소 네거티브 복합 데크로 건설 산업의 탄소 발자국 줄이기
-
-
[신소재 신기술(16)] 휴머노이드 로봇, 달리기 신기록 수립
- 중국 로봇 회사 유니트리(Unitree)의 새 휴머노이드 로봇 H1이 달리기 신기록을 수립했다. '인간의 외모를 지닌 것'이라는 뜻을 가진 '휴머노이드(humanoid)'는 로봇 따위를 통틀어 이르는 말로 인간형 로봇을 의미한다. 지난 14일(현지시간) 영국 데일리 메일에 따르면 유니트리의 휴머노이드 로봇 H1 에볼루션 V3.0의 최대 속도는 11mph(초당 3.3미터)에 달한다. 이는 마라톤 경기로 따지면 2시간 23분만에 완주할 수 있는 속도다. 참고로 올림픽 남자 마라톤 신기록은 2008년 베이징 올림픽에서 케냐의 사무엘 완지루가 세운 2시간 06분 32초다. 유니트리가 최근 공개한 영상에는 H1 로봇의 주목할 만한 달리기 성능이 담겨 있다. 영상 속 H1 로봇은 넓은 공간을 가로질러 달리기 시작했다. 강력한 점프와 다양한 움직임을 보여 민첩성과 균형 감각을 과시하기도 했다. 신장 180cm에 달하는 이 거대한 로봇은 개발 중인 다른 대부분의 휴머노이드 로봇보다 크기가 돋보인다. 또한 성인 남성이 옆에서 공격해도 넘어지지 않고 걷는 속도를 유지했다. 유니트리는 영상 내에서 이 로봇의 속도가 시속 12.1km/h(3.3m/s)에 달한다고 주장했다. 유니트리 웹사이트에 따르면 H1의 최대 속도는 시속 17.7km/h(5m/s)에 도달할 수 있다. 이 속도대로라면 마라톤 경기를 2시간 23분이라는 인상적인 기록으로 완주할 수 있다. 이러한 속도는 다른 풀사이즈 휴머노이드 로봇 대비 우위를 확보한다. 파쿠르와 백 플립 기술로 유명한 보스톤 다이내믹스의 아틀라스는 최고 속도가 시속 9.7km/h (2.5m/s)에 불과하다. 뛰어난 민첩성을 자랑하는 아지리티 로보틱스의 캐시 로봇은 시속 16.1km/h (4m/s)의 속도를 보여 H1과 비슷한 수준이다. 하지만 캐시는 모터가 달린 다리 두 개만으로 구성되어 있어 풀사이즈 휴머노이드 로봇으로 분류하기는 어렵다. 유니트리에 따르면 로봇의 허리와 무릎 관절에서 생성되는 강력한 토크가 속도에 영향을 미친다. 각 무릎 관절은 360 뉴턴 미터의 토크를 생성할 수 있어 다리를 더 빠르게 앞뒤로 휘두를 수 있다. 덕분에 H1은 사람만큼 높이 뛰어오를 수도 있다. 유니트리는 웹사이트에서 "최첨단 동력계는 최고 수준의 속도, 출력, 기동성 및 유연성을 제공한다"라고 밝혔다. 이 휴머노이드 로봇 H1은 신장 1.8m, 무게 47kg으로 크기에 비해 상당히 가볍다. 반면, 보스톤 다이내믹스의 아틀라스는 신장은 1.5m에 불과하지만 무게는 89kg에 달한다. H1 로봇의 기능은 직선 달리기만 가능한 것이 아니다. 영상 속 H1은 뛰어난 협응력과 균형 감각을 필요로 하는 다양한 기술을 산보였다. 한 영상에서는 세 대의 로봇이 함께 군무를 추고, 다른 영상에서는 로봇이 넘어지지 않고 계단을 오르 내리는 모습이 나온다. 또 다른 영상에서는 H1이 개와 비슷한 다른 로봇 뒤에서 바구니를 성공적으로 집어 테이블 위에 놓는 모습도 확인할 수 있다. H1은 머리에 장착된 카메라와 라이다(LiDAR, 빛 감지 및 거리 측정) 센서의 조합 덕분에 주변 환경을 탐색할 수 있다. H1은 LiDAR를 사용해 주변 환경에 대한 정보를 구축하기 위해 지속적으로 레이저 펄스를 발사한다. 한편, 유니트리는 휴머노이드 로봇 H1의 공식적인 가격이나 출시 날짜를 아직 발표하지 않았다. 다만, 이전 영상 제목에는 '9만 달러(약 1억 2000만원) 미만의 구현된 인공지능(AI) 가격'이라고 한다. 보스톤 다이내믹스의 사족 보행 로봇 스팟(Spot)은 최저가 7만 5000달러에 시작하며, 적재 및 하역에 사용되는 스트레치(Stretch)는 대당 30만 달러(약 4억원)에서 50만 달러(약 6억 6700만원) 사이다. 일론 머스크는 테슬라의 휴머노이드 로봇 옵티머스(Potimus)의 가격을 2만 달러(약 2665만원) 이하로 유지하고 싶다고 밝힌 바 있다. 하지만 옵티머스는 아직 양산 단계에 진입하지 않았으므로 실제 가격은 아직 확정되지 않았다. 앱트로닉이 개발한 휴머노이드 로봇 아폴로(APOLLO)는 좀더 인간과 비슷한 모습이다. 아폴로는 팔과 다리, 눈이 각각 두 개이며, 키는 약 172cm(5피트 8인치)로 무게는 72.5kg이다. 25kg의 물체를 들어 올릴 수 있으며 배터리는 4시간 지속된다. 앱트로닉은 2024년 말 아폴로 출시를 목표로 하고 있으며 가격은 아직 공개되지 않았다. 2022년 골드만삭스 보고서는 휴머노이드 로봇이 2025~2028년에는 공장에서, 2030~2035년에는 가정에서 사용할 수 있을 것으로 예측했다.
-
- 포커스온
-
[신소재 신기술(16)] 휴머노이드 로봇, 달리기 신기록 수립
-
-
[신소재 신기술(15)] 배터리 스타트업 코어셸, 주행거리 희생 없는 저렴한 LFP배터리 선봬
- 배터리 소재 스타트업인 코어쉘(Coreshell)은 저렴한 리튬 이온 배터리 제조 기술을 개발했다고 발표했다. 미국 기술전문매체 티크크런치는 15일(현지시간) 코어쉘이 야금용 실리콘을 활용한 리튬-철-인산염(LFP) 음극과 결합된 실리콘 양극으로 만든 전기차 배터리를 내년부터 양산에 들어간다 보도했다. 회사에 따르면 kWh당 최대 30% 저렴한 비용으로 비교할 수 없는 충전 성능과 안전성을 갖춘 배터리를 만들 수 있다. 야금 등급 실리콘은 고순도 실리콘보다 저렴할 뿐만 아니라 일반적으로 리튬 이온 배터리에 사용되는 흑연 비용의 약 절반에 불과하다는 설명이다. 현재 전기자동차(EV) 보급의 가장 큰 장애물 중 하나는 비용이다. 소비자들은 현재 대부분의 전기자동차는 휘발유 차량보다 가격이 높아 구매를 망설이고 있다. 실리콘은 리튬이온배터리의 음극 단자인 양극에서 흑연을 대체할 수 있는 잠재력이 있다. 실리콘과 흑연 모두 배터리가 충전 중일 때 리튬 이온을 받아들이고 저장한다. 실리콘은 훨씬 더 많은 양의 전기를 저장할 수 있지만 단점이 있다. 충전할 때 양극이 부풀어 오르는 경향이 있다. 흑연 음극은 약간 부풀뿐 크게 팽창하지는 않는다. 하지만 실리콘 양극은 충전할 때 풍선처럼 부풀어 원래 크기의 몇 배까지 팽창할 수 있다. 이를 보완할 수 있는 소재가 없으면 충전과 방전을 반복하면 양극이 무너질 수 있다. 실리콘 음극 기술 개발 경쟁 이에 실리콘의 배터리 성능 향상 잠재력을 인식한 여러 스타트업은 실리콘의 팽창 문제를 해결하기 위해 노력하고 있다. 대부분의 접근 방식은 실리콘의 팽창 특성을 수용하기 위해 특수한 미세 구조를 사용한다. 이들 기업은 자체 개발 배터리를 제조하기 위해 더욱 정제되고 비용이 높은 실리콘을 사용한다. 결과적으로 실리콘 음극은 현재까지 가격 프리미엄을 보다 쉽게 흡수할 수 있는 소비자 전자 제품 및 고급 전기자동차 시장을 타겟으로 했다. 코어쉘은 이전에는 다양한 배터리 재료의 성능 저하를 늦추는 코팅 기술에 주력했지만, 현재는 실리콘 전문 기업으로 전환했다. 조나단 탄 코어쉘 공동 설립자 겸 최고경영자(CEO)는 테크크런치와의 인터뷰에서 "우리는 2년 전 야금용 실리콘 분야에서 획기적인 발전을 이루었다"라고 말했다. 그는 야금용 실리콘 코팅은 충전 및 방전 사이클을 통해 재료를 유지하는 데 도움이 되는 탄력적인 특성을 가지고 있으며 표면 저하도 방지한다고 강조했다. 탄 CEO는 "시장에 출시한 이 기술은 내년부터 상용화에 집중할 것"이라고 밝혔다. 야금 등급 실리콘, 흑연 비용의 절반 탄 CEO는 지난 14일(현지시간) 국제 배터리 세미나의 프레젠테이션에서 야금 등급 실리콘은 고순도 옵션보다 저렴할 뿐만 아니라 일반적으로 리튬 이온 배터리에 사용되는 흑연 비용의 약 절반에 불과하다고 말했다. 코어쉘은 이번 주 금속 생산업체인 페로글로브와 야금용 실리콘 공급 계약을 체결했다. 야금용 실리콘은 전 세계 흑연 공급망을 쥐고 있는 중국을 벗어날 수 있는 지정학적 파급 효과도 있다. 벤치마크 미네랄 인텔리전스에 따르면 전 세계 흑연 음극 공급망의 4분의 3이 중국을 통과한다. 이로 인해 배터리 제조업체와 자동차 제조업체는 곤경에 처해 있다. 미국에서 전기차에 대한 세금 공제 혜택을 받으려면 인플레이션 감축법(IRA)에 따라 배터리 소재의 최소 비율을 미국산 또는 미국과 자유무역협정을 맺은 국가에서 조달해야 한다. 이 비율은 2028년에 90%까지 늘어날 예정이다. 실리콘은 훨씬 더 많은 에너지를 저장할 수 있기 때문에 동일한 용량의 배터리는 흑연에 비해 재료가 더 적게 들어간다. 코어쉘은 이를 감안해 미국이 수요를 충족하기에 충분한 금속 실리콘을 보유해야 한다고 추정했다. 또한 금속 실리콘은 흑연보다 가격이 저렴하기 때문에 중국산 흑연을 완전히 대체할 수 있는 잠재력을 가지고 있다. 리튬-철-인산염(LFP) 음극과 결합된 실리콘 양극 코어쉘이 생산하는 첫 번째 제품은 리튬-철-인산염(LFP) 음극과 결합된 실리콘 양극이 될 예정이다. LFP 음극은 니켈-망간-코발트(NMC) 등 전기차에 사용되는 다른 화학 물질보다 저렴하고 안전하며, 중국 외 지역에서 쉽게 구할 수 있다. 이러한 이점에도 불구하고, 자동차 제조업체들은 NMC에 비해 에너지 밀도가 낮다는 점 때문에 LFP의 광범위한 적용을 망설여 왔다. 그러나 실리콘 음극과의 결합은 이러한 에너지 밀도의 차이를 해결할 것으로 보인다. 코어쉘은 실리콘 음극을 사용함으로써, 흑연 음극을 사용하는 기존의 NMC 배터리에 비해 LFP 배터리가 경쟁 우위를 가질 수 있다고 전망했다. 한편, 코어쉘은 기술을 확장하고 상용화해야 하는 과제가 있다. 이 과정은 쉽지 않으며, 초기 시장은 전기 자전거, 전기 스쿠터, 전기 듄 버기 같은 e-모빌리티 분야가 될 것으로 보인다. 이와 관련해, 코어쉘은 1960년대 상징적인 듄 버기를 제작한 마이어스 맨스(Meyers Manx)와 파트너십을 체결했다. 현재는 자체적으로 재료를 생산하고 있으나, 기술을 라이선스하고 공급업체와 더 긴밀히 협력하는 방안에도 열려 있다. 이 회사는 2025년까지 파트너사에 첫 번째 샘플(A-샘플)을 제공할 계획이다. 또한 10년 내에 자사의 기술이 전기차에 탑재되기를 기대하고 있다. 경쟁 업체인 실라(Sila)와 그룹 14(Group14)도 2025년까지 상업 생산을 목표로 하고 있다. 실리콘 음극 재료는 현재 비용이 더 높지만, 대량 생산과 축적된 경험을 통해 비용을 절감할 수 있는 잠재력을 가지고 있다. 자동차 제조업체들에게 이는 매력적인 옵션이 될 수 있다. 모든 배터리 혁신이 시장의 요구를 충족시키는 것은 아니지만, 리튬 이온 배터리 기술이 비용 효율적으로 계속 발전하려면, 다양한 접근 방식이 필요하다. 코어쉘의 기술이 성공적으로 입증된다면, 중국에 대한 의존도를 줄이면서도 비용 효율적인 배터리 개발로 나아가는 새로운 방향을 제시할 수 있다.
-
- 포커스온
-
[신소재 신기술(15)] 배터리 스타트업 코어셸, 주행거리 희생 없는 저렴한 LFP배터리 선봬
-
-
[신소재 신기술(14)] 자연에서 처음 발견된 광물 초전도체 '미아사이트'
- 미국 과학자들이 자연에서 광물 형태로 발견된 세계 최초의 '비전통적인' 초전도체 미아사이트(Miassite)가 발견됐다고 밝혔다. 영국 과학 웹사이트 사이키(phys.org)는 지난 13일(현지시간) 미국 에너지부 국립연구소인 에임스 국립연구소(Ames National Laboratory)의 과학자들이 실험실이 아닌 자연에서도 화학 성분을 가진 최초의 비전통적 초전도체 '미아사이트'를 발견했다고 보도했다. 미아사이트는 자연에서 발견되는 광물 중 하나로, 실험실에서 성장시키면 초전도체 역할을 한다. 연구팀은 미아사이트를 관측한 결과 고온 초전도체와 유사한 특성을 가진 비전통적 초전도체라는 사실을 밝혀냈다. 이 연구 결과는 '커뮤니케이션즈 머티리얼즈(Communications Meterials)' 저널에 게재됐다. 이번 연구는 미래의 지속 가능하고 경제적인 초전도체 기반 기술 개발에 기초 과학적 이해를 향상시킬 수 있을 것으로 기대된다. 초전도체란? 초전도는 물질이 전기를 에너지 손실 없이 전도할 수 있는 상태를 말한다. 이러한 초전도체는 의료용 MRI 기계, 전력 케이블, 양자 컴퓨터 등 다양한 분야에서 활용되고 있다. 기존의 초전도체는 잘 알려져 있지만 임계 온도가 낮다. 여기서 임계 온도는 물질이 초전도체 상태를 유지할 수 있는 최고 온도를 말한다. 1980년대에 과학자들은 기존 것들보다 임계 온도가 훨씬 높은 비전통적인 초전도체들을 발견했다. 에임스 연구소의 과학자 루슬란 프로조로프에 따르면, 이러한 비전통적인 초전도체는 모두 실험실에서 만들어진다. 이로 인해, 비전통적 초전도는 자연에서 발생하지 않는다는 일반적인 인식이 형성됐다. 자연에서 발견된 희귀한 광물 프로조로프는 대다수의 초전도 원소와 화합물이 금속 성질을 가지고 산소와 같은 다른 원소와 반응하는 경향이 있어, 자연에서 초전도체를 찾는 것이 어렵다고 설명했다. 그는 특히 미아사이트(Rh17S15)가 복잡한 화학 구조를 가지고 있다는 점에서 흥미롭다고 말했다. 프로조로프는 미아사이트를 처음에는 자연에서 발견될 수 없는, 인공적으로 만들어졌을 것으로 추정했으나, "실제로 자연에서 존재한다는 것이 밝혀졌다"고 말했다. 아이오와 주립대학교의 물리학 및 천문학 석좌교수이자 에임스 연구소의 과학자인 폴 캔필드는 새로운 결정체 물질의 설계와 발견, 성장 방법, 그리고 그 특성을 분석하는 데 깊은 전문 지식을 가지고 있다. 그는 이 프로젝트를 위해 고품질의 미아사이트 결정을 합성하는 작업을 수행했다. 캔필드는 "미아사이트가 러시아 첼랴빈스크주 미아스 강 근처에서 발견된, 일반적으로 잘 형성된 결정으로 자라지 않는 희귀한 광물"이라고 설명했다. 미아사이트 결정의 성장은 매우 높은 용융점을 가진 원소(Rh)와 휘발성이 높은 원소(S)의 결합으로 이루어진 화합물을 탐색하는 더 광범위한 연구 노력의 일부였다. 캔필드 박사는 "순수 원소들의 특성과는 달리, 우리는 이들 원소의 혼합을 통해 최소한의 증기압으로 결정이 저온에서 성장할 수 있도록 하는 기술을 개발했다"고 말했다. 캔필드 박사는 이번 미아사이트의 발견을 "숨겨진 낚시터에서 큰 물고기를 발견한 것과 같다"고 비유했다. 그는 "Rh-S 시스템에서, 우리는 세 가지 새로운 초전도체를 발견했다. 루슬란의 세밀한 측정 덕분에, 미아사이트가 비전통적 초전도체임을 확인할 수 있었다"고 설명했다. '자기장 침투 깊이' 실험 프로조로프의 연구 그룹은 저온에서 초전도체를 연구하기 위한 첨단 기술을 전문으로 한다. 그는 이 물질이 초전도 상태를 유지하기 위해 영하 50밀리켈빈(약 -460°F)까지 냉각되어야 한다고 말했다. 프로조로프 연구팀은 미아사이트의 초전도 특성을 분석하기 위해 세 가지 주요 실험을 실시했다. 가장 중요한 실험은 '자기장 침투 깊이(혹은 런던 침투 깊이, London penetration depth)'다. 이 실험은 약한 자기장이 초전도체 표면을 얼마나 깊게 관통하는지 측정해 초전도체 내부로의 자기장 침투 거리를 결정한다. 전통적인 초전도체의 경우, 자기장 침투 깊이는 저온에서 대체로 일정하게 유지된다. 반면, 비전통적 초전도체에서는 이 침투 깊이가 온도 변화에 따라 선형적으로 변화하는 경향을 보인다. 이러한 실험 결과는 미아사이트가 비전통적 초전도체의 성질을 갖는다는 것을 확인했다. 또 다른 실험은 재료 내에 결함을 주기 위해 고에너지 전자를 사용해 물질에 충격을 주는 방식이다. 프로조로프는 이 방법을 지난 10년 간 그의 연구팀이 주로 사용해온 대표적인 기술이라고 설명했다. 이 실험을 통해 재료의 초전도 특성에 미치는 결함의 영향을 관찰할 수 있다. 이 방법은 이온을 그들의 원래 위치에서 밀어내어 결정 구조 내에 결함을 생성하는 것이다. 이러한 결함은 재료의 임계 온도에 변화를 일으킬 수 있는 장애를 만든다. 전통적인 초전도체는 비자기적 장애에 대해 대체로 둔감하기 때문에, 이러한 테스트에서 임계 온도의 변화가 거의 또는 전혀 보이지 않는다. 반면, 비전통적 초전도체는 무질서에 더 민감해, 결함이 일어나면 임계 온도가 변화하거나 억제될 수 있다. 이러한 변화는 재료의 임계 자기장에도 영향을 미친다. 연구팀은 미아사이트에서 임계 온도와 임계 자기장이 비전통적 초전도체에서 예측한 대로 변화한다는 것을 확인했다. 비전통적 초전도체에 대한 이러한 연구는 초전도 현상의 작동 원리에 대한 과학자들의 이해를 심화시킬 수 있다. 프로조로프는 "비전통적 초전도의 메커니즘을 이해하는 것은 초전도 현상을 경제적으로 응용하는 데 있어 핵심적인 역할을 한다"고 강조했다. 이는 초전도 기술의 상용화 가능성을 높이는 데 중요한 기여를 할 수 있다.
-
- 포커스온
-
[신소재 신기술(14)] 자연에서 처음 발견된 광물 초전도체 '미아사이트'
-
-
리튬이온배터리 4대 핵심 소재 시장, EV 배터리·메탈 가격 하락으로 17.4% 급감
- 지난해 전기자동차(EV) 시장은 하반기에 수요 둔화에도 불구하고 30% 이상의 성장률을 기록했다. 하지만 리튬이온 배터리 소재 업체들은 배터리 가격 하락과 리튬 및 메탈 가격 하락으로 인해 역성장을 경험했다. 15일 에너지 전문 시장조사업체 SNE리서치에 따르면 지난해 양극재, 음극재, 분리막, 전해질 등 리튬이온 배터리의 4대 핵심 소재 시장 규모는 600억 달러(약 79조 7820억원)로 전년(726억달러, 약 96조 5290억원)) 대비 17.4% 감소했다. 배터리 가격 또한 13.4% 감소했다. 특히, 배터리 가격 하락률보다 소재 가격과 메탈 및 원자재 가격 하락률이 더욱 컸다. SNE리서치는 이로 인해 대부분의 소재 업체들은 지난해 하반기에 역성장을 경험했으며, 올해 상반기에도 재고 물량 확대와 시장 성장 둔화 추세가 지속될 것으로 예상된다고 진단했다. 반면, 전기차 시장은 고금리로 인한 경기 침체와 대중화 이전의 일시적인 수요 둔화(캐즘·Chasm, 깊은 틈)에도 불구하고 여전히 30%대의 성장률을 기록했다. 지난해 전기차 판매량은 1407만 대에 달하며, 전년 대비 33.5% 성장했다. 전기차 배터리 사용량 역시 전년의 503기가와트시(GWh)에서 698GWh로 38.8% 증가했다. 전기차 및 배터리 시장과 동반 성장을 기대했던 소재 업체들은 올해 원가 절감과 수익성 개선, 그리고 중국의 저가 경쟁에 대응하기 위한 기술력 확보에 직면하게 됐다. 또한, 중국에 대한 원재료 의존도를 낮추기 위한 공급망 다양화, 자체 기술 내재화 비율의 증가, 인수합병(M&A) 및 기술 협력 협약(MOU)을 통한 기술 격차 해소, 그리고 차세대 신기술의 선점을 위한 개발이 필요해졌다. SNE 리서치는 "최근 배터리의 핵심 원료인 리튬과 니켈의 가격이 상승세를 보이고 있다"며 이는 소재 업체들의 실적 회복에 긍정적인 영향을 줄 것으로 기대된다고 밝혔다. 또한 "한국의 주요 배터리 제조업체 3곳의 생산설비에 대해 지속적인 투자는 소재 업체들이 판매량을 확보하는 데 도움이 될 것으로 예상된다"고 전했다. 한편, SNE리서치가 지난 11일 발표에서 지난해 글로벌 에너지저장시스템(ESS)용 리튬이온배터리(LiB) 출하량이 전년 대비 53% 성장한 185기가와트시(GWh)였다고 보고했다. 지역별 수요 분석에 따르면, 중국이 84GWh로 전체 시장의 약 45%를 차지하며 가장 큰 비중을 보유했다. 북미 지역은 55GWh로 전체의 30%를 차지했으며, 유럽과 기타 지역은 각각 23GWh로 시장의 12% 점유율을 기록했다. 업체별 성장률을 살펴보면, 리튬 인산철(LFP) 배터리를 기반으로 하는 중국의 배터리 제조업체들이 특히 눈에 띄는 성장을 보였다. 출하 실적 및 시장 점유율 상위 1위부터 5위까지 모두 중국 업체들이 차지했으며, 이들 다섯 업체의 점유율은 전체의 78%에 달했다. 중국의 CATL이 42% 성장해 74GWh로 전년에 이어 1위를 유지했고, BYD(비야디)가 57% 증가한 22GWh로 2위, 이브(EVE)가 110% 성장해 21GWh로 3위를 차지했다. 4위인 REPT와 5위인 하이티움도 각각 100%와 160%의 눈에 띄는 성장률을 기록했다. 국내 업체 중에서는 삼성SDI와 LG에너지솔루션이 각각 6위와 7위에 올랐다. 그러나 삼성SDI의 성장률은 전년 대비 0%로 제자리 걸음을 걸었고, LG에너지솔루션은 -11%로 출하량이 감소했다. 이에 따라 양사의 시장 점유율은 2022년 14%에서 지난해 9%로 하락했다. SNE리서치에 따르면, ESS 시장에서 미국 인플레이션 감축법(IRA)의 외국 우려 기업(FEOC) 규정이 적용되지 않아 중국산 배터리에 대한 제한이 없는 상태다. 이로 인해 가격 경쟁력이 높은 중국 제품이 글로벌 시장을 지배하고 있다고 진단했다. 한편, SNE리서치는 오는 21일부터 26일까지 한국과학기술회관에서 세미나를 개최할 예정이다. 이 자리에서는 전기차와 배터리 시장, 4대 핵심소재 시장의 중요 이슈들과 차세데 소재 기술의 최신 동행 등을 논의할 계획이다.
-
- 산업
-
리튬이온배터리 4대 핵심 소재 시장, EV 배터리·메탈 가격 하락으로 17.4% 급감
-
-
[신소재 신기술(13)] 암치료용 새로운 AI 개발
- 미국 메이요 클리닉의 연구원들이 암 치료를 위해 새로운 인공지능(AI) 알고리즘을 개발했다. 메디컬 익스프레스는 지난 12일(현지시간) 메이요 클리닉 연구원들은 메이요 클리닉 연구원들이 기존 AI 모델이 주로 사용하는 데이터 학습 방식을 넘어서는 '가설 기반 AI'라는 독창적인 인공지능 알고리즘을 개발했다고 보도했다. 이번 연구는 학술지 캔서(Cancers)에 게재됐다. 이 혁신적인 AI는 암과 같은 복잡한 질병의 원인을 파악하고 치료 전략을 개선하는 데 사용될 수 있는 새로운 접근 방식을 제공한다. 메이요 클리닉의 시스템 생물학 및 분자 약리학, 실험 치료학 부서에서 AI 연구를 담당하는 수석 저자이자 공동 개발자인 후 리(Hu Li) 박사는 이 AI가 과학적 질문에 답하고, 질병을 더 깊이 이해하며, 개인화된 의학을 지원하기 위해 설계된 표적 정보 기반 알고리즘이라고 밝혔다. 리 박사는 이 기술이 기존 AI에서 간과되었던 중요한 통찰을 발견할 가능성이 있다고 강조했다. 기존 AI는 주로 얼굴 인식, 임상 진단 이미지 분류와 같은 분류 및 인식 작업에 활용되어 왔으며, 사람처럼 텍스트를 생성하는 등의 생성 작업에도 점점 더 많이 쓰이고 있다. 하지만, 연구팀은 기존 학습 알고리즘이 과학적 지식이나 가설을 충분히 통합하지 못한다고 지적했다. 이는 AI가 편향되지 않은 대규모 데이터 세트에 과도하게 의존하게 만들고, 그런 데이터 세트를 구하는 것이 어려울 수도 있기 때문이다. 특히, 리 박사는 이러한 제약이 의학과 같이 새로운 지식을 발견해야 하는 분야에서 AI의 활용도와 유연성을 크게 제한한다고 밝혔다. 이는 AI 기술의 발전 방향에 대해 중요한 고려사항을 제시한다. AI는 암 연구와 같이 방대하고 복잡한 데이터 세트에서 패턴을 찾아내는 데 매우 유용한 도구다. 이러한 경우에서 기존 AI 사용의 주요 목표는 해당 데이터 세트의 정보를 최대한 활용하는 것이다. 리 박사는 기존 지식과 가설을 통합하지 못하는 것이 문제가 될 수 있다고 지적했다. 그는 "AI 모델이 연구자와 임상의의 신중한 설계 없이 결과를 도출할 수 있으며, 이런 접근 방식을 '쓰레기 속의 쓰레기' 문제라고 부른다"고 밝혔다. 그러므로, 그는 과학적 질문에 대한 안내 없이는 AI가 덜 효과적인 분석을 제공하고, 테스트 가능한 가설을 형성하며, 의학 발전에 기여할 수 있는 중요한 통찰을 놓칠 수 있다고 설명했다. 이러한 관점은 AI의 효율성과 유용성을 극대화하기 위한 설계와 개발 과정에서 고려해야 할 핵심 요소다. ‘가설 기반 AI’를 통해 연구자들은 알려진 병원성 유전자 변종과 암의 특정 유전자 간의 상호작용을 학습 알고리즘 설계에 통합하는 등 질병에 대한 이해를 통합하는 방법을 모색할 수 있다. 이를 통해 연구자와 임상의는 어떤 구성 요소가 모델 성능에 기여하는지 파악하여 해석 가능성을 높일 수 있다. 또한, 이 전략은 데이터 세트 문제를 해결하고 열린 과학적 질문에 대한 집중을 촉진할 수 있다. 메이요 클리닉의 면역학과 교수인 다니엘 빌라도(Daniel Billadeau) 박사는 "이 새로운 종류의 AI는 암과 면역 체계 간의 상호작용을 더 잘 이해할 수 있는 새로운 길을 열었으며, 의학적 가설을 테스트할 뿐만 아니라 환자가 면역 요법에 어떻게 반응할지 예측하고 설명하는 데 큰 가능성을 제시한다"고 말했다. 빌라도 박사는 이 연구의 공동 저자이자 공동 발명가이며 암 면역학에 오랫동안 관심을 가지고 연구해 왔다. 연구팀은 가설 기반 AI가 종양 분류, 환자 계층화, 암 유전자 발견, 약물 반응 예측, 종양 공간 조직 등 모든 종류의 암 연구 애플리케이션에 활용될 수 있다고 말했다. 기계 기반 추론은 과학자들이 가설 및 생물학적, 의학적 지식을 학습 알고리즘 설계에 통합함으로써 가설을 시험하고 검증하는 데 중요한 역할을 한다. 리 박사는 이러한 유형의 알고리즘 개발이 전문성과 깊은 지식을 요구하기 때문에 접근성이 제한될 수 있다는 단점을 지적했다. 그는 또한 편향의 가능성에 대해 경고하며, 연구자들이 다양한 정보를 적용할 때 이를 신중히 고려해야 한다고 조언했다. 이 방법은 일반적으로 범위가 제한적이며 모든 가능한 시나리오를 포괄하지 못할 수 있기 때문에, 예상치 못한 중요한 관계를 간과할 위험이 있다. 리 박사는 "그럼에도 불구하고 가설 기반 AI는 인간 전문가와 AI 간의 활발한 상호 작용을 촉진하여 AI가 일부 전문직 일자리를 대체할 것이라는 우려를 완화해준다"고 말했다. 이러한 상호작용은 AI의 발전과 활용에 있어 인간의 역할이 여전히 중요함을 강조한다. 가설 기반 AI는 아직 초기 단계이기 때문에 편향을 최소화하고 해석을 향상시키기 위해 어떻게 지식과 생물학적 정보를 최적으로 통합할 수 있는지와 같은 중요한 질문들이 남아 있다. 리 박사는 이러한 과제에도 불구하고 가설 기반 AI는 한 걸음 더 나아간 것이라고 평가했다. 리 박사는 이런 도전에도 불구하고, 가설 기반 AI가 의미 있는 진전을 이루었다고 평가했다. 그는 이 기술이 더 깊은 이해와 개선된 치료 방법을 가능하게 하여 의학 연구를 크게 앞당길 수 있으며, 결국 환자들에게 보다 나은 치료 옵션을 제공하는 새로운 방향을 제시할 수 있다고 말했다.
-
- 포커스온
-
[신소재 신기술(13)] 암치료용 새로운 AI 개발
-
-
[신소재 신기술(12)] 사족보행 로봇, 파쿠르 동작과 잔해 지형 횡단 기능 습득
- 주로 재난 현장이나 잔해 지역을 누비도록 설계된 사족보행 로봇이 파쿠르 동작을 습득해 주목받고 있다. 스위스 연방 공과대학교(ETH Zurich) 연구팀은 기존에 암석이 많은 도로 환경을 주로 주행하던 사족보행 로봇 애니말(ANYmal)에게 파쿠르 동작을 가르쳤다. 테크 익스플로어는 13일(현지시간) ETH 취히리 연구탐의 훈련으로 사족보행 로봇 ANYmal은 최근 인기를 끌고 있는 도시 환경의 장애물을 뛰어넘거나 빠르게 이동하는 파쿠르 동작을 수행하는 데 능숙하게 되었다고 전했다. 파쿠르는 주변 환경을 이용해 가능한 한 효율적으로 한 지점에서 다른 지점으로 이동하는 훈련 방법이나 스포츠를 말한다. 주로 도시의 건물, 벽, 계단 등을 활용하며, 몸의 균형, 힘, 정확성, 속도를 요구한다. 파쿠르 동작에는 점프, 구르기, 타기, 넘기 등 다양하고 유연한 움직임을 포함한다. 또한 ANYmal은 건설 현장이나 재난 발생 지역과 같은 복잡한 지형에서도 효과적으로 이동할 수 있는 능력을 갖추게 됐다. 연구 결과는 학술지 '사이언스 로보틱스(Science Robotics)'에 게재됐다 연구팀은 기계공학 및 프로세스 엔지니어링학과 마르코 후터(Marco Hutter) 교수가 이끄는 두 팀으로 구성되어 있으며, 서로 다른 접근 방식을 사용하여 ANYmal에게 새로운 기술을 가르쳤다. 기계적 한계 극복 연구팀 중 한 팀에는 평소 파쿠르 운동을 즐기는 니키타 루딘(Nikita Rudin) 박사 과정 연구원이 참여했다. 루딘 박사 학생은 "프로젝트 시작 전 많은 연구원들이 사족보행 로봇의 기술 발전은 한계에 도달했다고 생각했다. 하지만 저는 달리 생각했다. 사실 사족보행 로봇의 기계적인 측면에서 더 많은 발전 가능성이 있다고 확신했다"고 말했다. 루딘 연구원은 자신의 파쿠르 경험을 바탕으로 머신 학습을 활용하여 ANYmal에게 새로운 기술을 가르치고 기존 기능을 한계 이상으로 뛰어넘기 위한 노력을 기울였다. 현재 ANYmal은 장애물을 뛰어넘고 다이나믹한 동작을 통해 다시 뛰어 내려올 수 있다. 이 과정에서 ANYmal은 마치 아이가 배우듯 시행착오를 통해 학습했다. 현재 ANYmal은 장애물 앞에 다다르면 카메라와 인공 신경망을 사용하여 장애물의 종류를 파악하고 이전 훈련 데이터를 기반으로 성공 가능성이 높은 동작을 수행한다. 루딘 연구원은 이러한 방식을 통해 개별적인 새로운 기술 습득에는 효과적이지만, 미리 정의된 문제 해결 이상으로 잔해가 쌓인 재난 지역과 같은 복잡한 지형을 탐색하도록 하는 데는 한계가 있다고 말했다. 신기술과 기존 기술의 융합 루딘 박사 연구원의 동료인 파비안 예넬텐(Fabian Jenelten) 박사 과정 연구원이 참여한 또 다른 연구팀은 이러한 한계를 극복하기 위해 기존 기술과 머신 학습을 융합하는 방식을 사용했다. 이 방법은 모델 기반 제어라는 제어 공학 분야의 기존 기술을 활용해 로봇에게 정확한 동작을 가르치는 데 더 효과적이다. 예를 들어 잔해 더미 속의 틈새와 요철을 인식하고 통과하는 방법과 같은 기술을 습득시킬 수 있다. 반면, 머신 학습은 로봇이 익힌 운동 패턴을 예상치 못한 상황에 유연하게 적용할 수 있도록 돕는다. 예넬텐 박사 연구원은 "두 가지 접근 방식을 결합함으로써 ANYmal의 성능을 최대한으로 끌어올릴 수 있다"고 말했다. 연구 결과, 사족보행 로봇 ANYmal은 미끄러운 표면이나 불안정한 바위에서도 더욱 안정적으로 이동할 수 있게 됐다. ANYmal은 곧 건설 현장이나 재난 발생 지역의 붕괴된 건물 검사와 같이 사람이 접근하기 어려운 위험한 곳에도 투입될 예정이다.
-
- 포커스온
-
[신소재 신기술(12)] 사족보행 로봇, 파쿠르 동작과 잔해 지형 횡단 기능 습득
-
-
ICT 수출 두 달 연속 20%대 성장…메모리 반도체 수출 급증
- 한국 정보통신기술(ICT) 산업은 메모리 반도체 시장의 견인으로 두 달 연속 두 자릿수 성장률을 기록하며 긍정적인 추세를 이어가고 있다. · 14일 과학기술정보통신부의 잠정 집계에 따르면, 2월 ICT 수출액은 전년 동월 대비 29.1% 증가한 165억 3000만달러(약 21조 7684억원)에 달했다. 이는 1월(25.2%)에 이어 두 번째로 20% 이상의 높은 성장률을 기록한 것이다. 전 세계적인 인공지능(AI) 시장의 활발한 성장세는 한국의 주력 수출품목인 반도체 수요 증가로 이어져 전체 ICT 수출 증가를 이끈 것으로 풀이된다. 2월 반도체 수출은 전년 동월 대비 62.9% 증가한 99억 6000만달러(약 13조 1183억원)를 기록하며 지난 4개월 동안 두 자릿수 성장세를 이어갔다. 메모리 반도체의 경우 고정 거래가격 상승과 고부가 품목인 고대역폭 메모리(HBM) 수요 증가로 인해 수출액이 108.1% 증가한 60억 8000만달러(약 8조 80억원)를 기록했다. 시스템 반도체도 27.2% 증가한 34억 2000만달러(약 4조 5024억원)였다. 휴대전화 부문에서, 삼성전자의 신제품 출시가 완제품 수출을 2억 7000만 달러로 55.1% 증가한 반면, 애플 수요의 부진으로 인한 부품 수출이 5억 4000만달러로 36.9% 급감했다. 이로 인해 휴대전화 전체 수출액은 8억 1000만달러로, 21.3% 감소했다. 통신장비 수출도 2억달러로 지난해 2월 대비 6.7% 줄었다. 지역별 수출 동향을 살펴보면, 중국(홍콩 포함)으로의 수출이 73억 7000만달러(약 9조7018억원)로 43.8% 증가하며 4개월 연속 증가세를 보였다. 베트남으로의 수출은 26억 2000만달러(약 3조4489억원)로 24.3% 증가했으며, 미국으로의 수출은 18억 7000만 달러로 13.5% 증가해 각각 7개월과 4개월 연속 증가세를 기록했다. 그러나 유럽연합으로의 수출은 9억 2000만달러(약 1조2111억원)로 지난해 2월 대비 0.5% 감소했으며, 일본으로의 수출 역시 3억달러(약 3949억원)로 4.3% 줄어드는 등 감소세를 보였다. 한편, 2월 ICT 수입은 전년 동월 대비 6.7% 감소한 102억 9000만달러(약 13조 5530억원)를 기록했다. 이에 따라 우리나라 2월 ICT 무역수지는 62억 5000만달러(약 8조 2319억원)의 흑자로 집계됐다.
-
- IT/바이오
-
ICT 수출 두 달 연속 20%대 성장…메모리 반도체 수출 급증
-
-
[신소재 신기술(11)] AI 기반 비행 자동 조정 장치, 조종사 부족 문제 해결 '열쇠'
- 인공지능(AI) 기반 자동 조종 장치가 조종사 부족 문제를 완화하는 데 도움이 될 수 있다는 의견이 제기됐다. 11일(현지시간) 폭스뉴스에 따르면 인공지능을 탑재한 완전 자율 비행기는 조종사 부족 문제를 완화하는 데 도움이 될 수 있다고 개발 업체인 멀린 랩스(Merlin Labs) CEO가 전망했다. 항공 산업은 조종사 수요가 전 세계적으로 증가함에 따라 심각한 조종사 부족 문제에 직면했다. 항공컨설팅 기업 올리버 와이먼(Oliver Wyman)은 2023년 보고서에서 2032년까지 상업 항공사에서만 1만2719명의 조종사가 부족할 것으로 예상했다. 미국 공군 또한 수년간 목표 조종사 인원 대비 2000명 이상의 부족을 겪고 있으며, 숙련된 조종사를 유지하기 위해 최대 60만 달러(약 7억 8500만 원)의 보너스를 제공하고 있다. 멀린 랩스의 매트 조지 최고경영자(CEO)는 폭스 뉴스와의 인터뷰에서 "하늘에서 급증하는 수요를 따라잡을 수 있을 만큼 조종사가 충분하지 않다"고 말했다. 그는 "전 세계적으로 항공 수요가 증가함에 따라 항공 시스템을 설계하고 항공 우주 시스템을 설계하기 위해 앞으로 나아가야 할 일"이라고 지적했다. 조지는 "전 세계 상업 트래픽의 양은 15년마다 두 배로 증가한다"며 "수십억 명의 새로운 소비자가 온라인에 접속하여 이틀 이내에 물건을 배송받기를 원하거나 항공 시스템에 접속하기를 원하기 때문에 우리는 하늘과 인류의 관계에 대해 다르게 생각해야 한다"고 말했다. 멀린 랩스는 개발 중인 인공지능 기반 자동 조종 장치를 통해 화물기 조종석에서 한 명의 조종사를 대체해 인력 부족 문제를 해결하고, 나머지 조종사의 업무 일부를 대신함으로써 조종사의 업무를 덜어줌으로써 안전을 유지하거나 향상시키는 것을 목표로 한다. 조지는 이렇게 하면 비행이 더 안전해질 것이라고 강조했다. 그는 회사의 시스템은 대부분 전통적인 항공 기술에 의존하며 부족한 부분을 채울 때만 AI를 사용한다고 덧붙였다. 즉, 멀린 시스템은 기존 항공 기술을 기반으로 하며, 인공지능은 부족한 부분을 보완하는 역할을 한다. 인공지능 기반 자동 조종 장치는 기존 조종사가 수행하던 항공기 운항(aviate), 항법(navigate), 통신(communicate) 등의 업무를 수행하도록 설계됐다. 이를 통해 조종사는 보다 포괄적인 임무에 집중하고 기본적인 항공 운영 기능 수행보다는 의사 결정과 같은 중요한 업무에 더 많은 노력을 기울일 수 있다. 멀린 랩스는 지난달 미국 공군의 KC-135 전략 수송기에서 자율 조종 장치 성능 일부를 시험 및 시연할 것이라고 발표했다. 또한 민간 인증 절차의 최종 단계에 대한 발표가 몇 주 안에 있을 것임을 밝혔다. 하지만 멀린 랩스는 인공지능 기반 자동 조종 장치 도입으로 인해 조종사가 완전히 사라질 것이라고 예상하지 않고 있다. 오히려 인간과 인공지능의 협업을 통한 미래 항공 운영을 제안하고 있다. 또 완전 자율 운항보다는 인간 조종사의 능력을 보완하는 방향으로 기술 개발을 추진하고 있다. 또다른 매체 테크 브리프 또한 최근 AI 부조종사는 인간의 정밀도를 더 향상시켜 더 안전한 항공 비행을 할 수 있다고 전했다. 이 매체는 미국 국방부 산하 방위고등연구계획국(DARPA)에서 개발하는 차세대 공중감시 시스템 에어 가디언(Air-Guardian)을 예로 들었다. 에어 가디언은 무인 항공기(UAV) 및 인공지능(AI) 기술을 활용하여 광범위한 지역을 지속적으로 감시하도록 설계됐다. 에어 가디언은 2023년 10월 31일 첫 비행에 성공했으며 2028년까지 실전에 배치될 예정이다.
-
- 포커스온
-
[신소재 신기술(11)] AI 기반 비행 자동 조정 장치, 조종사 부족 문제 해결 '열쇠'
-
-
[신소재 신기술(10)] 쓰레기 아닌 자원! 세탁 세제로 플라스틱 용기 재활용 시대 열리다
- 영국에서 액체 세탁 세제로 플라스틱을 재활용하는 기술이 개발됐다. 과학 기술 전문매체 더쿨다운(TCD)은 10일(현지시간) 영국 킹스 칼리지 런던의 과학자들이 세탁 세제를 사용해 플라스틱을 분해하여 재활용할 수 있는 새로운 방법을 개발했다고 보도했다. 이 연구는 일회용 플라스틱의 일반적인 유형인 폴리락틱산(PLA)에 초점을 맞췄다. 킹스 칼리지 런던의 연구원들은 극한의 열을 사용하지 않고도 PLA를 분해할 방법을 찾던 중 대부분의 세탁 세제에서 흔히 발견되는 칸디다 안타르크티카 리파제 B(Candida antarctica lipase B·CALB)라는 효소를 발견하고 이를 변형해서 이온성 액체에 용해시켰다. 연구팀은 CALB 용액에 플라스틱 컵을 담근 후 24시간이 지나면 플라스틱이 완전히 녹는 것을 확인했다. 이 연구 결과는 과학 저널 셀 물리 과학 보고서(Cell Reports Physical Science)에 게재됐다. 폴리락틱산(Polylactic Acid, PLA)은 옥수수 전분과 사탕수수와 같은 식물성 자원에서 추출한 락틱산을 중합하여 만들어지는 가장 일반적인 상업용 생분해성 플라스틱이다. 그러나 일단 플라스틱으로 바뀌면 생분해되지 않고 매립지를 막거나 바다에 버려지게 된다. PLA는 석유 기반 플라스틱과 달리 식물로부터 얻어지므로 재생 가능한 자원을 사용하며, 사용 후에는 자연 조건 하에서 미생물에 의해 분해되어 이산화탄소와 물로 환원되는 특성을 갖는다. 이로 인해 환경 친화적인 대안으로 주목받으며, 일회용품, 포장재, 섬유, 의료 분야 등 다양한 용도로 사용돼 왔다. 하지만, PLA의 분해 속도는 환경 조건(온도, 습도, 미생물의 존재)에 따라 크게 달라질 수 있다. PLA는 산업적 규모의 퇴비화 시설에서는 빠르게 분해되지만, 자연 상태에서는 분해되는 데 수년이 걸릴 수 있다. 또한, PLA의 생산 과정에서 사용되는 식물 자원이 식량으로 사용될 수 있는 농작물을 사용한다는 점에서 지속 가능성에 대한 논쟁이 뜨거웠다. 연구팀은 "환경에 플라스틱 쓰레기가 쌓이는 것은 생태학적 재앙이며, 이를 해결하기 위해 다양한 접근 방식이 필요하다"고 설명했다. 인류세(Anthropocene)에 따르면 연구팀 중 한 명인 알렉스 브로건 화학과 교수는 "폴리락틱산은 제대로 재활용할 방법이 없기 때문에 선택했다"고 말했다. 브로건 교수는 "우리의 (기술) 개발로 90°C에서 40시간 이내에 플라스틱을 구성 요소로 전환할 수 있게 되었다"고 설명했다. 다음 연구 단계는 CALB 용액에 용해된 플라스틱을 재활용하기 위해 용도를 변경하는 방법을 알아내는 것이다. 브로건 교수는 "현재 엔지니어들과 협력하여 파쇄와 같은 보다 정밀한 전처리를 통해 이 공정을 개선하여 더 큰 규모로 작업할 수 있는 방법을 모색하고 있다"고 말했다. 그는 이어 "우리가 보여줘야 할 주요 개선 사항은 분해된 플라스틱으로 실제로 플라스틱을 다시 만들 수 있다는 점이며, 이를 통해 순환 고리를 끊는 것"이라고 강조했다.
-
- 포커스온
-
[신소재 신기술(10)] 쓰레기 아닌 자원! 세탁 세제로 플라스틱 용기 재활용 시대 열리다
-
-
한-미 ICT 기술 격차 1년…1년 전보다 0.1년 축소
- 한국과 미국의 정보통신기술(ICT) 기술 격차가 1년 간 줄어들었으며, 이는 1년 전보다 0.1년 축소된 것으로 나타났다. 10일 정보통신기획평가원(IITP)의 '2022년도 ICT 기술 수준 조사 및 기술경쟁력 분석 보고서'에 따르면, 한국의 정보통신기술(ICT)이 최고 기술 대국인 미국과의 격차를 소폭 줄인 것으로 나타났다. 해당 보고서에 따르면, 지난 2022년 기준 ICT 평균 기술 수준이 가장 높은 나라는 미국으로, 미국 대비 한국의 ICT 평균 기술 수준은 90.0%를 기록했다. IITP는 한국, 미국, 일본, 중국, 유럽을 대상으로 18대 중점 분야의 74개 기술, 289개 하위 기술의 경쟁력을 비교·분석해 이 같은 결과를 얻었다. 한국의 ICT 기술 수준은 전년도 89.6%보다 0.4%포인트 상승했고, 미국과의 ICT 평균 기술 격차도 2021년 1.1년에서 2022년 1.0년으로 0.1년 줄었다. 한국의 순위는 전년과 동일하게 4위를 유지했다. 유럽은 93.8%로 2위를 차지하고, 중국은 92.2%로 3위를 기록했으며, 일본은 88.6%로 한국보다 낮은 순위였다. 미국과의 기술 격차는 유럽이 0.7년, 중국이 0.8년, 일본이 1.2년으로 나타났다. 18개 중점 분야에서 미국이 17개 분야에서 1위를 차지하며 우수한 성과를 거두었지만, 양자 정보통신 분야에서는 유럽이 유일하게 최고 기술을 가졌다고 평가됐다. 한국은 14개 분야에서 전년보다 기술 수준이 향상됐고, 특히 빅데이터와 자율주행 자동차에서 상위권 국가들을 빠른 속도로 추격했다. 한국은 14개 분야에서 전년 대비 기술 수준이 향상되었으며, 특히 빅데이터와 자율주행 자동차 분야에서는 다른 국가들을 빠르게 추격하고 있다. 빅데이터 분야에서 한국의 기술 수준은 미국 대비 89.2%로 전년보다 1.2%포인트 올라 3위를 유지했고, 자율주행차 분야에서는 미국 대비 89.4%로 전년보다 1.0%포인트 증가했다. 2022년 한국의 기술 수준이 낮아진 분야는 이동통신과 인공지능(AI)이었다. 이동통신 기술력은 2021년까지 3년 연속 97.8%를 유지했으나, 2022년에는 97.5%로 0.3%포인트 하락했다. 이에도 불구하고, 한국은 미국과 중국(98.5%)에 이어 3위를 유지했다. 인공지능 분야에서는 미국이 구글, 오픈AI와 같은 초거대 AI 선도기업들의 역량에 힘입어 다른 모든 국가와의 격차를 벌리고 있는 것으로 나타났다. 한국의 AI 기술 수준은 2021년에 비해 2022년에 0.2%포인트 하락해 88.9%를 기록했지만, 다른 국가들에 비하면 낙폭이 가장 작았다. 2위인 중국은 0.8%포인트, 3위인 유럽은 0.5%포인트, 5위인 일본은 0.7%포인트씩 하락했다. 그밖에 한국은 △ 네트워크 89.2%(5위) △전파·위성 86.4%(5위) △사물인터넷 93.8%(3위) △소프트웨어 91.1%(4위) △클라우드 89.5%(4위) △컴퓨팅시스템 87.5%(5위) △방송미디어 94.9%(3위) △디지털 콘텐츠 88.3%(4위) △스마트 디바이스 89.4%(4위) △지능형 반도체 90.7%(3위) △양자 정보통신 87.4%(5위) △차세대보안 89.1%(4위) △블록체인 87.1%(4위) △ ICT 융합 90.2%(4위)로 집계됐다. IITP는 "한국은 추론·지식표현 분야에서 초거대 AI의 트렌드에 맞춰 인지도를 높이고는 있지만, 실질적인 기술적 진보나 응용 사업화에서 구체적인 성과를 보이지 못하고 있으며, 기술 수준이 정체되고 있다. 따라서 의료, 사이버보안 등 경쟁력 있는 특정 분야에 특화된 AI 기술 개발을 추진할 필요가 있다"고 말했다.
-
- IT/바이오
-
한-미 ICT 기술 격차 1년…1년 전보다 0.1년 축소
-
-
[퓨처 Eyes(26)] 소형 원자로 건설 혁명, 획기적인 전자빔 용접으로 1년 공정 하루로 단축
- 소형 모듈 원자로(SMR) 건설에서 1년 걸리는 공정을 하루 만에 끝낼 수 있는 획기적인 전자빔 용접 기술이 개발됐다. 영국 대형 제조회사 셰필드 포지마스터스(Sheffield Forgemasters)는 풀사이즈 소형 모듈형 원자로(SMR) 용기를 일반적인 공정 기간인 12개월이 아닌 단 24시간 만에 용접에 성공하면서 소형 원자로 건설 시장이 급변하고 있다. 이 획기적인 기술은 소형 원자로 보급에 엄청난 파급력을 가져올 것으로 예상된다. 소형 원자로(Small Modular Reactor, SMR·소형 모듈 원전)는 그 이름처럼 작은 크기의 원자로를 의미하며, 경제성, 유연성, 안전성, 확장성 등의 장점을 지닌다. 특히, 최근 급격한 기후 변화의 위협으로 탄소 배출을 최소화하는 에너지원에 대한 수요가 급증하면서 미래의 주요 전력 공급 수단으로 주목받고 있다. 소형 원자로는 기존 대규모 토목 프로젝트 형태의 원자력 발전소 건설 방식을 공장 생산 방식으로 전환해 원자력 산업에 혁명을 일으킬 수 있는 잠재력을 가지고 있다. 모듈형 원자로는 표준화된 설계로 대량 생산이 가능하며, 지역 수요에 맞게 필요한 수만큼 설치할 수 있다는 장점을 가지고 있다. 또한, 기존 원자로와 달리 엄청나게 비싼 건물이 필요하지 않아 경제성이 높다. 소형 원자로는 원자력 연료 재사용 기술을 통해 연료 수명을 연장하고 방사성 폐기물 발생량을 감소시킨다. 이는 지속 가능한 에너지 공급을 위한 중요한 기술로 평가된다. 또한, 초기 투자 비용이 상대적으로 적기 때문에 소규모 전력 시장과 개발도상국에서도 원자력 발전 도입이 용이해진다. 소형 원자로는 크기와 디자인의 유연성을 바탕으로 외딴 지역, 도시 인근, 심지어 산업 시설 내부에도 설치가 가능하다. 대부분의 부품은 공장에서 사전 제작되어 현장 설치 과정을 빠르고 효율적으로 진행할 수 있다. 필요에 따라 여러 개의 소형 원자로를 한 지역에 설치해 발전 용량을 조절할 수 있어, 전력 수요 변동에 유연하게 대응하고 안정적인 전력 공급을 가능하게 한다. 소형 원자로는 앞서 언급된 장점들로 인해 투자자들에게 상업적으로 매력적인 대안으로 떠오르고 있다. 특히, 전통적인 대형 원자로에 비해 빠른 수익 회수가 가능하다는 점에서 투자 가치가 높게 평가된다. 혁신적인 국소 전자빔 용접(LEBW) 기술 모든 규모의 원자로 건설에서 발생하는 주요 과제는 원자로 노심을 담는 용기를 용접하여 외부 환경과 격리하는 것이다. 기존 용접 기술은 이 작업에 1년 이상 소요되었지만, 셰필드 포지마스터스는 국소 전자빔 용접(LEBW) 기술을 통해 하루 만에 완료하는 획기적인 결과를 달성했다. 국소 전자빔 용접은 국소 진공 상태에서 고출력 전자총을 사용해 고에너지 밀도 융합 공정을 통해 두 개의 금속 조각을 용접하는 혁신적인 기술이다. 기존 용접 방식에 비해 작업 효율을 95% 향상시키고, 깊은 침투와 높은 깊이 대 너비 비율을 구현할 수 있다. 셰필드 포지마스터스는 지난 2월 20일 국소 전자빔 용접 기술을 이용해 직경 3미터, 두께 200밀리미터(8인치)의 벽을 결함 없이 저렴하게 용접하는데 성공했다고 밝혔다. 또한, 혁신적인 슬로핑 인 및 아웃 기술을 통해 용접 시작과 마무리 과정을 개선했다. '슬로핑 인(Sloping In)'은 원자로 용기 내부의 핵연료봉을 용기 벽면에서 중심부로 향해 경사지게 배치하는 방식이다. 핵연료봉 간 간격을 넓히고 중심부 밀도를 높여 핵연료 활용도를 극대화하고, 냉각재 흐름 개선으로 냉각 효율을 높여 과열 위험을 낮춘다. 핵출력 증가 또한 가능하다. '슬로핑 아웃(Sloping Out)'은 '슬로핑 인'과 반대로 핵연료봉을 배치하는 방식이다. 핵연료봉 간 간격 확대로 냉각 효율을 높이고 핵연료봉 밀도 감소로 핵출력을 조절하여 안전성을 강화한다. 또한, 용기 내부 공간 확보에도 유리하다. 셰필드 포지마스터스의 수석 개발 엔지니어이자 프로젝트 책임자인 마이클 블랙모어는 "이 기술이 원자력 산업에 미치는 영향은 기념비적이며, 잠재적으로 고비용의 용접 공정을 없앨 수 있다"고 강조했다. 블랙모어는 "LEBW 기술은 용접 접합부가 모재(parent material, 원물질)를 완벽하게 복제하기 때문에 용접 검사의 필요성을 줄일 수 있다는 점에서 획기적이다. 또한 영국과 전 세계 SMR 원자로의 상용화 속도를 크게 높일 수 있다"고 설명했다. 세계 최초로 성공적인 전자빔 용접 시연을 완료한 셰필드 포지마스터스는 수십 년 동안 정체되었던 영국 원자력 산업에 새로운 활력을 불어넣을 것으로 기대된다. 이 기술은 앞으로 핵잠수함용 원자로, 시범 발전소, 핵연료 처리 분야뿐만 아니라 SMR 원자로 건설에도 적용될 수 있다. 영국 정부는 이제 롤스로이스가 건설할 모듈형 원자로 15기를 포함한 새로운 원전 건설 계획을 통해 원자력 르네상스를 이끌 계획이다. 셰필드 포지마스터스의 혁신적인 전자빔 용접 기술은 이러한 계획의 성공적인 실행에 중요한 역할을 할 것으로 기대된다. 한국 소형원자로 건설 현황 원전 강국인 한국도 세계적인 추세인 소형 모듈 원전 건설을 주도하고 있다. 우리나라 원전 산업의 중심지인 경상남도는 지난 2월 28일 정부의 원전 산업 집중 육성 방침에 발맞춰 핵심 전략을 담은 '경상남도 원전 산업 육성 방안'을 발표했다. 이에 앞서 2월 22일 윤석열 대통령은 경남도청에서 열린 '다시 뛰는 원전산업, 활력 넘치는 창원·경남'이라는 주제의 14번째 민생토론회에 참석했다. 이 자리에서 정부는 원전 생태계 완전 복원, 소형 모듈 원자로(SMR) 독자기술 개발, 경남도·창원시를 글로벌 SMR 클러스터로 육성한다는 구체적인 계획을 공개했다. 경상남도는 정부의 정책 방향에 적극적으로 호응하며, 정부 지원과 별도로 지역 원전 기업에 대한 경영 및 시설 자금 중심의 금융 지원을 강화하겠다는 방침을 밝혔다. 이는 지역 원전 산업의 경쟁력 강화와 지속가능한 성장을 위한 중요한 발걸음이 될 것이다. 경상남도는 SMR 제조 기술, 신형로 설계, 친환경 원전 해체 기술 등 6개 원전 기술을 조세 특례 제한법에 명시된 '국가 전략 기술'로 지정해 달라고 정부에 건의할 예정이다. 또한 경상남도는 SMR 혁신 제작 기술 정부 공모 사업에 지역 업체 참여를 추진하는 등 SMR 독자 기술 확보를 위해 적극적인 노력을 기울일 계획이다. 이를 통해 지역 기업의 경쟁력 강화와 SMR 산업 발전을 동시에 도모할 수 있을 것으로 보인다. 아울러 경상남도는 창원 방위·원자력 융합 국가 산업 단지 조속 추진, 원자력 산업 종합 지원 센터 신설, 원자력 연구원 분원 및 글로벌 SMR R&D 센터 유치 등을 통해 글로벌 SMR 클러스터로 발돋움할 수 있는 구체적인 청사진을 제시했다. 경상남도는 창원시를 중심으로 세계 유일하게 원자력 발전소 주기기 일괄 생산이 가능한 창원 국가 산업 단지 내 두산 에너빌리티를 비롯해 300여 개 협력 업체가 자리잡고 있다. 원자력 발전소 주기기는 원자로, 증기발생기, 터빈, 발전기, 냉각 시스템 등 원자력 발전의 핵심 과정에서 주요한 역할을 하는 장치들을 말한다. 걍상남도는 이러한 유리한 조건을 바탕으로 차세대 원전의 글로벌 제조 거점으로 도약할 수 있는 잠재력을 갖추고 있다. 류명현 경남도 산업국장은 "대통령이 참석한 경남 민생 토론회의 핵심은 경남도·창원을 글로벌 SMR 클러스터로 육성한다는 것이었다"며 "정부 정책에 맞춰 경남이 차세대 원전 글로벌 제조 거점이 되도록 노력하겠다"라고 밝혔다.
-
- 포커스온
-
[퓨처 Eyes(26)] 소형 원자로 건설 혁명, 획기적인 전자빔 용접으로 1년 공정 하루로 단축
-
-
[신소재 신기술(9)] 땅콩 껍질로 리튬 이온 배터리 생산 기술 개발
- 중국 과학자들이 땅콩 껍질을 활용하여 리튬 이온 배터리를 생산하는 새로운 기술을 개발했다. 이 연구는 폐기물 활용과 리튬 이온 배터리 성능 개선이라는 두 가지 문제를 동시에 해결했다. 과학기술 전문 매체 더 쿨다운은 지난 5일(현지시간) 중국 과학기술대학교 연구팀이 땅콩 껍질에서 추출한 산화철을 이용하여 리튬 이온 배터리 음극을 제조하는 새로운 방법을 개발했다고 전했다. 연구 결과 땅콩 껍질 기반 음극은 높은 전기 용량과 우수한 사이클 안정성을 보였다. 게다가 떵콩 껍질 기반은 기존 흑연 기반 음극보다 저렴하고 친환경적이다. 이 연구 결과는 지난해 11월 14일 에너지 저장 기술과 시스템에 관한 연구를 다루는 국제 학술지 '저널 오브 에너지 스토리지(Journal of Energy Storage)'에 게재됐다. 리튬 이온 배터리는 양극과 음극(각각 양전극과 음전극) 사이에서 리튬 이온을 이동시켜 작동한다. 현재 대부분의 리튬 이온 배터리 음극은 흑연, 규소, 또는 이 둘의 복합체와 같은 탄소 기반 물질로 제조된다. 그러나 리튬 이온 배터리 연구에 종사하는 과학자들은 이러한 기존 소재보다 더 우수한 물질을 개발할 수 있다고 기대해 왔다. 땅콩 껍질 기반 음극, 높은 전기 용량 지녀 또 다른 학술지 '응용 표면 과학 언드밴스(Applied Surface Science Advances)' 저널에 게재된 「리튬 이온 전지용 음극 재료: 리뷰」라는 제목의 연구 논문에서 연구팀은 "흑연 음극은 용량이 적고 안전상의 문제가 있다는 것이 잘 알려져 있다"고 지적했다. 연구팀은 이러한 문제를 해결하기 위해 "다음 세대 리튬 이온 전지용 새로운 음극 재료로서 많은 고성능 음극 재료들이 연구되고 있다"고 덧붙였다. 이같은 상황에서 최근 개발된 음극 재료 중 하나가 바로 땅콩 껍질을 활용한 것이다. 연구팀은 땅콩 껍질이 저렴하다는 점에서 재료로 매력적이라고 설명했다. 연구 논문에서 저자들은 "싸고 반복 성능을 개선하는 데 적합한 열분해 공정을 위한 탄소 원천으로 저렴한 원료를 찾기 위해 노력했다"고 밝혔다. 폐기되는 유기물질인 땅콩 껍질을 활용하여 리튬 이온 배터리를 제조하는 것은 두 가지 문제를 동시에 해결하는 훌륭한 방법이다. 이는 배터리의 효율, 안전성 및 비용을 개선하는 데 도움이 될 뿐만 아니라 식품 폐기물 문제 해결에도 기여한다. 땅콩 껍질을 이용해 배터리를 만들면 쓰레기 매립지에 폐기되어 지구 온난화 가스를 배출하는 대신 유용한 자원으로 활용될 수 있다. 연구팀은 또한 대나무, 흰목이버섯의 일종인 트레멜라(tremella), 뽕잎, 목재, 녹차 등에서 추출한 탄소 함유 물질 등을 사용해 동일한 실험을 진행했다. 감귤 껍질로 리튬 배터리 재활용 비슷한 맥락에서 또 다른 연구팀은 최근 감귤류 껍질을 이용해 리튬 배터리를 재활용하는 방법을 개발했다. 싱가포르 난양 기술 대학교(Nanyang Technological University·NTU) 과학자들은 감귤 껍질을 활용해 리튬 배터리를 재활용하는 기술을 개발했다. 새로운 방법은 과일 껍질을 이용해 사용한 배터리에서 귀금속을 추출한 다음 새 배터리에 재사용할 수 있었다. 이는 리튬 배터리를 재활용하는 가장 환경 친화적인 방법일 수도 있다. 이 연구팀의 일원인 마다비 스리니바산(Madhavi Srinivasan) 교수는 "현재 산업적으로 전자 폐기물을 재활용하는 과정은 에너지 집약적이며, 유해한 오염 물질과 액체 폐기물을 배출하므로 전자 폐기물의 양이 증가함에 따라 친환경적인 재활용 방법이 시급히 필요하다. 우리 팀은 생분해성 물질로 재활용하는 것이 가능하다는 것을 입증했다"며 "이러한 발견은 우리의 기존 작업을 기반으로 한다"고 설명했다. NTU 팀은 극한의 온도를 요구하지 않고 오렌지 껍질과 감귤류에서 발견되는 약한 유기산인 구연산만을 사용하여 산업 재활용 공정과 동일한 결과를 얻을 수 있었다.
-
- 포커스온
-
[신소재 신기술(9)] 땅콩 껍질로 리튬 이온 배터리 생산 기술 개발
-
-
[신소재 신기술(8)]치즈 부산물로 폐전자제품에서 금 캐내기…획기적인 친환경 기술 개발
- 스위스 연방공과대학(ETH Zurich) 연구팀은 치즈 제조공정 부산물로 폐전자제품에서 금을 추출하는 획기적인 친환경 기술을 개발했다. 지난 4일(현지시간) 과학 기술 전문매체 퓨처리즘에 따르면 스위스 연구팀은 식품 산업 부산물을 기반으로 하는 지속 가능한 방법으로 전자 쓰레기에서 귀금속을 추출하는 새로운 방법을 고안했다. 이 방법은 경제적으로도 매우 효과적이다. 연구팀은 단 1달러의 투자로 50달러 가치의 금을 생산할 수 있다고 추산했다. 특히 주목할 만한 점은 이 과정이 매우 친환경적이라는 것이다. 연구팀은 치즈 제조 과정에서 생성되는 단백질이 풍부한 부산물로 만들어진 단백질 섬유 스폰지가 폐전자제품에서 금을 추출하는 데 유용하게 사용될 수 있다는 사실을 발견했다. 공동 저자이자 ETH 취리히의 라파엘레 메진가(Raffaele Mezzenga) 교수는 성명에서 "제가 가장 좋아하는 사실은 식품 산업 부산물을 사용해서 전자 쓰레기에서 금을 얻었다는 것"이라면서 "이보다 더 지속 가능한 것은 없다"고 말했다. 연구팀은 저널 '어드밴스트 머티리얼스(Advanced Materials)'에 발표된 새로운 논문에서 20개의 오래된 컴퓨터 마더보드(motherboard, CPU와 주기억장치 및 주변 장치 접속을 위한 소켓을 탑재한 기판으로 메인보드라고도 함)에서 450mg(밀리그램)의 22캐럿(91.67%의 순금) 금 덩어리를 회수할 수 있었다고 밝혔다. 이를 위해 연구팀은 산성 조건과 고온에서 유청 단백질을 변성시켜 단백질 나노섬유 슬러리(slurry)를 만들었다. 그런 다음 이 젤을 건조시켜 스폰지를 제작했다. 20개의 마더보드의 금속 부품을 용해하고 용액에서 이온화한 후 스폰지를 용액에 넣어 금 이온을 끌어당겼다. 연구팀은 스펀지를 가열하여 수집된 이온을 조각낸 다음 작은 금덩어리로 녹여냈다. 이 450밀리그램 덩어리는 91% 금과 9% 구리로 구성됐다. 이 금은 현재 온스당 가격으로는 약 33달러에 해당한다. 연구팀에 따르면, 이 기술의 에너지 비용이 회수 가능한 금의 가치에 비해 매우 낮은, 50분의 1에 불과하다고 한다. 공정을 대규모로 확장할 경우 상당한 경제적 이익을 가져올 수 있다. 현재 연구진은 변형 가능한 스펀지를 제작하기 위해 다른 단백질이 풍부한 부산물도 탐색중이다. 세계보건기구(WHO)에 따르면, 전자 폐기물은 전 세계에서 가장 빠르게 증가하는 고형 폐기물 중 하나로, 매년 수백만 대의 전자 기기가 폐기되고 있다. 이러한 폐기물은 적절히 처리되지 않을 경우 환경은 물론 인간 건강에도 해로울 수 있다. ETH 취리히 대학 연구팀의 활용 사례처럼 전자 폐기물 재활용을 촉진하는 것은 환경 보호와 자원 회수 측면에서 긍정적인 영향을 미칠 수 있다.
-
- 포커스온
-
[신소재 신기술(8)]치즈 부산물로 폐전자제품에서 금 캐내기…획기적인 친환경 기술 개발
-
-
[신기술 신소재(8)] 美 미시간대, 희토류 원소의 새로운 동위원소 발견
- 중원소 원자핵을 분열하는 획기적인 실험에서 이전에 관찰되지 않았던 입자 비율로 구성된 새로운 형태의 원자핵이 발견됐다. 과학 전문매체 사이언스얼럿에 따르면 미국 미시간 주립 대학 올렉 타라소프(Oleg Tarasov) 박사가 이끄는 물리학자들은 백금 원자핵을 분열해 처음으로 희토류 원소인 툴륨, 이터비움, 루테튬의 새로운 동위원소를 발견했다. 과학자들은 이번 연구를 통해 중성자가 풍부한 원자핵의 특성과 천체 충돌 과정에서 새로운 원소가 형성되는 과정을 이해하는 데 도움이 될 것으로 기대했다. 아울러, 연구팀은 이 연구를 통해 2022년 6월 첫 실험을 수행한 미시간 주립 대학의 희귀 동위원소 빔 연구시설(FRIB)의 위력도 입증했다. 일반적으로 헬륨보다 무거운 원소를 중원소라고 한다. 대부분의 중원소는 별에서 일어나는 핵합성을 통해 생성된다. 즉, 초신성 폭발이나 중성자별 병합 등을 통해 중원소가 생성된다. 모든 원소는 완전히 동일한 형태로 존재하지 않는다. 각 원자핵은 양성자와 중성자라는 원자핵의 여러 하위입자로 구성되어 있다. 중원소 원자핵은 양성자와 중성자로 구성된다. 양성자와 중성자의 총 갯수를 핵자수라고 한다. 여기서 양성자의 갯수를 원자 번호라고 하며 원자번호는 원소를 구성하는 고유한 특징이다. 같은 원자번호지만 중성자 갯수가 다른 원자핵을 동위원소라고 한다. 모든 원소는 다양한 안정성 수준을 가진 여러 동위원소를 가지고 있다. 일부 동위원소는 극히 빠르게 붕괴해 이온화 복사 폭발과 함께 가벼운 원소로 분해된다. 반면 안정적으로 존재하는 동위원소도 있다. 과학자들은 다양한 동위원소와 그 행태를 이해함으로써 우주가 어떻게 원소를 만드는 지, 시간과 공간에 걸쳐 이러한 원소들이 얼마나 풍부한 지 추정할 수 있다. 타라소프 박사팀은 새로운 동위원소를 합성하기 위해 120개의 중성자를 가진 백금 동위원소 198Pt로 실험을 시작했다. 표준 백금은 117개의 중성자를 가지고 있으며, 더 무거운 동위원소를 사용하면 원자핵 분열 방식을 변경할 수 있다. 연구팀은 이 원자를 중이온가속기를 사용해 원자핵을 조각내는 FRIB에 배치했다. 희귀 동위원소 빔은 빛의 절반보다 빠른 속도로 표적에 발사된다. 이 동위원소가 표적에 부딪히면 더 가벼운 동위원소 핵으로 부서지고 물리학자들은 이 동위원소를 검출하고 연구할 수 있다. 타라소프 연구팀은 198Pt의 분열 과정에서 각각 113개와 114개의 중성자를 가진 182Tm과 183Tm을 발견했다. 표준 툴륨은 69개의 중성자를 가지고 있다. 또한 각각 116개와 117개의 중성자를 가진 186Yb과 187Yb도 발견했다. 표준 이터비움은 103개의 중성자를 갖는다. 마지막으로 119개의 중성자를 가진 190Lu를 발견했다. 표준 루테튬은 104개의 중성자를 가지고 있다. 이러한 동위원소는 모두 가속기에서 여러 번 반복되는 실험에서 관찰됐다. 이는 FRIB가 이전에는 거의 연구되지 않았던 영역, 즉 중성자 수 N=126 이상의 중원소 풍부 동위원소 합성 연구에 사용될 수 있다는 것을 의미한다. 그동안의 연구 부진은 관심 부족 때문이 아니라 이러한 동위원소를 생성하고 검출하는 능력 때문이었다고 연구팀은 지적했다. 이는 우주 현상에서 가장 무거운 원소가 어떻게 형성되는지 이해하는 데 기여할 수 있다. 우주에서 철보다 무거운 모든 원소는 초신성 폭발이나, 중성자별 간의 충돌 등 극한의 조건에서만 생성될 수 있다. 중성자별 충돌에서 일어나는 핵합성 과정 중 하나는 급속 중성자 포획 과정(r-process)이다. 이는 킬로노바 폭발 과정에서 방출되는 자유 중성자를 원자핵이 빠르게 흡수하여 더 무거운 원소로 변환되기 시작할 때 발생한다. 이 과정을 통해 금, 스트론튬, 백금과 기타 중금속이 생성된다. 연구팀은 이번 실험을 통해 r-process를 재현하는 데 매우 가까이 다가갔다고 주장했다. 이는 곧 우주에서 가장 폭력적인 사건 중 일부에서 관찰되는 핵합성 경로 중 하나를 복제할 수 있는 도구를 갖게 될 가능성이 있다는 것을 뜻한다. 연구팀은 "국립 초전도 사이클로트론 연구소에서 사용가능했던 에너지를 능가하는 매우 강렬한 1차 빔을 포함해 FRIB의 독특한 기능은 중성자 수 N=126 이상 영역을 탐색하는 데 이상적인 시설이다"고 설명했다. 또한 "FRIB의 연구원들은 이러한 반응을 이용해 새로운 동위원소의 특성을 생성하고 식별 및 특성을 연구함으로써 핵물리학, 천체물리학 및 물질의 기본적 특성에 대한 이해를 향상시킬 수 있다"고 말했다. 이 연구는 지난 2월 미국 물리학회에서 발행하는 주간 학술지 'Physical Review Letters(PRL)'에 발표됐다.
-
- 포커스온
-
[신기술 신소재(8)] 美 미시간대, 희토류 원소의 새로운 동위원소 발견
-
-
인텔, 2025년까지 AI 지원 PC 1억 대에 칩 공급
- 인텔(Intel)은 2025년까지 최대 1억 대의 인공지능(AI)을 지원하는 PC에 자사의 코어 프로세서를 공급하는 것을 목표로 하고 있다. 이는 예상되는 전체 글로벌 PC 시장의 20% 이상을 차지할 것으로 보인다. 28일(현지시간) 일본 경제신문 니케이 아시아에 따르면 인텔은 AI PC 시대에는 칩 성능뿐만 아니라 서비스 및 사용자 경험도 중요하다고 강조했다. 인텔은 AI 기반 PC 시대에는 칩의 성능뿐만 아니라 서비스와 사용자 경험이 중요하다고 보고, 이를 위해 소프트웨어 및 애플리케이션 개발자와의 협력을 강화하고 있다. 인텔은 마이크로소프트와 협력하여 AI PC를 '정의'하고 있으며 이 개념에는 세 가지 핵심 요소가 있다. 인텔과 마이크로소프트는 AI PC를 정의하는 데 협력하고 있으며, 이 개념에는 세 가지 핵심 요소가 포함된다. 첫 번째는 AI 워크로드를 처리하기 위해 설계된 신경 처리 장치(NPU)를 내장한 인텔의 코어 울트라(Core Ultra) PC 칩셋, 두 번째는 마이크로소프트의 AI 챗봇인 코파일럿(Copilot)을 위한 전용 "코파일럿 키"를 갖춘 키보드, 그리고 세 번째는 업무 효율성을 높일 수 있는 잠재력이다. AI 지원 PC는 미국 수화를 영어로 즉각 번역하고, 비디오를 실시간으로 전사하며, 텍스트를 파워포인트 슬라이드로 자동 변환하는 등의 기능을 제공할 예정이다. 인텔은 이러한 사용 사례를 확장하고 파트너를 확보하기 위해 적극적으로 노력하고 있다. 구체적으로, 마이크로소프트 팀즈(Microsoft Teams), 웹엑스(Webex), 줌(Zoom) 등 화상 회의 서비스 제공업체와 협력하여, 사용자의 시선을 카메라에 자동으로 맞추는 시선 추적, 배경을 제거하고 스마트 프레이밍을 조정하는 등의 AI 기반 기능을 개발하고 있다. 2022년 하반기부터 전체 PC 산업은 러시아-우크라이나 전쟁과 인플레이션 상승의 영향으로 수요 감소를 경험했다. 카운터포인트리서치는 2023년에 상업용 및 소비자 부문의 수요 둔화로 인해 글로벌 PC 시장이 전년 대비 14% 축소되었다고 보고했다. 이 리서치 기관은 윈도우 11 운영체제의 교체, Arm(암) 기반 PC의 보급 확대, AI 지원 PC의 확산 등으로 인해 올해 글로벌 PC 시장이 코로나19 팬데믹 이전 수준으로 회복될 것으로 전망했다. 애플을 제외한 주요 PC 제조업체들은 올해 말 AI 지원 PC 출시를 계획하고 있다. 에이서(Acer)의 제이슨 첸(Jason Chen) 회장은 최근 기자들에게 생성 AI가 업계에 새로운 기회를 제공하며, 2024년에는 회사의 최우선 과제가 될 것이라고 밝혔다. 에이서는 대만 타이베이에 본사를 두고 있는 다국적 정보통신기술(ICT) 기업이다. 이 회사는 컴퓨터, 1976년에 설립된 이 회사는 노트북, 스마트폰, 태블릿, 디스플레이 등 다양한 IT 제품의 생산 및 판매를 통해 세계 최대 규모의 PC 제조업체 중 하나로 성장했다. 인텔은 전 세계 PC용 마이크로프로세서 시장에서 가장 큰 공급업체로, 특히 노트북 칩 시장에서 약 76%의 점유율을 보유하고 있다. 한편, 인텔은 연내 파운드리(반도체 수탁생산) 1.8나노(㎚·10억분의 1m) 공정 양산에 나서겠다고 선언해 글로벌 반도체 업계를 도발했다. 나노는 반도체 회로 선폭을 의미하는 단위로, 선폭이 좁을수록 소비전력이 줄고 처리 속도가 빨라진다. 현재 가장 앞선 양산 기술은 3나노다. 인텔은 지난 21일 미국 캘리포니아주 새너제이에서 파운드리 전략을 발표하는 'IFS(인텔 파운드리 서비스) 다이렉트 커넥트' 행사를 열었다. 이는 2021년 3월 파운드리 사업 진출 선언 이후 대규모 투자 계획을 발표해온 인텔이 처음 여는 파운드리 사업 설명회였다. 행사에서 인텔은 올해 말부터 1.8나노 공정(18A)의 양산에 들어간다고 발표했다. 당초 양산 시점은 2025년이라고 밝혔는데, 이를 앞당긴 것이다. 세계 파운드리 1위인 대만 TSMC와 2위 삼성전자가 2나노 주도권을 두고 치열하게 경쟁하는 와중에 후발주자인 인텔이 파운드리 공정 양산을 선언해 업계의 주목을 받고 있다. 인텔은 지난해 9월 1.8나노급인 18A 공정 반도체 웨이퍼 제품을 깜짝 공개해 삼성전자와 TSMC를 긴장시켰다. 이날 인텔은 1.8 나노 공정에서는 MS의 칩을 생산한다고 밝혔다. 사티아 나델라 MS 최고경영자(CEO)는 이날 사전 녹화된 영상을 통해 "가장 진보되고 고성능이며 고품질 반도체의 안정적인 공급이 필요하다"며 "그것이 우리가 인텔과 함께 일하는 것에 매우 흥분하는 이유"라고 밝혔다.
-
- IT/바이오
-
인텔, 2025년까지 AI 지원 PC 1억 대에 칩 공급
-
-
[신소재 신기술(7)] 스위스 연구팀, 혁신적 사족 로봇 개발⋯최첨단 조작 작업 수행
- 스위스 연구팀이 사족 로봇이 다리만을 사용하여 최첨단 조작 작업을 수행할 수 있는 컨트롤러 '페디풀레이트(Pedipulate)'를 개발했다. 크립토폴리탄은 지난 26일(현지시간) 스위스 ETH 취리히 로봇 시스템 연구소의 연구팀이 과학 논문 온라인 저장소 아카이브(arXiv) 서버에 발표한 연구에서 사족 로봇이 다리를 사용해 복잡한 조작 작업을 수행할 수 있는 혁신적인 컨트롤러인 페디풀레이트를 개발했다고 보도했다. 페디풀레이트는 '다리를 사용하여 조작하다'라는 뜻을 가진 단어로, 사족 로봇이 다리를 사용하여 복잡한 조작 작업을 수행할 수 있도록 지원하는 혁신적인 컨트롤러다. 이 개발은 로봇 공학 분야의 중요한 도약을 의미하며, 전통적인 검사 역할 외에도 유지 보수, 가정 지원 및 탐험 활동에서 다리 로봇의 활용 가능성을 보여줬다. 로봇 공학의 격차 해소 「사족 로봇의 다리 이용 조작: 페디풀레이트(Pedipulate)」라는 제목의 이 연구는 조작을 위해 추가 로봇 팔을 필요로 하는 기존의 사족 로봇 설계에 도전했다. 기존 설계는 전력 소비와 기계적 복잡성을 증가시킨다는 설명이다. 연구팀은 사족 동물을 관찰하면서 로봇의 다리를 이동과 조작에 활용함으로써 로봇 시스템을 크게 단순화하고 비용을 절감할 수 있다는 가설을 세웠다. 페디풀레이트는 특히 우주 탐사와 같이 크기와 효율성이 중요한 분야에서 유용하다. 페디풀레이트는 딥 강화 학습을 통해 훈련되며 신경망을 사용하여 발 위치 목표를 추적한다. 이는 로봇 발과 목표 지점 간의 거리를 최소화하는 동시에 갑작스러운 움직임이나 충돌과 같은 바람직하지 않은 'bewegt(베베크트, 움직임)'를 제어한다. 이 컨트롤러는 12개의 토크 제어 관절과 각 발에 힘-토크 센서가 장착된 '애니멀 D(ANYmal D)' 로봇에서 테스트되었으며, 실제 상황에서 다리 기반 조작의 실현 가능성을 입증했다. 정밀성과 적응력 평가 컨트롤러의 성능은 시뮬레이션 및 실제 환경에서 엄격하게 평가됐다. 이는 넓은 작업 공간에 도달하는 뛰어난 능력을 보여주었으며, 시뮬레이션에서 평균 추적 오차는 0.037 미터, 실제 응용 프로그램에서 근거리 목표의 경우 0.057 미터에 달했다. 이러한 정밀도를 통해 로봇은 작업별 적응 없이 문 열기부터 암석 샘플 채취까지 다양한 작업을 수행할 수 있다. 페디풀레이트의 주요 혁신 중 하나는 적응적 명령 생성을 위한 교육 과정이다. 이 방식을 통해 로봇은 삼족 보행을 사용하여 높은 곳에 위치한 먼 거리의 목표물에 접근할 수 있다. 이 접근 방식은 로봇의 이동성을 향상시키고 명령이 고정된 로컬 제어 프레임에서 정의되기 때문에 사용자에게 더 직관적인 제어 경험을 제공한다. 결과적으로 운영자는 로봇의 움직임을 보다 손쉽게 지시하고 안내할 수 있다. 척박한 외부 환경서 작동 페디풀레이트는 다양한 분야에서 사족 로봇의 활용 가능성을 열어준다. 산업 환경에서 이 로봇은 기계 검사 및 운영과 같은 유지 보수 작업을 수행할 수 있다. 또한 가정 지원을 위해 물건 가져오기, 가전 제품 열기, 가구 재배치를 수행할 수 있다. 더욱이, 험난한 지형에서 물체를 탐색하고 조작하는 능력은 지구나 다른 행성에서 탐사 임무를 수행하는 데 적합하다. 페디풀레이트 컨트롤러는 미끄러운 표면이나 예상치 못한 힘과 같은 외부 환경에 대해 강하다. 이동과 조작을 매끄럽게 통합함으로써 이 컨트롤러는 전례 없는 효율성과 안정성을 갖춘 보다 자율적이고 다재다능한 로봇 보조 도구의 길을 열었다. 로봇 공학의 미래 로봇 공학이 계속 발전함에 따라 페디풀레이트를 개발한 스위스 연구팀의 혁신은 인간 삶의 질을 향상시키는 데 있어서 기계의 성장하는 능력을 강조했다. 이는 유지 보수, 지원 및 탐색 작업에서 가능한 일의 경계를 넓히는 역할을 한다. 이 연구 결과는 로봇 공학 분야에 크게 기여하며 로봇이 우리 일상과 작업 공간에서 더욱 중요한 역할을 수행할 수 있는 미래를 엿볼 수 있게 한다. 사족 로봇의 잠재력을 보여주는 획기적인 기술인 페디풀레이트는 다양한 분야에서 인간의 삶을 개선하는 데 기여할 것으로 기대된다. ETH 취리히 로봇 시스템 연구소의 필립 암(Philip Arm), 마얀크 미탈(Mayank Mittal), 헨드릭 콜벤바흐(Hendrik Kolvenbach), 마르코 후터(Marco Hutter)가 수행한 이 작업은 오는 5월 일본에서 열리는 'IEEE 국제 로봇 및 자동화 회의(ICRA 2024 )'에서 발표될 예정이다.
-
- 포커스온
-
[신소재 신기술(7)] 스위스 연구팀, 혁신적 사족 로봇 개발⋯최첨단 조작 작업 수행
-
-
[신소재 신기술(6)] 지열로 대기 중 이산화탄소 직접 회수하는 기술 개발
- 미국 과학자들이 청정 지열에너지를 이용해 대기 중 이산화탄소를 직접 회수하는 획기적인 기술을 개발했다. 지열에너지는 지구 내부의 열을 활용하는 지속 가능한 에너지원 중 하나다. 지구 내부의 열은 주로 지구의 형성 과정에서 발생한 열, 방사성 붕괴로 인해 발생하는 열, 그리고 마그마의 이동 등 지구 내부의 압력으로 인한 열 등이 있다. 26일(현지시간) 싱크 지오에너지에 따르면 오하이오 주립대 연구팀이 개발한 'DACCUS'라는 시스템은 회수를 위한 에너지를 지열로 충당함으로써 깨끗하고 안전하게 공기에서 이산화탄소를 제거할 수 있다고 한다. 연구팀이 수행한 연구에 따르면 직접 공기 CO₂ 포집 기술(DACC)과 CO₂ 플룸 지열을 결합한 시스템을 개발하는 방법을 제안했다. 이들은 CO2 배출량이 거의 없이 대규모 CO2 제거가 가능한 기후 친화적인 직접 공기 CO₂ 포집, 활용 및 저장(DACCUS) 시스템을 만들 수 있다. 대기 중 이산화탄소를 회수해 지하에 가두는 기술은 대량의 에너지를 필요로 하기 때문에 잘 못하면 오히려 이산화탄소를 배출하는 결과를 초래할 수 있다. 사례 연구 분석 결과, 지층의 두께가 100미터 이상이며 최대 CO₂ 주입 속도가 연간 1MtCO2/유정으로 제한되는 조건에서, 5년간의 초기 활성화 기간(priming period)이 충분한 것으로 나타났다. 보다 두꺼운 지층의 경우, CO₂ 플룸의 지열 시스템 활용에 앞서, 5년 이상의 기간 동안 지질학적 CO₂를 저장해야 한다. 이산화탄소 포집-지하 저장 기술 지구 온난화의 주요 원인 중 하나는 화석 연료의 연소로 인해 대기 중으로 방출되는 이산화탄소다. 따라서 지구 온난화를 억제하기 위해서는 탄소 중립, 즉 탄소 배출을 줄이거나 제로(0)로 만드는 것이 중요하다. 그러나 인간의 활동에는 에너지가 필수적이기 때문에, 이산화탄소 배출을 완전히 제로로 줄이는 것은 현실적으로 어려운 과제다. 이 문제에 대한 창의적인 접근 방법 중 하나는 배출된 이산화탄소를 포집하여 지하에 저장하는 기술, 즉 '이산화탄소 포집 및 저장(CCS)' 기술이다. 이 기술은 대기 중으로의 이산화탄소 방출을 줄이는 데 기여할 수 있다. 그러나 기존의 CCS 기술은 이산화탄소 포집 효율이 낮아, 실제로는 예상과 다르게 이산화탄소 배출을 증가시킬 수 있는 역효과를 낳을 가능성이 있다. 지열에너지를 활용하면 이산화탄소를 포집하면서 동시에 발전을 진행할 수 있다. 오하이오 주립대 연구팀은 이 점에 착안해 '이산화탄소 포집 및 저장(CCS)' 기술에 지열 에너지를 통합하여 운영하는 새로운 접근 방식을 개발했다. 이들이 도입한 시스템은 'DACCUS'(직접 공기 중 이산화탄소 포집 및 활용 저장)로, 대기 중에서 직접 이산화탄소를 분리해내고 이를 지하에 저장하는 동시에, 지열을 활용해 이 과정에 필요한 에너지를 충당한다. 지열은 지속가능하고 청정한 에너지원으로, DACCUS 시스템은 이를 활용하여 대기 중의 이산화탄소를 효과적으로 포집하고 지하에 안전하게 저장한다. 이 과정에서 포집된 이산화탄소는 지하의 지열을 활용하여 지표면으로 열을 전달하는 데 사용한다. DACCUS의 혁신적인 장점은 이산화탄소를 단순히 저장하는 것에서 그치지 않고, 이를 활용하여 지열 발전을 촉진하고 발전 과정에서 에너지를 생산한다는 점이다. 이로 인해 지속 가능한 에너지 생산과 온실가스 감축이라는 이중의 이점을 동시에 달성할 수 있다. 멕시코만서 실증 실험 연구팀은 이 획기적인 시스템의 가능성을 증명하기 위해 지열이 풍부한 미국 멕시코만 지역에서 실증 실험을 진행하고 있다. 연구팀에 따르면, 멕시코만 연안에는 석탄 및 천연가스 발전 시설과 같은 CO₂의 점 공급원이 존재하며, 이산화탄소를 저장하기에 적합한 지질과 DACCUS를 가동하기에 충분한 지열이 있다. 이 시스템을 설치하면 효율적으로 이산화탄소를 회수할 수 있는 것으로 나타났다. 연구팀은 2050년까지 멕시코만 연안의 한 지층에 25개의 DACCUS 시스템을 가동하는 것을 목표로 하고 있다. 이를 통해 이 획기적인 기술의 가능성을 보여줄 수 있다. 그러나, 현재 DACCUS 시스템의 구축에는 몇 가지 도과제가 있다. DACCUS 기술을 효과적으로 활용하기 위해서는 초기 5년간 공장 등의 이산화탄소 배출원으로부터 배출되는 이산화탄소를 저장하는 과정이 필수적이다. 이 과정은 마치 펌프에 물을 채워야 물이 나오는 마중물과 같아서, 초기 단계에서 필요한 '프라이밍' 작업으로 볼 수 있으며, 이 단계를 완료해야만 대기 중 이산화탄소의 포집이 가능해진다. 2025년까지 DACCUS 기술을 적용할 수 있다면, 실제로 대기에서 이산화탄소를 제거하기 시작하는 시점은 2030년경이 될 것으로 예상된다. 마르티나 레베니와 제프리 M. 비엘리키의 이번 연구 전체 논문은 '환경 연구 편지 저널(Environmental Research Letters)'에 게재됐다.
-
- 포커스온
-
[신소재 신기술(6)] 지열로 대기 중 이산화탄소 직접 회수하는 기술 개발
-
-
[신소재 신기술(5)] 미국 스타트업 H2MOF, 상온 수소 저장 솔루션 개발
- 캘리포니아 스타트업이 인공지능(AI)을 활용해 상온 수소 저장 솔루션을 개발했다. 세계 각지에서 전 세계 수소 생산 능력 확대를 위한 투자가 이루어지고 있다. 특히 탄소 배출 없는 재생 에너지 사용을 통해 생산되는 녹색 수소에 대한 관심이 높아지고 있다. 하지만 수소 활용의 주요한 어려움 중 하나는 저장 과정에 있다. 수소는 기체 또는 액체 상태로 저장할 수 있으며, 기존 저장 방법에는 많은 문제점들이 있다. 미국 과학 기술 전문매체 오일프라이스는 지난 24일(현지시간) 캘리포니아 스타트업 H2MOF가 AI와 첨단 연구를 활용하여 효율적인 상온 수소 저장 솔루션을 개발함으로써 다양한 산업에 혁신을 불러일으키고 있다고 전했다. 대표적인 수소 저장 기술 수소 저장 기술의 발전은 수소 및 연료전지 기술의 발전에 필수적이다. 수소는 모든 연료 중에서 질량당 에너지 밀도가 가장 높지만, 이를 연료나 가스로서 효율적으로 활용하기 위해서는 고도의 저장 기술이 요구된다. 먼저 압축 수소 저장은 현재 가장 널리 사용되는 수소 저장 방식 중 하나다. 이 방식은 수소를 높은 압력에서 저장하는 방법으로, 주로 수소 연료 전지 차량에 적용되고 있다. 액체 수소 저장 기술은 수소를 극저온에서 액화하여 저장하는 방식이다. 이 기술은 높은 에너지 밀도를 가지며 우주항공 분야 등에서 활용된다. 고체 수소 저장 기술은 금속 수소화물, 화학 수소 저장 매체 등을 활용하여 수소를 고체 형태로 저장하는 방법이다. 이 기술은 상대적으로 낮은 압력과 온도에서 수소를 저장할 수 있어 안전성이 높고, 수소 탱크의 크기를 줄일 수 있는 장점이 있다. 미국에서는 수소 및 연료전지 기술 사무소(HFTO)가 바이든 행정부의 2022 인플레이션 감축법(IRA)으로부터 자금을 지원 받아 수소 저장 시스템 기술 발전을 위한 연구 개발 활동을 진행하고 있다. 현재까지 수소 저장 기술 개발은 다양한 도전으로 인해 진전이 더디게 이루어지고 있다. 수소 저장 기술의 중요성 수소 연료 셀 기술 발전을 위해서는 효과적인 수소 저장 기술 개발이 필수적이다. 수소는 단위 질량당 가장 높은 에너지를 가지고 있지만, 에너지 손실 없이 연료를 효과적으로 활용하기 위해서는 첨단 저장 기술이 필요하다. 앞서 밝혔듯이 수소는 기체 또는 액체로 저장할 수 있다. 기체 상태에서는 고압 탱크에 저장할 수 있고, 액체 상태에서는 기체로 다시 끓는 것을 방지하기 위해 극저온(약 -252.8°C)에 저장할 수 있다. 또한 흡수 과정을 통해 고체 물질에 저장할 수도 있다. 그러나 실제 사용을 위한 수소 저장과 관련된 몇 가지 과제가 있다. 예를 들어, 현재 수소를 사용하는 운송수단은 장거리 이동에 필요한 대량의 압축 연료를 저장할 수 없다. 또한 현재의 저장 기술은 매우 비효율적이어서 이 과정에서 많은 양의 에너지가 손실된다. 상온 수소 저장 기술 2021년 설립된 캘리포니아의 스타트업 H2MOF는 이러한 문제를 해결한 상온 수소 저장이라는 혁신적인 수소 저장 기술을 개발했다고 발표했다. 이 기술은 고압 또는 저온을 사용하지 않고 압축 상태의 수소를 저온에서 안정적으로 저장하는 것을 목표로 하고 있다. 상용화에 성공한다면 차량 연료 공급 등 다양한 분야에서 수소를 실온 보관할 수 있게 된다. H2MOF는 인공지능과 컴퓨터 생성 모델을 활용하여 연구 속도를 가속화했다. 이 회사는 수소를 녹색 전환의 핵심 기술로 보고 있으며, 전기와 달리 수소는 산업 운영, 조리 및 난방과 같은 분야에서 연료로 사용될 수 있다고 강조했다. 또한 실온 저장 수소는 대용량 전지를 필요로 하는 선박이나 항공기와 같은 대형 운송 수단의 전기 동력 대체에도 사용될 것으로 기대된다. H2MOF 기술은 친환경 에너지원으로서 수소 활용을 확대하고 탄소 배출 감소에 기여할 것으로 보인다. 또한, 수소 연료 셀 자동차 보급을 촉진하고 새로운 에너지 시장을 창출할 수 있다. 그러나 H2MOF만이 유일한 수소 저장 혁신 사례는 아니다. 2023년 네덜란드의 에인트호벤 공과대학 학생 그룹은 철 펠렛(작은 철구)을 이용한 수소 저장 방법을 제안했다. 연구팀은 이를 실현하기 위해 스팀 다리미 공정을 개발했다. 이 방법은 수소와 철 산화물을 생성하는 증기 철 공정을 기반으로 한다. 생성된 철 산화물은 다시 수소와 결합하여 철로 재생되고, 이 과정을 통해 수소를 반복적으로 저장 및 방출할 수 있다. 현재 수소 저장 기술은 아직 초기 개발 단계에 있으며, 실제 산업 규모로 적용하기 위한 과제들이 남아 있다. 하지만 전 세계적인 투자 및 연구 개발 활동을 통해 수소 활용의 장애물을 극복하고 미래 에너지 전환에 기여할 것으로 기대된다. 2016년 노벨 화학상 수상자이자 H2MOF의 공동 설립자인 프레이저 스토다트는 상온 수소 저장 기술에 대해 "내가 아는 한 수소 생산은 이미 해결된 문제"라고 말했다. 그는 "수소를 생산할 수 있는 효율적인 방법은 충분히 많다. 남은 큰 과제는 저압과 상온에서 많은 양을 저장하는 방식으로 수소를 저장하는 것이다"라면서 "어떤 식으로든 우리는 당연히 거기에 도달할 것이라고 확신한다"라고 말했다.
-
- 포커스온
-
[신소재 신기술(5)] 미국 스타트업 H2MOF, 상온 수소 저장 솔루션 개발
-
-
[신기술 신소재(4)] 혁신적인 비독성 고품질 산화그래핀 생산 기술 개발
- 스웨덴 과학자들이 가장 일반적인 방법으로 생산되는 물질에 비해 결함이 훨씬 적은 그래핀 산화물을 합성하는 새로운 방법을 발견했다. 과학전문 매체 싸이키ORG는 지난 20일 스웨덴 우메오 대학 연구팀 그래핀 산화물 합성에 새로운 비독성 방법을 개발하여 기존 주요 방법보다 결함이 현저히 적은 물질을 얻는데 성공했다고 보도했다. 이전에는 유사한 품질의 그래핀 산화물을 얻기 위해서는 매우 독성이 강한 발연 질산을 사용하는 위험한 방법밖에 없었다. 그래핀 산화물은 일반적으로 산소를 제거하여 그래핀을 제조하는데 사용된다. 하지만 그래핀 산화물에 구멍이 존재하면 그래핀으로 전환될 때도 구멍이 생기게 된다. 따라서 그래핀 산화물의 품질은 매우 중요하다. 우메오 대학의 알렉산드르 탈리진(Alexandr Talyzin)박사와 그의 연구팀은 안전하게 고품질 그래핀 산화물을 만드는 방법을 발견했다. 이 연구 결과는 '카본(Carbon)' 저널에 게재됐다. 첨단 나노소재인 그래핀은 유연성, 높은 기계적 강도, 전도성 등 뛰어난 특성으로 인해 경이로운 물질로 불린다. 하지만 모든 그래핀 특성은 결함에 영향을 받는다. 그래핀 산화물로부터 제조된 그래핀은 기대보다 훨씬 낮은 기계적 특성과 전도성을 보인다. 많은 연구에 따르면 가장 많이 사용되는 '험머스(Hummers)' 방법으로 합성하면 항상 많은 결함이 생기는 것으로 나타났다. 험머스 방법은 그래핀 옥사이드(GO, graphene oxide) 제조에 널리 활용되는 대표적인 화학적 합성 기술이다. 1958년 윌리엄 험머스(William S. Hummers)와 리처드 오프만(Richard E. Offeman)에 의해 처음 소개된 이 방법은 강력한 산화제를 사용하여 그래파이트(graphite)를 산화시켜 그래핀 옥사이드를 생산하는 과정으로 이루어진다. 기존 방법들에 비해 안전성이 높고, 합성 속도가 빠르며, 환경 친화적이라는 장점을 지녀 대량 생산에 적합하며 널리 활용되고 있다. 구체적인 합성 과정에서는 황산(H2SO4)을 주요 용매로 사용하고 칼륨 퍼망가네이트(KMnO4)를 산화제로 활용한다. 엄격하게 조절된 온도 조건에서 반응을 진행하여 그래파이트를 산화시키고 그래핀 옥사이드를 생성한다. 이렇게 얻어진 그래핀 옥사이드는 물과 같은 용매에 분산될 수 있으며, 이를 통해 다양한 응용 분야와 연구에 활용될 수 있다. 특히 전자 소자, 에너지 저장 장치, 복합 재료 등 여러 분야에서 험머스 방법으로 제조된 그래핀 옥사이드의 활용도가 높아지고 있다. 훨씬 오래된 '브로디(Brodie)' 방법은 거의 구멍이 없는 그래핀 산화물을 제공하지만 아직 어떤 기업도 이 유형의 그래핀 산화물을 생산하지 않고 상업적으로 이용하지 못하고 있다. 탈리진은 "단순히 너무 위험하고 산업 생산에 적합하지 않다"고 말했다. 브로디 방법은 그래핀 옥사이드 합성에 활용되는 고전적인 화학적 방법이다. 1859년 벤저민 콜린스 브로디(Benjamin Collins Brodie)에 의해 처음 소개된 이 방법은 험머스 방법과는 차별화된 접근 방식을 통해 그래핀 옥사이드를 제조한다. 브로디 방법의 핵심은 강력한 산화제인 질산(HNO3)과 염소산(KClO3)을 사용하여 그래파이트(graphite)를 산화시키는 과정이다. 험머스 방법에 비해 긴 반응 시간과 낮은 온도 조건을 특징으로 하며, 이를 통해 높은 수준의 산화와 기능화를 가진 그래핀 옥사이드를 얻을 수 있다. 장점으로는 브로디 방법으로 제조된 그래핀 옥사이드는 험머스 방법으로 제조된 그래핀 옥사이드보다 높은 수준의 산화와 기능화 수준을 가진다. 이는 특정 응용 분야에서 유용할 수 있다. 또한 브로디 방법은 고도로 산화된 그래핀 옥사이드의 제조에 특히 적합하다. 반면, 브로디 방법의 단점은 긴 반응 시간과 위험한 산화제 사용 등이 있다. 험머스 방법에 비해 반응 시간이 길어 대량 생산에 적합하지 않다. 반응 조건을 엄격하게 제어해야 원하는 결과를 얻을 수 있다. 아울러 질산과 염소산은 위험한 산화제이며 취급에 주의가 필요하다. 브로디 방법은 주로 연구 목적으로 사용된다. 특히 고도로 산화된 그래핀 옥사이드가 필요한 경우 선택적으로 사용되고 있다. 이번 연구팀은 험머스 방법의 산(H2SO4)과 브로디 방법의 산화제(염소산 칼륨)를 결합하여 브로디 방법과 동일하게 결함이 적은 그래핀 산화물을 제조할 수 있는 새로운 방법을 발견했다. 하지만 합성 과정은 험머스 산화만큼 간단하다. 탈리진은 "이 방법은 연구팀의 바르토스 구르제다(Bartosz Gurzeda) 연구원의 이름을 따서 구르제다(Gurzeda) 방법으로 명명되어야 한다"라고 주장했다. 탈리진은 결함 없는 그래핀 산화물이 필요한 경우 구르제다 방법이 험머스 방법만큼 널리 사용될 가능성이 높다고 여긴다. 이 방법은 산소 그룹을 제거하여 그래핀을 만들거나 가스 보호 코팅, 반투과성 막, 센서 등 다양한 응용 분야에 활용될 수 있다. 최근 10여 년 동안 그래핀 산화물 자체의 응용 분야에 대한 관심도 높아지고 있다. 층층 구조의 그래핀 산화물 재료는 해수에서 간단한 여과를 통해 식수를 생산하거나 톨루엔과 같은 유해한 유기 오염 물질을 차단하면서 물만 통과시키는 반투과성 보호 코팅 제작을 위한 막 응용 분야에서 집중적으로 연구되고 있다. 탈리진은 "저희는 연구 커뮤니티가 이 새로운 그래핀 산화물을 응용 분야에 적용하여 시험하고 차이를 확인하기를 바란다. 그래핀 산화물은 하나의 물질이 아니라 다양한 특성을 가진 물질 그룹이며 무한한 새로운 응용 가능성을 제공한다"고 말했다. 한편, 그래핀은 탄소 원자가 단원자층 두께의 이차원 결정 격자를 이루며 구성된, 탁월한 특성을 지닌 신소재다. 그래핀은 동일 두께의 다이아몬드보다 강하며, 존재하는 재료 중 최고 수준의 강도를 자랑한다. 약 130GPa의 인장 강도를 가지고 있으며, 얇음에도 불구하고 압도적인 강도를 유지한다. 또한 그래핀은 탁월한 전기 전도성을 지니고 있어, 전자가 거의 무저항으로 빠르게 이동할 수 있다. 이는 그래핀을 전자 소자, 전도성 잉크, 투명 전극 등에 유용하게 활용할 수 있게 한다. 그래핀은 압도적인 열 전도성을 가지고 있어, 열을 매우 효율적으로 전달한다. 이 특성으로 그래핀은 열 관리 분야의 핵심 소재로 주목받고 있다. 그래핀은 놀라운 유연성과 높은 신축성을 동시에 지닌다. 이러한 특징은 그래핀을 플렉서블 전자기기나 착용 가능한 웨어러블 기술에 이상적인 소재로 꼽힌다. 아울러 그래핀은 극도로 높은 투명성을 가지고 있으며, 약 97.7%의 빛을 투과시킨다. 이는 터치스크린, 라이트 패널, 심지어 태양 전지판 등의 응용 분야에서 획기적인 가능성을 제시한다. 그래핀은 뛰어난 화학적 안정성을 지니고 있어, 대부분의 환경에서 산화되거나 분해되지 않는다. 이는 다양한 화학적, 생물학적 환경에서 안심하고 활용할 수 있게 한다. 이러한 그래핀의 탁월한 특성들은 전자, 에너지, 복합 재료, 바이오메디컬 분야 등 다양한 산업 분야에서 혁신적인 변화를 이끌 핵심 동력이 될 것이다.
-
- 포커스온
-
[신기술 신소재(4)] 혁신적인 비독성 고품질 산화그래핀 생산 기술 개발