검색
-
-
[우주의 속삭임(7)] 왜 달의 뒷면을 볼 수 없는가?
- 사람들은 밝게 빛나는 달 표면에서 얼굴을 본다. 우리는 동요에서 나오듯 토끼와 계수나무를 본다고 말한다. 달 표면에서 무엇을 보든 우리는 항상 달의 앞면만을 본다. 그렇다면 왜 달의 뒷면을 볼 수 없는 걸까. 지구에서 보면 달은 전혀 회전하지 않는 것처럼 보이지만, 달도 지구처럼 축을 중심으로 자전한다. 그럼에도 불구하고, 달은 지구에 고정되어 있는 것처럼 보인다. 이는 달이 지구 궤도를 도는(공전) 기간과 자전하는 기간이 같기 때문이다. 달의 공전과 자전 기간은 정확히는 약 27.3일이 걸린다. 달이 한 달 동안 지구를 한 바퀴 도는 동안 달 스스로도 한 번만 자전하기 때문에 지구에서는 달의 한쪽 면만 보이는 것이다. 달의 한 면만이 지구를 바라보는 잠금 현상은 지구와 달 사이의 중력으로 인해 발생한다. 그러나 달과 지구의 당김 현상으로 인해 두 천체의 몸체는 약간 달라진다. 서로를 향해 늘어나 마치 미식축구공과 비슷한 모양이 되는 것이다. 다만 현실적으로 작동하는 방식은 다소 다르다. 미국 항공우주국(나사·NASA) 고다드 우주 비행 센터의 물리 해양학자인 로버트 타일러는 "모든 유체와 고체가 인력에 즉각 반응한다면 미식축구공 모양이 되겠지만 현실은 즉각 반응하지 못한다"라고 설명했다. 달과 지구를 구성하는 유체(예컨대 바닷물)와 고체(육지)는 인력에 즉각 반응할 수 없다. 서로 당기면 마찰이 발생해 회전 속도가 느려진다. 예를 들어, 달이 바다를 당기면 이론적이라면 달 바로 아래에 돌출부를 만들 것이다. 그러나 바다의 조수가 이를 방해한다. 조수는 해저를 가로질러 흐르면서 대륙을 돌아다닌다. 이 과정에서 시간과 에너지가 필요하게 된다. 지구의 인력에 반응해 달의 암석이 이동하는 경우에도 동일한 상황이 발생한다. 그러나 바위는 탄력이 없다. 에너지를 소모하면서 모양을 유지한다. 에너지는 바로 자전에서 발생한다. 지구의 자전 속도를 늦추는 달 달은 또한, 지구의 자전 속도를 늦춘다. 5억 년 전 지구는 하루가 21시간이었을 것으로 추정된다. 시간이 흐르면서 달은 지구의 자전 속도를 늦추어 달과 고정될 것이고, 그렇게 되면 지구에서도 한 쪽 면에서만 달을 볼 수 있게 될 것이다. 그러나 걱정할 것은 없다. 그런 일은 앞으로 약 50억 년 후 태양이 죽은 훨씬 뒤인 500억 년 동안 일어나지 않을 것이기 때문이다. 지구에서 달의 뒷면을 볼 수는 없지만, 우주선이 촬영한 달 뒷면의 모습은 볼 수 있다. 소련 우주선 루나 3호가 1959년 처음으로 달 뒷면의 이미지를 촬영했다. 그 이후 나사의 달 정찰 궤도선과 달 뒷면에 최초로 착륙한 중국의 창어 4호 우주선을 포함해 여러 다른 우주선이 달 뒷면의 사진을 찍었다. 촬영한 이미지는 달의 뒷면이 분화구로 덮여 있고, 마리아라고 불리는 크고 어두운 점이 적다는 것을 보여준다. 마리아가 적으면 달 뒷면에서는 앞면에서처럼 얼굴이나 토끼 같은 모양을 보기가 어려워진다. 그렇다고 해서 달 뒷면에 대한 궁금증이 줄어드는 것은 아니고 탐구는 계속될 것이다.
-
- IT/바이오
-
[우주의 속삭임(7)] 왜 달의 뒷면을 볼 수 없는가?
-
-
[신소재 신기술(45)] 초인적 속도의 친환경 수중 자전거
- 프랑스에서 물속에서 훨씬 더 빠르게 이동할 수 있는 친환경 수중 자전거를 개발했다. 프랑스 회사 씨바이크(Seabike)는 수영하는 사람이 빠른 속도로 물속에서 이동할 수 있는 수영 장비인 수중 자전거를 개발했다고 뉴아틀라스가 보도했다. 수중 외발자전거처럼 생긴 이 장비는 약 13인치(38cm)의 크랭크 구동 프로펠러를 사용하여 사용자의 다리 힘으로 수중을 더 빠르게 이동할 수 있도록 도와준다. 해당 장비는 사용자가 원하는 길이까지 폴을 조절한 후, 벨트로 허리에 고정하고 페달을 밟으면 프로펠러가 회전되면서 추진력을 제공한다. 프로펠러는 양방향으로 작동하므로 뒤집어서 프로펠러를 앞으로 내밀고 페달 대신 손잡이를 붙인 다음 팔로 조종할 수도 있다. 씨바이크는 이 수중 자전거가 천천히 회전하기 때문에 지역 수영장에서 안전하게 사용할 수 있다고 설명했다. 제조사에 따르면, 이 제품을 사용하면 오리발(핀)을 착용한 수영 선수보다 더 빠르게 이동할 수 있다고 한다. 또한 스노클링 보드 및 스피어피싱 키트와 함께 판매되며, 개방 수역에서 먼 거리를 이동하는 데 매우 효과적이라고 밝혔다. 현재 가격은 290유로(약 310달러, 약 42만원)부터 시작한다. 이 제품은 접어서 보관할 수 있어서 휴대가 간편하며, 전기가 필요 없는 간단한 구조를 가지고 있어 친환경적이라는 장점도 있다. 한편, 수중 자전거 아이디어는 씨바이크만 있는 것이 아니다. 미국 기업인 아쿠아사이클(AquaCycle)에서 개발한 제품 아쿠아사이클은 물속에서 자전거를 타는 것과 같은 느낌으로 운동할 수 있는 수중 운동 기구다. 실내 수영장에서 주로 사용되며, 관절에 부담을 주지 않고 운동할 수 있다는 장점이 있다. 영국 회사인 워터로우어(WaterRower)에서 개발한 워터로우어는 뗏목에 자전거를 장착한 것 같은 형태의 제품으로, 물의 저항을 이용하여 운동할 수 있다. 워터로우어는 유산소 운동과 근력 운동을 동시에 할 수 있다는 장점이 있다.
-
- 포커스온
-
[신소재 신기술(45)] 초인적 속도의 친환경 수중 자전거
-
-
[기후의 역습(1)] 남극 얼음에 거대한 구멍 뚫린 이유, 50년 만에 규명
- 남극 웨들해(Antarctic Weddell Sea)의 해빙에는 때로 거대한 구멍이 만들어지거나 틈이 벌어져 어둡고 차가운 바닷물이 드러난다. 이 구멍을 폴리냐(Polynyas)라고 부른다. 웨들해 근처에는 깊이 1000m에 달하는 물에 잠긴 봉우리 모드 라이즈(Maud Rise)가 있다. 지난 1974년 이 근처에서 폴리냐가 처음 발견됐다. 그래서 이 폴리냐는 ‘모드 라이즈 폴리냐’라고 명명됐다. 모드 라이즈 폴리냐가 어떻게 생성됐는지는 수수께끼였다. 구멍이 매년 드러나지 않기 때문에 과학자들은 구멍을 생성하는 데 필요한 특정 조건을 파악하기 어려웠던 것이다. 수십 년 동안의 연구 결과 마침내 그 퍼즐의 마지막 조각이 맞춰졌다고 과학전문 매체 사이언스얼러트가 전했다. 모드 라이즈 폴라냐는 2016년과 2017년에 다시 나타났다. 이 시기 이후 몇 년 동안 과학자들의 궁금증에 대한 실마리가 나타났다. 위성 이미지, 부유하는 관측기구, 센서가 장착된 물개, 컴퓨터 모델링 등을 조합해 여러 단서가 도출됐던 것이다. 그 중 결정적인 것은 바람이 끌어당기는 해류가 형성하는 에크만 나선(Ekman spiral)이라는 현상이다. 바람이 일정한 방향으로 계속 불면 표면 해수는 일정한 각도로 움직이고, 해수의 움직임은 아래로 전달돼 하층 해수를 이동시킨다. 위와 아래의 흐름이 다르기 때문에 위에서 내려다 보면 흐름이 나선형을 보인다. 이를 에크만 나선이라고 하며, 그 해류의 흐름을 에크만 수송이라 부른다. 해수의 흐름과 용승(에크만 수송으로 표층에서 발산하는 해수를 채우기 위해 하층에서 상층으로 해수가 이동하는 현상) 등에 지대한 영향을 미친다. 폴리냐는 해안 가까이에서는 흔히 볼 수 있는 현상이며, 물개나 고래와 같은 해양 포유류가 숨을 쉬기 위한 창문으로도 사용된다. 그러나 바다로부터 멀리 떨어질수록 보기 힘들다. 모드 라이즈 폴리냐 얼음 구멍은 반세기 전 위성 이미지에서 처음 발견됐다. 1974년 첫 발견 당시에는 구멍의 사이즈가 뉴질랜드와 맞먹을 정도였다. 1975년과 1976년에도 보였지만, 그 이후에는 거의 발견되지 않았다. 그러다가 2016년과 2017년 웨들해 주변에서 다시 강하게 나타났던 것. 2017년의 모드 라이즈 폴리냐는 1970년대 이후 가장 크고 오래 지속된 사례였다. 당연히 과학자들의 관심을 끌었고 연구 대상이 됐다. 연구 결과 한 가지 주요인은 2016년과 2017년에 특히 강했던 웨들해 주변의 순환 해류였다. 그 결과 따뜻하고 특히 염도가 높은 물이 용승했다는 것이다. 연구팀의 스웨덴 예테보리 대학 해양학자 파비앙 로케는 용승은 해빙이 어떻게 녹을 수 있는지를 설명해 준다고 설명한다. 해빙이 녹으면 표면의 물은 신선해지기 때문에, 폴리냐가 지속되기 위해서는 어딘가에서 추가로 소금이 유입되어야 한다는 것이다. 용승이 일어나게 된 원인이 여기에서 설명이 된다. 소금은 물의 빙점을 크게 낮춘다. 따라서 폴리냐의 바닷물이 특히 염도가 높으면 구멍의 지속적으로 유지되는 것이 설명된다. 그래서 팀은 데이터와 바다의 계산 모델을 다시 살펴보고 추가 소금이 어디서 왔는지 알아냈다. 연구팀은 웨들 해류가 모드 라이즈 주위를 흐르면서 생성된 난류 소용돌이가 모드 라이즈의 상층부까지 운반해 준다는 것을 확인했다. 여기에서 에크만 운송이 이어진다. 에크만 운송은 바람이 바다 표면 위로 불어 항력을 생성할 때 발생한다. 물은 옆으로 방향이 바뀌어 나사처럼 나선형을 만든다. 물의 최상층이 바람에 의해 발산하게 되고 그 자리를 대체하기 위해 아래에서 물이 올라오게 된다. 염도가 높은 물의 용승이다. 모드 라이즈 폴리냐는 용승으로 솟아오르는 물이 모드 라이즈 주변에 떠다니는 소금을 축적함으로써 빙점을 낮추고 구멍이 얼어붙는 것을 방지한다. 이 해답은 과학자들이 기후 변화에 대한 심각한 우려 사항인 남극 해빙에 어떤 일이 일어날지 예측하는 데 도움이 될 수 있다. 기후학자들은 이미 남극의 겨울 바람이 더 강해지고 더 빈번해질 것이라고 예측하고 있으며, 이로 인해 앞으로 몇 년 동안 더 자주 거대한 폴리냐가 나타날 수 있다고 예상한다. 결과적으로 이는 세계 해양에 영향을 미치게 된다. 캘리포니아 주립대 샌디에이고 캠퍼스의 기후학자 새라 길리는 폴리냐는 형성된 후 수년 동안 물속에 남아 있을 수 있고, 물이 이동하는 방식과 해류가 대륙을 향해 열을 전달하는 방식을 바꿀 수 있다고 지적했다. 결국 여기서 형성된 물은 전 세계 바다로 퍼져 막대한 영향을 미칠 수 있다는 것이다.
-
- 포커스온
-
[기후의 역습(1)] 남극 얼음에 거대한 구멍 뚫린 이유, 50년 만에 규명
-
-
미국 최초의 나트륨 이온 배터리 공장, 미시간주 홀랜드에 건설
- 미국 최초의 나트륨 이온 배터리 공장이 미시간주 홀랜드에 건설됐다고 클린테크니카가 최근 보도했다. 리튬 이온 배터리는 2000년대 초반부터 재생 에너지 전환의 주력원이 되어왔지만 현재 에너지 저장 시징은 나트륨 이온 배터리를 주목하고 있다. 연구원들은 공급망 문제를 야기할 수 있는 기존 리튬 이온 배터리와 달리 높은 성능을 제공하는 새로운 나트륨 이온 배터리를 연구해왔다. 미국 스타트업 나트론 에너지(Natron Energy)는 지난 4월 29일 미시간 주 홀랜드에 위치한 공장 가동을 시작하면서 미국 최초의 상업용 규모 나트륨 이온 배터리 생산을 시작했다. 이 새로운 공장은 리튬 이온 배터리 공장을 개조했다. Natron은 이 공장을 통해 연간 600메가와트 규모의 나트륨 이온 배터리를 생산할 예정이다. 600메가와트는 1시간 동안 테슬라 모델 3과 같은 전기차를 약 1만800대를 충전할 수 있는 규모다. 이는 각 차량의 배터리 용량이 50kw이고 충전 효율이 90% 일 때의 계산 결과다. 다만, 이 공장은 초기에 급격히 증가하는 데이터 센터의 에너지 저장 요구를 충족시킬 예정이다. 나트론은 특히 인공지능 기술의 폭발적인 성장이 미국 데이터 센터에서 24시간 전력 공급 및 에너지 저장에 대한 더 큰 수요를 유발할 것으로 예상한다. 나트론은 홀랜드 공장이 향후 기가와트 규모 공장의 모델이 될 것으로 예상하며, 오프로드 산업용 차량, EV 고속 충전소 및 통신 분야 등 추가 시장을 목표로 하고 있다. 미 정부, 나트륨 이온 배터리 개발 지원 미국 에너지부(DOE)가 나트론의 새로운 나트륨 이온 배터리 공장 건설에 기여했다. 2020년 9월, 나트은 고위험 고수익 프로젝트 지원을 위한 에너지부 ARPA-E 사무소로부터 1990만 달러(약 274억원)의 지원금을 받았다. 이 지원금은 새로운 공장 건설을 목표로 하며, 6개월 동안 지속적인 생산 및 판매를 통해 공급망 및 제품의 완전한 위험 제거를 목표로 한다. ARPA-E는 회사의 8킬로와트 50볼트 배터리 트레이가 주로 데이터 센터의 최대 부하량 관리 및 비상 백업 전력 공급을 위해 설계되었지만, EV 고속 충전소 및 그리드 규모 저장과 같은 신흥 시장도 타겟으로 하고 있다고 말했다. ARPA-E는 또한 "나트론의 트레이는 기존 제품에 비해 데이터 센터 운영자에게 최대 2배 높은 출력 밀도와 10배 긴 수명주기를 제공하며 우수한 안전 성능을 보유하고 있다"고 덧붙였다. 은백색 금속 원소인 나트륨(라틴어 natrium에서 유래된 화학 기호 Na)의 지속 가능성 요인은 나트륨 이온 배터리에 대한 관심을 끌고 있다. 하지만 미래의 배터리로 주목받아온 나트륨 이온 배터리는 최근 몇 년 전까지도 쉽게 구현되지 못했다. 나트륨은 리튬보다 훨씬 풍부하지만 무게도 훨씬 무겁다. 전기차용 에너지 저장 측면에서 리튬은 주행 거리 면에서 나트륨보다 유리하다. 반면 나트륨과 리튬 간의 화학적 친밀감은 배터리 연구에 도움이 된다. '피직스 매거진(Physics Magazine)'은 지난 주 "나트륨은 주기율표에서 리튬 바로 아래에 위치하여 화학적 특성이 매우 유사하다"고 설명했다. 나트륨 이온 배터리의 과제 나트륨 이온 배터리는 아직 초기 개발 단계이지만, 리튬 이온 배터리의 단점을 보완할 수 있는 차세대 배터리 기술로 주목받고 있다. 특히 대규모 에너지 저장 시스템(ESS), 저가형 전기 자동차, 항공 우주 분야 등에 활용될 가능성이 높다. 리튬 이온 배터리는 충전과 방전 과정에서 리튬 이온이 양극과 음극 사이를 이동하지만 나트륨 이온 배터리는 나트륨 이온이 음극과 양극 사이를 이동하는 것이 차이점이다. 나트륨 이온 배터리를 리튬보다 풍부하고 저렴하다. 또한 우수한 저온 성능(영하 20°C에서도 90% 이상의 용량 유지)을 제공하고 안전성이 높다. 반면 리튬 이온 배터리는 에너지 밀도가 높아 휴대폰, 노트북 등 소형 전자 기기에 적합하다. 단, 고온에서 성능 저하 및 안전 문제가 발생할 수 있다. 나트륨 이온 배터리는 에너지 말도가 낮으며 아직 초기 개발 단계라서 상용화에 시간이 걸릴 수 있다. 게다가 나트륨 이온을 전달하는데 적합한 전해질과 음극 재료 개발이 필요하다. 향후 지속적인 연구개발을 통해 나트륨 이온 배터리의 에너지 밀도를 높이고 상용화에 필요한 기술을 개발한다면 리튬 이온 배터리의 강력한 경쟁자가 될 것으로 예상된다.
-
- 산업
-
미국 최초의 나트륨 이온 배터리 공장, 미시간주 홀랜드에 건설
-
-
[퓨처 Eyes(34)] 펭귄처럼 헤엄치는 수중 로봇, 쿼드로인 2세대 출시
- 인간 형태를 닮은 휴머노이드 로봇, 하늘을 나는 드론이 농업에 활용되며 속속 출시되는 가운데, 펭귄의 유영 방식을 모방한 수중 로봇이 공개됐다. 독일 수중 기술 기업 에보로직스(EvoLogics)는 최근 펭귄의 유영 방식을 모방한 개선된 수중 자율 운항체(AUV) 쿼드로인(Quadroin) 2세대를 출시했다고 뉴아틀라스가 보도했다. 에보로직스는 독일 베를린에 본사를 둔 수중 로봇 공학 기업으로, 혁신적이고 고성능의 수중 로봇, 데이터 네트워크, 센서 기술 개발에 주력하고 있다. 2005년 설립된 이 회사는 해양 연구, 오프쇼어 산업, 국방 분야에서 활용되는 다양한 제품과 솔루션을 제공하며 전 세계적인 명성을 얻었다. 쿼드로인은 2020년 에볼로지스가 헬름홀츠 센터 헤레온(Helmholtz-Zentrum Hereon) 연구소의 부르카르트 바셰크(Burkard Baschek) 교수와 협력하여 개발한 핑귄(PingGuin) 실험 AUV의 후속 제품이다. 핑귄의 디자인은 이 회사의 창업자인 루돌프 바나쉬(Rudolf Bannasch) 박사의 아델리(Adelie) 펭귄 운동 연구를 기반으로 구현됐다. 저항을 최소화하도록 설계된 쿼드로인은 최대 10노트(Knot)의 속도를 달성해 에너지 효율성을 극대화하고 다양한 현장 배치를 가능하게 한다. 노트는 해양에서 배의 속도를 나타내는 단위로, 1시간에 1해리(1.85km)를 가는 속도를 의미한다. 따라서 10노트는 1시간에 18.5km의 거리를 이동하는 속도에 해당한다. 일반적으로 선박의 느린 속도는 5노트 미만이며, 보통 속도는 5~10노트, 빠른 속도는 10노트 이상으로 분류된다. 물론 선박의 종류, 엔진 성능, 해양 환경 등에 따라 10노트의 속도는 느리거나 빠르게 느껴질 수 있다. 예를 들어 소형 요트의 경우 10노트는 상당히 빠른 속도이지만, 대형 컨테이너 선의 경우 10노트는 비교적 느린 속도에 해당한다. 펭귄 모방 수중 로봇 퀘드로인 사실 펭귄 모방 수중 로봇의 개념은 2009년까지 거슬러 올라간다. 당시 에보로직스는 독일 전기 자동화 기업 페스토(Festo)와 협력하여 펭귄과 유사한 아쿠아펭귄(AquaPenguin) 시연용 모델을 개발했다. 실제 쿼드로인은 2021년 5월 처음 공개되었는데, 펭귄의 유영 방식을 모방하여 제작되었으며, 헬름홀츠 센터 헤레온 연구소의 MUM(Modifiable Underwater Mothership) 프로젝트에 활용되고 있다. 이 프로젝트에서 쿼드로인은 다양한 센서를 탑재하고 무리를 지어 해류 데이터를 수집했다. 탑재된 센서는 수심별 온도, 압력, 용존 산소량, 전기 전도도, 형광 등을 정밀하게 측정할 수 있다. 다른 AUV와 마찬가지로 쿼드로인은 선박이나 해안에서 투입된 후 사전 프로그래밍된 수중 경로를 따라 자율적으로 이동하며 데이터를 수집한다. 수집된 데이터는 쿼드로인이 수면으로 올라갈 때 무선 전송되거나 기지로 돌아와 직접 다운로드받을 수 있다. 쿼드로인은 데이터를 와이파이(Wi-Fi) 또는 옵션인 이리듐 위성 모듈을 통해 전송한다. 이 두 시스템과 탑재된 글로벌 네비게이션 위성 시스템(GNSS)은 쿼드로인이 수면에 올라올 때 자동으로 뒤집히는 아치형 다기능 안테나를 사용한다. 추가적인 장점으로 안테나에는 빨간색과 초록색 LED 점멸등이 장착되어 사용자가 로봇을 회수할 때 쉽게 찾을 수 있도록 한다. 에보로직스 대표는 "새로운 쿼드로인이 올해 4분기에 양산에 돌입할 예정이며, 상업 고객들에게는 요청 시 가격 정보를 제공한다"고 밝혔다. 쿼드로인 활용 방안 쿼드로인은 다양한 해양 생물의 행동과 서식지를 관찰하고 데이터를 수집하는 데 활용될 수 있다. 이를 통해 해양 생태계에 대한 이해를 높이고 효과적인 보호 전략을 수립하는 데 기여할 수 있다. 또한, 해양 환경을 효과적으로 모니터링하는 데에도 활용될 수 있다. 쿼드로인은 수온, 염도, 용존 산소량 등 해양 환경 변수를 정밀하게 측정하고 실시간으로 데이터를 전송할 수 있다. 이를 통해 해양 오염, 기후 변화 등 해양 환경 문제를 파악하고 해결책을 모색하는 데 도움이 될 수 있다. 쿼드로인은 해저 지형을 정밀하게 측량하고 3D 모델을 구축하는 데 활용될 수 있다. 그로 인해 해양 자원 탐사, 해저 케이블 및 파이프라인 설치, 해양 구조 작업 등에 크게 활용될 수 있다. 또한, 쿼드로인은 해저 석유 및 가스 매장지를 효율적으로 탐색하고 개발 계획을 수립하는 데 활용될 수 있으며, 이를 통해 오프쇼어 에너지 개발의 효율성을 높이고 환경 영향을 최소화하는 데 도움이 될 수 있다. 뿐만 아니라, 쿼드로인은 해저 사고 현장을 탐사하고 생존자를 구조하는 데 활용될 수 있으며, 해저 침몰선 및 잔해물을 탐색하고 인양하는 데에도 활용될 수 있다. 해양 국방 분야에도 활용 쿼드로인은 적군 함정 및 해양 활동을 정밀하게 정찰하고 정보를 수집하는 데 활용될 수 있으며, 이는 해상 작전의 효율성을 획기적으로 높이고 적의 위협을 사전에 예측하는 데 크게 기여할 수 있다. 또한, 쿼드로인은 해저 지뢰를 효과적으로 탐지하고 제거하는 데 활용될 수 있으며, 이를 통해 해상 통로의 안전을 확보하고 군함 및 상선의 안전을 보호하는 데 도움이 될 수 있다. 뿐만 아니라, 쿼드로인은 해저 침몰선을 탐색하고 인양하는 데 활용될 수 있으며, 이를 통해 해양 역사 연구를 체계적으로 수행하고 침몰선에서 귀중한 유물을 발견하는 데 기여할 수 있다. 최근 미국 농업 분야에서는 드론과 인공지능(AI) 로봇 등 첨단 기술 도입이 활발하게 이루어지고 있다. 드론, 레이저 제초기, 로봇 손 등은 농작물 재배 및 가공 과정의 일부를 자동화할 수 있으며, AI 기반 시스템의 활용은 미래 농업의 새로운 가능성을 열어주고 있다. 수중 로봇 기술의 발전과 더불어 쿼드로인 또한 다양한 분야에서 활용될 것으로 전망된다. 하늘을 나는 드론이 다방면에서 활용되고 있는 것처럼, 쿼드로인 2세대는 아직 개발 초기 단계이지만, 앞으로 해양 분야뿐만 아니라 국방, 농업, 과학 연구, 레저 및 관광, 교육 등 다양한 분야에 새로운 변화를 가져올 것으로 기대된다. 한편 해양 강국인 한국은 한국해양과학기술원(KIOST), 한국해양연구원(KORDI), 한국과학기술원(KAIST), 포항공과대학교(POSTECH), 한화오션, HD현대중공업, 삼성중공업 등을 중심으로 자율 운항, 인공지능, 센서 기술, 통신기술, 로봇 공학 등의 핵심기술을 보유하고 있다. 특히 정부는 '해양 4.0' 산업 육성을 위해 수중 로봇 개발을 핵심 전략 분야로 지정하고 적극적으로 지원하고 있다.
-
- 포커스온
-
[퓨처 Eyes(34)] 펭귄처럼 헤엄치는 수중 로봇, 쿼드로인 2세대 출시
-
-
중국, 인류 최초 달 뒷면 샘플 수집해 지구 귀환 미션 나선다
- 중국이 최초로 달 뒷면의 샘플을 수집해 지구로 가져오는 우주 미션에 나선다고 스페이스뉴스가 전했다. 중국은 이를 위해 임무를 수행할 달 착륙선 창어 6호를 공개했다. 우주선을 실어 나를 로켓 창정 5호는 지난달 말 하이난도 원창 위성발사센터 기지로 이동됐다. 창어 6호의 임무는 지구에서는 직접 볼 수 없는 달 뒷면에 착륙해 최대 2kg의 달 샘플을 수집, 이를 지구로 가져오는 것이다. 이 임무는 과거에 시도된 적이 없는 세계에서 첫 번째 미션이다. 이를 중계하기 위한 Queqiao-2 중계 위성은 이미 지난 3월 19일 발사됐다. 이 중계 위성은 달 뒷면에 있는 창어 6호와 지구의 지상국 사이의 통신을 위해 달 궤도에 머무른다. 중국은 아직 창어 6호의 발사 시기를 공개하지 않았지만 현재까지의 정보를 종합하면 발사는 5월 3일 금요일로 예상된다. 창어 6호는 달 뒷면의 서쪽 150~158도, 남쪽 41~45도에 위치한 아폴로 분화구의 남쪽을 착륙 목표로 삼고 있다. 아폴로는 수많은 달의 미스터리를 풀어줄 일부 실마리를 갖고 있을 것으로 기대되는 거대한 남극-에이컨(SPA) 분지 내에 있다. 중국 국가우주국(CNSA) 산하 달탐사우주공학센터(LESEC)는 "창어 6호는 달 역행 궤도 설계 및 제어 기술, 지능형 샘플링, 이륙 및 상승 기술, 달 뒷면의 자동 샘플 채취 등의 목표를 성공적으로 달성할 것“이라고 밝혔다. 또한 창정 5호 로켓과 창어 6호 탐사선의 상태는 양호하며 발사를 위한 모든 준비는 정상적으로 진행되고 있다고 부연했다. 창정 5호는 액체수소와 산소를 동력으로 하는 직경 5m, 높이 57m의 로켓이다. 또한 4개의 등유-액체산소 사이드 부스터를 사용한다. 이 로켓은 중국에서 가장 크고 가장 강력한 발사체로 알려져 있다. 창어 6호는 목표를 달성하기 위해 총 8200kg에 달하는 4개의 우주선 복합체를 사용할 예정이다. 서비스 모듈은 달 궤도에 진입하는 데 필요한 추진력을 제공한다. 착륙선은 달 뒷면에 착륙해 샘플을 수집할 예정이다. 이들은 상승체에 의해 달 궤도로 다시 발사될 것이며, 서비스 모듈과 랑데부해 도킹하게 된다. 서비스 모듈은 지구를 향해 되돌아가고 지구에 재진입해 샘플을 안전하게 전달할 재진입 캡슐을 방출하게 된다. 미션에 성공하면 달의 역사와 태양계에 대한 지식을 깊이 해 줄 샘플이 수집될 것이다. 이 샘플은 왜 가까운 쪽과 먼 쪽 달 암석의 구성에 차이가 있는지를 설명헤 즐 것으로 기대된다. 이 임무에는 프랑스, 스웨덴, 이탈리아, 파키스탄 큐브위성의 국제 과학 탑재체도 포함될 예정이다. 이 협력은 우주 탐사 분야에서 국제 협력을 강화하려는 중국의 노력을 반영한다는 설명이다. 프랑스는 달 지각에서 나오는 라돈 가스 방출을 감지하는 가스 탐지(DORN: Detection of Outgassing RadoN) 장비를 제공한다. 스웨덴은 ESA의 지원을 받아 NILS(달 표면의 음이온) 탑재체를 제공한다. 이탈리아로부터는 패시브 레이저 역반사경을 지원받아 탑재한다. 큐브위성은 파키스탄 국립우주국 SUPARCO와 중국 상하이 자오퉁 대학교가 공동으로 제작했다. 창어 6호는 2030년까지 유인 달 탐사를 포함하는 중국의 우주 미션의 일부다. 중국은 2030년대에 국제 달 연구기지(ILRS) 프로그램을 통해 영구 달 기지를 구축하는 것을 목표로 하고 있다. 많은 국가와 기관들이 이 프로젝트에 동참했다.
-
- IT/바이오
-
중국, 인류 최초 달 뒷면 샘플 수집해 지구 귀환 미션 나선다
-
-
최상목, 민생경제 회복 총력 강조…범부처 '민생안정 지원단' 신설
- 정부에서 민생 경제 회복에 총력을 기울일 방침이다. 최상목 부총리 겸 기획재정부 장관은 1일 "범부처 '민생안정 지원단'을 신설하여 국민의 관점에서 현장의 애로사항을 밀착 점검하고 해결책을 신속히 마련하겠다"고 밝혔다. 이날 정부서울청사에서 열린 '비상경제장관회의 겸 물가관계장관회의'에서 최 부총리는 "지표상의 회복에 안주하지 않고, 국민 공감을 얻어야 진정한 회복이라는 점을 인지하면서 민생경제 회복을 위해 정책을 집중하겠다"고 전했다. 또한, "1분기에 반등한 성장률을 정상 궤도에 올리고 지속 가능한 성장 동력을 확보하기 위한 노력을 본격화하겠다"고 강조했다. 경제의 역동성을 높이고 체질을 개선하기 위해 '역동경제 로드맵'을 다음 달까지 마련하고, 이를 뒷받침하는 재정정책 방향을 재정전략회의에서 논의할 계획이라고 부연했다. 이날 회의에서는 역동경제의 일환으로 '사회이동성 개선방안', 농림축산식품부의 '농수산물 유통구조 개선방안', 문화체육관광부의 '게임산업 진흥 종합계획' 등이 논의됐다. 최 부총리는 사회이동성 개선방안에 대해 "추가 과제를 발굴하여 역동경제 로드맵에 종합적으로 반영하고, 하반기 중에 후속 대책을 마련하겠다"고 덧붙였다.
-
- 경제
-
최상목, 민생경제 회복 총력 강조…범부처 '민생안정 지원단' 신설
-
-
LG전자 로봇·메타버스 AI 기술, 국제 학회서 최상위 논문 선정
- LG전자의 논문이 세계적으로 권위 있는 인공지능(AI) 학술대회인 '표현 학습 국제 학회(ICLR) 2024'에서 최상위 논문으로 선정됐다. 30일 LG전자에 따르면 이 논문은 '공간 인식률을 향상시킨 AI 기술'에 대해 다루며, 전체 제출된 논문 중 상위 1% 안에 들어 구두 발표 대상으로 선택됐다. 오는 5월 7일부터 11일까지 오스트리아 빈에서 열리는 ICLR은 구글 스칼라가 발표하는 엔지니어링 및 컴퓨터 과학 분야에서 전 세계적으로 세 번째로 큰 AI 학술대회로, 매년 선정된다. 이 대회는 논문 채택률이 25%에 불과할 만큼 치열한 경쟁을 보여준다. LG전자의 해당 논문은 AI로 두 이미지 간의 유사성과 차이점을 분석하고 이미지에서 물체의 위치와 형태를 파악하고 예측하는 기술을 설명한다. 특히 이 기술은 로봇 분야에서 공간 인식률을 높이는 것으로 중요하며, 사람이나 동물이 움직임에 따라 위치가 변하거나 조명 변화에도 불구하고 로봇이 정확히 위치를 인식하고 이동할 수 있는 지도를 생성하는 데 중점을 두고 있다. 또한 LG전자가 메타버스의 핵심 기술을 주제로 한 '2D 이미지 기반 3D 공간 재현 기술' 논문은 상위 5% 이내에 선정됐다. 이 논문은 AI가 2D 이미지에서 벽, 천장, 기둥과 같은 실내 구조물 전체를 학습해, 가구나 가전제품과 같은 개별 물체의 세부적인 형태까지 학습하는 방식을 다룬다. 이 기술은 복잡한 공간과 물체의 표면 디테일을 3D 가상 공간으로 재현한다. 이 기술은 스마트팩토리의 '디지털 트윈' 개발이나 메타버스 환경 구축에 활용될 수 있으며, 실제 공간을 정밀하게 재현한 가상 공간에서의 스마트홈 서비스 구현도 가능하다. 김병훈 LG전자 최고기술책임자(CTO) 부사장은 "LG전자의 세계적인 AI 기술을 제품과 서비스에 적용하여 실생활부터 미래의 가상 공간에 이르기까지 다양한 영역에서 고객의 삶을 편리하고 즐겁게 변화시킬 것"이라고 밝혔다. LG전자는 학술대회 기간 글로벌 AI 우수 인재 확보에도 나선다. 행사에 참가한 석·박사 학생들을 대상으로 LG전자 최신 AI 기술 현황을 공유하고 채용 상담 등을 진행한다. LG전자는 이번 학술대회 기간 동안 글로벌 AI 인재를 확보하기 위해 노력할 예정이다. 석사 및 박사 학생들을 대상으로 최신 AI 기술을 소개하고 채용 상담을 진행할 계획이다.
-
- IT/바이오
-
LG전자 로봇·메타버스 AI 기술, 국제 학회서 최상위 논문 선정
-
-
[신소재 신기술(40) 초소형 로봇 '필봇', 내시경 검사 대체할까?
- 인체 내부를 탐색할 수 있는 알약 크기의 초소형 로봇이 개발돼 내시경 검사에 새로운 장을 열고 있다. 의료 검진에 사용하기 위해 삼킬 수 있도록 설계된 새로운 소형 로봇 카메라가 최근 캐나다에서 열린 학술회의에서 시연됐다. 캡슐형 로봇으로 필봇(PillBot)이라고 불리는 이 전동 내시경 카메라는 신체 외부에서 전자기적으로 원격 조종하여 체내로 이동시킬 수 있다고 러닝 잉글리시 voa뉴스가 보도했다. 개발자들은 이 기기가 기존 내시경 검사를 대체할 수 있기를 기대하고 있다. 이전의 내시경 검사는 전선에 연결된 카메라를 환자가 잠든 상태에서 목을 통해 위로 삽입하는 시술로 수면 내시경으로 불렸다. 필봇은 캘리포니아주 헤이워드에 본사를 둔 엔디텍스(Endiatx)가 개발했다. 미네소타 주 로체스터에 있는 연구 병원인 메이요 클리닉(Mayo Clinic)이 이 프로젝트의 파트너다. Endiatx는 2014년 설립됐으며, 소화기계 및 간 질환 진단을 위한 혁신적인 기술 개발에 중점을 두고 있다. 최초의 전동 내시경 카메라 필봇은 최초의 전동 내시경 카메라로 설계됐다. 개발자들의 설명에 따르면 작동 방식은 다음과 같다. △ 환자는 1일 동안 금식한 후 다량의 물과 함께 캡슐형 로봇을 삼킨다. △ 캡슐형 로봇은 무선 리모컨으로 조종되는 작은 잠수함처럼 작동한다. △ 검사가 끝나면 신체는 다른 고형 폐기물과 같은 방식으로 캡슐형 로봇을 배출한다. 비벡 컴바리(Vivek Kumbhari) 박사는 회사의 공동 설립자이며 메이요 클리닉의 의학 교수이자 위장 및 간 질환 부장이다. 그는 복잡한 의료 서비스를 더욱 접근하기 쉽게 만드는 더 큰 목표를 향한 최신 연구 결과라고 밝혔다. 컴바리 박사는 "만약 내시경 검사를 병원에서 환자 집으로 옮길 수 있다면 우리는 그 목표를 달성했다고 생각한다"며 "이 기기는 더 안전하고 편안한 접근 방식"이라고 말했다. 그는 이 기기는 의료 종사자 수를 줄이고 마취도 필요 없을 것이라고 덧붙였다. 컴바리 박사는 또한 이 기술은 기존 내시경에 비해 더 효율적이며 환자가 질병 진행 초기 단계에 치료를 받을 수 있게 할 것이라고 말했다. 의료 시설 부족한 지역 원격서비스 기대 인디텍스 공동설립자인 알렉스 루브케(Alex Luebke)는 캡슐형 로봇이 의료 센터와 치료 시설이 부족한 시골 지역 사람들을 도울 수 있다고 말했다. 그는 "특히 개발도상국에서는 질좋은 의료 서비스에 접근하기 힘들다"고 말했다. 이어 "이 장치는 모든 정보를 수집하여 원격지에서도 솔루션을 제공할 수 있다"고 말했다. 마이크로 로봇 알약 필은 테스트 중이다. 이는 앞으로 몇 달 안에 미국 식품의약국(FDA)의 승인을 받을 수 있다. 승인되면 필봇은 2026년까지 출시될 수 있다. 이 미세 로봇 캡슐은 현재 테스트 중이며, 앞으로 몇 달 안에 미국 식품의약품국(FDA)의 승인을 받을 수 있다. 승인이 되면 2026년까지 캡슐형 로봇을 사용할 수 있게 된다. 컴바리 박사는 이 미세 로봇 캡슐 기술이 장, 혈관계, 심장, 간, 뇌 및 신체의 다른 부위로 확대될 수 있기를 기대하고 있다.
-
- 포커스온
-
[신소재 신기술(40) 초소형 로봇 '필봇', 내시경 검사 대체할까?
-
-
빠르고 정확하며 부드럽게 움직이는 휴머노이드 로봇 '아스트리봇 에스원' 주목
- 휴머노이드 로봇 신제품 출시 붐이 이어지고 있다. 거의 매주 거르지 않는다. 그런 가운데 어떤 로봇보다 빠르고 정밀하며 부드럽게 움직이는 휴머노이드 로봇이 중국에서 출시돼 주목된다고 뉴아틀라스가 전했다. 새로 선보인 휴머노이드 로봇은 아스트리봇(Astribot)의 에스원(S1)이다. 인공지능(AI)으로 작동되는 휴머노이드 로봇 출시는 올 들어 가속화됐다. 지난 3월에만 오픈AI의 플랫폼을 적용한 인상적인 제품들이 나왔다. 하나는 ‘소프트 터치’ 기술을 뽐낸 노르웨이 협력사 1X의 ‘세탁물을 접는’ 봇이고, 다른 하나는 진정한 차세대 자연어 추론 능력을 시연한 협력업체 피규어(Figure)의 봇이었다. 이번 달에는 보스턴 다이내믹스가 새로운 아틀라스 로봇을 발표하면서 놀라운 손재주로 사람들의 경탄을 자아냈으며, 중국의 UB테크는 소프트 터치 말하기 로봇인 워커S로 깊은 인상을 심어 주었다. 이번에 발표된 에스원도 놀랄만한 성능으로 높은 평가를 받고 있다. 스타더스트 인텔리전스의 자회사로 중국의 싫리콘밸리로 불리는 선전(深川)에 위치한 아스트리봇의 에스원은 빠르고 정확하게 동작한다는 점에서 다른 여타 로봇과 크게 차별화됐다는 사실을 최근 공개된 홍보 동영상에서 보여주고 있다. 아스트리봇에 따르면 에스원은 초당 최고 10m의 속도로 움직일 수 있다. 한쪽 팔로 10kg 무게의 짐을 처리할 수 있다. 두 팔을 사용하면 20kg을 감당한다는 의미다. 그러나 무게는 에스원에게는 그다지 중요하지 않다. 홍보 동영상을 보면 테이블 위에 식탁보를 깔고 그 위에 와인잔을 3층으로 올린 후 에스원이 바닥에 깔린 식탁보를 잡고 신속하게 당겨 빼낸다. 그런데 3층으로 쌓인 와인잔이 무너지지 않았다. 그만큼 빠르다는 얘기다. 로봇은 속도가 빠를 뿐 아니라 놀라울 정도로 정확하다. 스크루를 이용해 와인병 코르크 마개를 따고 와인을 잡아 디켄터에 붓고 디켄터를 흔든다. 오이를 잡고 칼로 껍질을 얇게 깎는다. 프라이팬에 올려진 샌드위치를 뒤집기도 한다. 테이블 위에 올려진 소품들을 서랍을 열고 집어넣어 정돈한 후 서랍을 닫는다. 영상은 로봇이 인간의 움직임을 모방하는 데 매우 능숙하다는 것을 보여준다. 로봇의 학습 능력은 대단히 우수하다. 다만 영상으로 보면 에스원은 상반신만 보인다. 모든 휴머노이드 로봇에는 다리 또는 바퀴와 같은 이동 수단이 있는데, 에스원은 고정된 로봇일 가능성이 높다. 나아가 관계자들은 에스원이 언제 생산될 것인가에 대해서도 궁금해하고 있다. 아스트리봇은 이 같은 궁금증에 대해 공식 발표를 준비하고 있다고 한다. 아스트리봇은 2022년 선전에서 설립됐다고 홈페이지는 밝히고 있다. 에스원 로봇 개발에는 약 1년이 소요됐으며, 올해 말까지는 상용화할 것으로 예상하고 있다. 홈페이지는 또 텐센트 로봇 연구소, 바이두 및 홍콩 폴리테크닉대학교에서 근무했던 라이 지에가 회사를 설립했다고 밝히고 있다. 회사 측은 "아스트리봇이라는 이름은 고대 라틴어 속담 '아스트라퍼 아스페라(Ad astra per aspera)'에서 유래했고, 이는 '우주 먼지에 도달하기 위한 고난의 여정‘을 의미하며, AI 로봇 기술 개발과 대중화에 대한 회사의 장기 계획과 의지를 의미한다“고 밝혔다.
-
- IT/바이오
-
빠르고 정확하며 부드럽게 움직이는 휴머노이드 로봇 '아스트리봇 에스원' 주목
-
-
[신소재 신기술(39)] 식염수로 폐전자제품서 희토류 광물 회수
- 미국 에너지부 산하 태평양 북서부 국립연구소(Pacific Northwest National Laboratory) 연구원들은 폐전자제품에서 망간, 마그네슘, 디스프로슘, 네오디뮴 등 주요 희토류를 선택적으로 회수하는 방법을 개발했다고 마이닝닷컴이 전했다. 연구팀은 간단한 혼합염 수용액과 금속 특성에 대한 지식을 활용하여 연속 흐름 반응로(챔버)에서 이러한 미네랄을 분리할 수 있었다. 두 개의 보완 연구 기사에 자세히 설명되어 있고 시애틀에서 열린 2024 재료 연구 학회(MRS) 춘계 회의에서 발표된 이 방법은 두 개의 서로 다른 액체가 지속적으로 함께 흐르는 화학 반응 챔버에 배치되었을 때 서로 다른 금속의 거동을 기반으로 합니다. 연구팀은 금속이 시간이 지남에 따라 서로 다른 속도로 고체를 형성하는 경향을 이용하여 금속을 분리하고 정제했습니다. 이 방법은 2024년 시애틀에서 열린 재료 연구 학회(MRS) 봄 회의 발표와 함께 두 편의 연구 논문에 상세히 설명되어 있으며, 두 개의 서로 다른 액체가 지속적으로 함께 연속 흐름 반응로(챔버)에서 다른 금속들의 행동을 기반으로 한다. 연구팀은 금속들이 서로 다른 속도로 고체를 형성하는 경향을 이용하여 광물을 분리 및 정제했다. 이 그룹은 2024년 2월에 처음으로 두 가지 필수 희토류 원소인 네오디뮴과 디스프로슘을 혼합 액체에서 성공적으로 분리했다고 보고했다. 기존 분리 방법에 일반적으로 필요한 30시간에 비해 4시간 만에 반응 챔버에서 두 개의 분리되고 정제된 고체가 형성되었다. 두 가지 중요한 광물은 무엇보다도 컴퓨터 하드 드라이브와 풍력 터빈에서 발견되는 영구 자석을 제조하는 데 사용된다. 지금까지 매우 유사한 특성을 가진 이러한 요소를 분리하는 것은 어려운 일이었다. 전자 폐기물에서 이를 경제적으로 회수할 수 있는 능력은 이러한 주요 광물의 새로운 시장과 공급원을 열 수 있다. 이 두 가지 중요 광물은 컴퓨터 하드 드라이브와 풍력 터빈 등에 사용되는 영구 자석 제조에 사용된다. 지금까지는 성질이 매우 유사한 이러한 원소들을 분리하는 것은 어려운 과제였다. 전자 폐기물에서 이들을 경제적으로 회수할 수 있는 능력은 이러한 중요 광물의 새로운 시장과 공급원을 열 수 있다. 마그네슘 공급원인 광산 폐기물과 염수 전자 폐기물에서 광물을 회수하는 것이 이 분리 기술의 유일한 응용 분야는 아니다. 연구팀은 바닷물은 물론 광산 폐기물과 염호 염수로부터 마그네슘을 회수하는 방법을 연구하고 있다. 수석 연구원 친푸 왕(Qingpu Wang)은 보도자료에서 “다음으로 더 많은 양의 제품을 효율적으로 회수하기 위해 원자로 설계를 수정하고 있다”고 말했다. 왕과 그의 동료 엘리아스 나쿠지(Elias Nakouzi)는 보완 기술을 사용해 용해된 리튬 이온 배터리 폐기물을 모방한 용액에서 거의 순수한 망간(>96%)을 회수할 수 있음을 보여주었다. 배터리용 망간은 전 세계적으로 소수의 회사에서 생산되며 주로 음극 또는 배터리의 음극 또는 음극에 사용된다. 본 연구에서 연구팀은 젤 기반 시스템을 사용하여 샘플 내 금속의 다양한 이동 및 반응 속도를 기반으로 물질을 분리했다. 나쿠지는 "이 프로세스의 장점은 간단하다는 것이다"라고 말했다. 그는 "고비용 또는 특수 재료에 의존하는 대신 우리는 이온 거동의 기본 원리를 다시 생각했다. 그리고 거기에서 영감을 얻었다"라고 설명했다. 연구팀은 연구 범위를 확대하고 중요 미네랄과 희토류 원소의 안정적인 국내 공급망을 제공하기 위해 환경 친화적인 새로운 분리 기술을 개발하는 PNNL의 새로운 이니셔티브인 '비평형 수송 구동 분리(NETS, Non-Equilibrium Transport Driven Separations)'를 통해 프로세스를 확장시킬 예정이다. 나쿠지는 "이 접근 방식은 복합적인 공급 흐름과 다양한 화학 성질로부터의 화학 분리와 관련하여 폭넓게 적용될 것으로 예상되며, 이는 더욱 지속 가능한 재료 추출 및 처리를 가능하게 할 것으로 기대한다"라고 말했다.
-
- 포커스온
-
[신소재 신기술(39)] 식염수로 폐전자제품서 희토류 광물 회수
-
-
인공지능, 기후변화 대처하는 식물 설계에 활용
- 과학자들이 인공지능(AI)을 활용해 기후 변화에 견딜 수 있는 식물을 설계하고 있다. 인공지능은 과학자들이 기후변화와 싸우고 지구 온도 상승을 억제하기 위해 식물을 개량하는 데 도움을 주고 있다고 웹사이트 피지스(phys. org)와 어스닷컴 등이 전했다. 기후변화 패널(IPCC)은 기후변화와 지구 온도 상승을 제한하기 위해서는 대기 중 이산화탄소를 제거하는 것이 필수적이라고 밝혔다. 미국 캘리포니아 라호야에 위치한 생명과학연구기관 솔크 연구소(Salk Institute) 과학자들은 기후 변화에 대응하기 위해 식물의 뿌리 시스템을 최적화해서 더 많은 이산화탄소를 더 오랜 기간 저장할 수 있는 식물의 자연적인 이산화탄소 흡수 능력 활용에 주목했다. 이 연구소의 '식물 활용 이니셔티브(Harnessing Plants Initiative)' 소속 과학자들은 기후변화 완화 식물을 설계하기 위해 'SLEAP'이라는 첨단 연구 도구를 사용하고 있다. 인공지능 SLEAP, 뿌리 성장 특징 추적 SLEAP은 사용하기 쉬운 인공지능 소프트웨어로서 다양한 뿌리 성장 특징을 추적한다. 솔크의 펠로우인 탈모 페레이라(Talmo Pereira)가 개발한 SLEAP은 당초 실험실에서 동물의 이동을 추적하기 위해 설계됐다. 페레이라는 현재 식물 과학자인 동료 연구원 볼프강 부쉬(Wolfgang Busch) 교수와 협력해 SLEAP을 식물에 적용하고 있다. 최근 '식물 게놈연구(Plant Phenomics)' 저널에 발표된 연구에서 부쉬 박사와 페레이라는 SLEAP을 사용해 식물 뿌리 형태 분석을 위한 새로운 프로토콜을 선보였다. 이 프로토콜은 뿌리가 얼마나 깊고 넓게 자라고, 뿌리 시스템이 얼마나 커지는 등 이전에는 측정하기 어려웠던 기타 물리적 특징을 분석한다. SLEAP을 식물에 적용한 결과 연구원들은 현재까지 가장 광범위한 식물 뿌리 시스템 형태 카탈로그를 구축할 수 있었다. 더욱이, 이러한 물리적 뿌리 시스템 특징을 추적하면 과학자들이 해당 특징과 관련된 유전자를 찾는 데 도움이 되며, 여러 뿌리 특징이 동일한 유전자에 의해 결정되는지 아니면 독립적으로 결정되는지를 판단할 수 있다. 이를 통해 솔크 연구팀은 식물 설계에 가장 유익한 유전자를 결정할 수 있다. 페레이라는 "이번 협업은 솔크 연구소의 과학이 특별하고 영향력 있는 이유를 실제로 보여주는 좋은 예"라고 말했다. 그는 "우리는 단순히 다른 분야의 지식을 '빌려오는' 것이 아니라, 더 큰 성과를 창출하기 위해 서로 동등한 위치에서 연구하고 있다"고 전했다. SLEAP을 사용하기 전에는 식물과 동물 모두의 물리적 특징을 추적하는 데 많은 노동이 필요했으며 이는 과학적 과정을 지연시켰다. 이전에는 연구원들이 식물 이미지를 분석하기 위해서는 이미지에서 식물 부분과 그렇지 않은 부분을 프레임 단위, 부분 단위, 픽셀 단위로 수작업으로 표시해야 했다. 그래야만 이전의 AI 모델을 적용해 이미지를 처리하고 식물 구조에 대한 데이터를 수집할 수 있었다. SLEAP의 독특한 점은 컴퓨터 시각(컴퓨터가 이미지를 이해하는 능력)과 딥 러닝(AI가 인간 뇌처럼 배우고 작업하도록 컴퓨터를 훈련하는 방법)을 모두 활용한다는 점이다. 이러한 조합을 통해 연구원들은 픽셀 단위로 이동하지 않고도 이미지를 처리할 수 있으며, 중간에 노동 집약적인 단계를 건너뛰고 이미지 입력에서 정의된 식물 특징으로 바로 넘어갈 수 있다. 부쉬 연구실의 생물정보학 분석가인 엘리자베스 베리건(Elizabeth Berrigan) 제1 저자는 "우리는 다양한 식물 유형에서 검증된 강력한 프로토콜을 개발했다. 이 프로토콜은 분석 시간과 인적 오류를 줄이고 접근성과 사용 편의성이 크며 실제 SLEAP 소프트웨어를 변경할 필요가 없었다"고 말했다. SLEAP의 기본 기술을 수정하지 않고 연구원들은 슬립 루트(sleap-roots)라는 SLEAP용 다운로드 가능한 도구킷을 개발했다. 슬립 루트는 오픈 소스 소프트웨어로 무료로 사용 가능하다. 슬립 루트를 사용하면 SLEAP는 뿌리 깊이, 질량, 성장 각도와 같은 뿌리 시스템의 생물학적 특성을 처리할 수 있다. 연구팀은 슬립 루트(sleap-roots) 패키지를 다양한 식물에서 테스트했다. 여기에는 대두, 쌀, 카놀라와 같은 농작물뿐만 아니라 모델 식물 종인 아라비도프시스 탈리아나(Arabidopsis thaliana)도 포함된다. 깊은 뿌리 시스템을 만드는 유전자 이해 높여 다양한 식물에서 시험한 결과 이 새로운 SLEAP 기반 방법은 기존 방법보다 1.5배 빠르게 주석을 달고, AI 모델을 10배 빠르게 훈련하고, 새로운 데이터에 대한 식물 구조를 10배 빠르게 예측하며, 모두 동일하거나 더 나은 정확도를 제공했다. 이러한 표형 데이터(예: 식물의 뿌리 시스템이 유난히 깊게 자라는 것)는 대규모 게놈 시퀀싱 노력과 함께 많은 숫자의 작물 품종에서 유전형 데이터를 밝히는 데 사용해 특히 깊은 뿌리 시스템을 만드는 유전자를 이해할 수 있다. 표형과 유전형을 연결하는 이 단계는 솔크 연구소의 목표인 더 많은 이산화탄소를 더 오랫동안 유지하는 식물을 만드는 데 중요하다. 이러한 식물은 더 깊고 더 강력한 뿌리 시스템을 설계해야 한다. 이 정확하고 효율적인 소프트웨어를 구현하면 식물 활용 이니셔티브는 원하는 표형을 표적 유전자에 아주 쉽고 획기적인 속도로 연결할 수 있다. 솔크의 식물 과학 부문 헤스 의장인 부쉬 박사는 "우리는 현재까지 가장 광범위한 식물 뿌리 시스템 형태 카탈로그를 만들 수 있었다. 이는 기후 변화와 싸우는 탄소 포집 식물을 만드는 연구를 실제로 가속화하고 있다"라고 말했다. 부쉬 박사는 "SLEAP은 탈모의 전문적인 소프트웨어 설계 덕분에 적용하고 사용하기 매우 쉬웠으며 앞으로 제 연구실에서 필수적인 도구가 될 것이다"라고 말했다. 페레이라가 SLEAP과 슬립 루트(sleap-roots)를 만들 때 접근성과 재현성을 가장 중요하게 고려했다. 연구원들은 NASA 과학자들과 토론을 시작하여 슬립 루트를 사용해 지구에서 탄소 포집 식물을 안내할 뿐만 아니라 우주에서 식물을 연구하는 데 도움이 되기를 기대한다. 솔크 연구소에서는 이미 SLEAP를 사용해 3D 데이터를 분석하는 새로운 도전에 착수하고 있다. SLEAP 및 슬립루트(sleap-roots)를 개선하고 확장하며 공유하는 노력은 앞으로 수년 동안 계속될 것이다. 솔크 연구소의 식물 활용 이니셔티브에서의 활용은 식물 설계를 가속화하고 연구소가 기후 변화에 대응하는 데 도움이 되고 있다.
-
- IT/바이오
-
인공지능, 기후변화 대처하는 식물 설계에 활용
-
-
줄자 다리를 사용해 빠르게 기어오르는 등산 로봇 등장
- 줄자 다리를 이용해 스마트하고 독특한 방법으로 금속 구조물을 올라갈 수 있는 새로운 바퀴 달린 로봇이 등장해 주목된다고 온라인 매체 뉴아틀라스가 전했다. 이 로봇은 줄자로 거리를 측정해 길이를 늘리거나 줄이면서 이동할 수 있는 팔다리로 만들어졌다. 기능이 개선되면 타워, 다리, 발전소, 선박과 같은 구조물이나 제품을 검사하거나 수리하는 용도로 발전할 가능성이 농후하다는 진단이다. 수직으로 곧추선 금속 표면 위로 오르내릴 수 있는 로봇은 다수 등장했지만, 이들 대부분은 진공 시스템과 바퀴의 조합, 또는 자석 발을 가진 다리들을 사용한다. 그러나 이 로봇들은 느리게 움직이고 기계적으로 복잡하며 상대적으로 작은 장애물들을 통과하지 못한다는 단점이 있었다. 이런 단점을 개선해 새로 선보인 로봇은 EEWOC(Extended-reach Enhanced Wheeled Orb for Climbing), 즉 기어오르는 확장 가능한 바퀴 구조로 설계됐다. 팔다리에 줄자가 들어가 늘이거나 줄일 수 있는 것. 로봇 프로토타입은 UCLA 로봇 공학 및 메커니즘 연구소(RoMeLa)의 저스틴 콴, 밍장 주, 데니스 홍 연구팀이 개발, 국제 디자인 엔지니어링 기술 컨퍼런스에서 발표됐다. 로봇은 땅이나 금속 등 수평 표면에 있을 때는 두 개의 바퀴로 굴러간다. 그러나 가파른 경사면을 오르게 되면 EEWOC는 EEMMa(이동 및 조작을 위한 탄력적 확장 메커니즘)로 개발된 팔다리를 수직으로 뻗는다. 이 장치는 로봇의 몸 안에 전동 스풀이 탑재된 줄자 구조다. 줄자는 로봇의 외부로 뻗어나가 거꾸로 된 U자 모양을 만들고, 다시 아래로 내려가 로봇의 꼭대기에 고정된다. 그리고 이동하고자 하는 곳에 전자석이 장착된 도구(엔드 이펙터)를 보내 고정시키고 줄자를 당겨 이동하게 된다. 작동 원리는 어렵지 않다. 상상하자면 세계적으로 흥행한 영화 ‘인디애나 존스’에서 존스 박사가 채찍을 던져 끝을 고정시키고 타잔처럼 이동하는 모습과 유사하다. EEMMMa 장치는 줄자를 늘리면서 시작한다. 그러면 줄자가 늘어나 사지가 길어지고(최대 1.2m 길이), 자석이 달린 엔드 이펙터는 역 U자 상단에 위치해 부착된다. 로봇은 줄자를 다시 스풀에 감으면서 본체를 이동한다. 이 같은 작업을 반복 수행해 경사진 어떤 방향이든 줄자 최대 거리 이내에서 표면 또는 공간 이동이 가능하다. 엔드 이펙터에는 브레이크가 포함돼 있어 로봇 본체의 이동을 조정할 수 있도록 해 원하는 이동 목표 지점에 대한 접근성을 높였다. 구형으로 만들어진 로봇의 지름은 260mm이고, 무게는 2.1kg에 불과하다. 로봇은 또한 초당 0.24m의 최대 등반 속도를 낸다. 이는 지금까지 만들어진 로봇 가운데 가장 빠른 등반 로봇 중 하나다. 연구팀은 다양한 방향으로 이동할 수 있는 발전된 EEMMMa 장치를 로봇에 적용할 방침이다. 그렇게 되면 전후좌우 가리지 않고 이동하는 것이 가능하다고. 연구팀은 나아가 나무나 콘크리트 벽과 같은 표면에서도 이동할 수 있는 비자성 EEMMMa 개발도 구상하고 있다.
-
- IT/바이오
-
줄자 다리를 사용해 빠르게 기어오르는 등산 로봇 등장
-
-
카카오 나무, 치명적인 바이러스 확산⋯코코아 가격 급등
- 초콜릿의 원료인 카카오 나무의 건강을 위협하는 바이러스가 가나에서 빠르게 확산되고 있다. '카카오 새싹 팽창 병(CSSVD)'은 초콜릿의 주요 원료를 위협하는 가장 심각한 질병 중 하나다. 전 세계 초콜릿의 약 50%는 서아프리카 국가인 코트디부아르와 가나의 카카오 나무에서 생산된다. 과학 전문 웹사이트 phys에 따르면 해당 바이러스는 가나의 카카오 나무를 공격하고 있으며, 코코아 수확량은 15%~50% 감소하고 있다. 가나와 코트디부아르 지역은 카카오 새삭 팽창병 바이러스 뿐만 아니라 가뭄까지 겹치면서 코코아 생산량이 급감했다. 나무의 잎, 새싹, 꽃을 먹는 깍지벌레(Mealybug)라고 불리는 작은 곤충에 의해 전파되는 카카오 새싹 팽창병은 초콜릿의 뿌리 성분에 가장 큰 피해를 주는 질병 중 하나다. 텍사스 대학교 알링턴(UTA) 수학 교수이자 저널 '플로스 원(PLOS ONE)'에 게재된 「카카오 지속 가능성: 카카오 새싹 팽창 병 복합 감염 사례」 논문의 저자인 벤이토 첸-샤르팡티에(Benito Chen-Charpentier) 교수는 "이 바이러스는 세계적인 초콜릿 공급에 실제적인 위협이다"라고 지적했다. 첸-샤르팡티에 교수는 "농약은 깍지벌레에 효과가 거의 없기 때문에, 농부들은 감염된 나무를 잘라내고 내성 나무를 교배해 질병 확산을 막으려고 노력하고 있다. 하지만 이러한 노력에도 불구하고 가나는 최근 몇 년 동안 2억 5400백만 그루 이상의 카카오 나무를 잃었다"고 전했다. 백신 접종 카카오 나무 수확량 감소 농부들은 카카오 나무에 백신을 접종해 면역력을 제공하는 방식으로 깍지벌레와 싸운다. 하지만 백신은 가격이 비싸 특히 저임금 농부들에게는 부담이 되며, 백신을 접종한 나무는 수확량이 줄어들어 바이러스 피해를 더욱 악화시킨다. 첸-샤르팡티에 교수와 캔사스 대학교, 프레리 뷰 앤드 엠 대학교, 사우스 플로리다 대학교, 가나 코코아 연구소의 연구팀은 백신 접종 대신 새로운 전략을 개발했다. 수학적 데이터를 사용해 농부들이 백신을 접종한 나무를 얼마나 멀리 심어야 깍지벌레가 다른 나무 사이로 이동해 바이러스를 확산시키는 것을 막을 수 있는지를 파악하는 것이다. 첸-샤르팡티에 교수는 "깍지벌레는 여러 가지 이동 방식을 가지고 있으며, 잎 사이를 이동하거나 개미에 의해 운반되거나 바람에 날려 다니기도 한다"고 말했다. 그는 "우리가 해야 할 일은 카카오 재배자들이 바이러스 확산을 방지하면서 소규모 농부들이 관리할 수 있는 수준으로 유지하기 위해, 백신을 접종한 나무와 접종하지 않은 나무의 거리를 계산해 안전하게 나무를 심을 수 있도록 모델을 만드는 것이었다"라고 설명했다. 연구팀은 수학적 패턴화 기법을 실험하여 농부들이 백신을 접종하지 않은 카카오 나무 주변에 백신을 접종한 카카오 나무를 보호막으로 만들 수 있는 두 가지 유형의 모델을 만들었다. 첸 샤프랑티에 교수는 "아직 실험 단계이지만, 이 모델은 농부들이 작물을 보호하면서 더 나은 수확을 거둘 수 있도록 도울 수 있다"고 말했다. 그는 "이는 농부들의 수익뿐만 아니라 초콜릿에 중독된 전 세계인들에게도 이로운 일"이라고 덧붙였다. 코코아 가격 급등 한편, 최근 카카오 열매 가루로 초콜릿의 원료인 코코아 선물가격도 1년 만에 3배로 급등해 사상 최고를 기록했다. 선물시장에서 코코아는 최근 1개월간 49% 뛰어 t(톤)당 1만달러를 돌파해 1만50달러까지 올랐다. 세계 코코아 생산량의 80%를 차지하는 서아프리카에서 기후변화로 인한 가뭄 등으로 생산이 급감했다. 열대 동태평양 표층 수온이 높아지는 '엘니뇨' 현상으로 세계 최대 카카오 생산국인 가나와 코트디부아르에서 극심한 가뭄이 발생했다. 국제코코아기구(ICO)는 2023∼2024시즌에 글로벌 카카오 공급이 11% 감소할 것이라고 전망했다. 씨티그룹은 지난 4월 초 코코아 가격의 추가 상승 가능성이 있다고 내다봤다.
-
- 생활경제
-
카카오 나무, 치명적인 바이러스 확산⋯코코아 가격 급등
-
-
[퓨처 Eyes(33)] 인텔, 인간 뇌 모방 뉴로모픽 컴퓨터 '하라 포인트' 공개
- 미국 반도체 기업 인텔은 인간 뇌의 작동 방식을 본떠 설계 및 구성된 세계 최대 규모의 뉴로모픽 컴퓨터 '하라 포인트(Hala Point)'를 개발했다고 발표했다. '하라 포인트'라고 명명된 이 컴퓨팅 시스템은 차세대 인공지능(AI) 모델을 구축하려는 연구자를 지원하도록 설계됐다. 라이브사이언스에 따르면, 하라 포인트는 1152개의 신규 인공지능 칩 '로이히 2' 프로세서로 구동된다. 인텔 측은 이 혁신적인 시스템이 기존 컴퓨터 시스템 대비 인공지능 작업 속도를 50배 향상시키고 에너지 소비량을 100배 줄일 수 있다고 주장한다. 다만, 이 수치는 아직 동료 검토를 거치지 않은 연구 결과를 기반으로 한 것임을 밝혔다. 22일(현지시간) AI비즈니스 보도에 따르면, 인텔의 새로운 뉴로모픽 컴퓨터는 에너지 사용량을 크게 줄이면서 기존 GPU 대비 최대 50배 더 빠른 성능을 제공한다. '하라 포인트'에는 최대 11억 5000만 개의 인공 뉴런과 14만 544개의 뉴로모픽 처리 코어를 지원하며, 1152개의 로이히 2 프로세서에 분산된 1288억 개의 시냅스를 탑재하고 있다. 이 강력한 하드웨어는 초당 최대 20경 회 연산, 즉 20페타옵스의 처리 성능을 제공하며, 인텔의 초기 뉴로모픽 시스템인 포호이키 스프링스(Pohoiki Springs) 대비 최대 12배 향상된 성능을 자랑한다. 하라 포인트는 기존 하드웨어 대비 50배 빠른 속도로 동작하면서도 에너지 소비량은 100배 적게 소비한다. 이는 GPU 및 CPU 기반 시스템에서 달성한 성능을 뛰어넘는 놀라운 수치이며, 인공지능 분야의 발전에 획기적인 도약을 선사할 것으로 기대된다. 하지만 뉴로모픽 컴퓨터는 슈퍼컴퓨터와 데이터 처리 방식이 달라 직접적인 비교는 어렵다. 이 혁신적인 시스템은 뉴멕시코주 앨버커키에 위치한 샌디아 국립연구소에 설치되어 장치 물리학, 컴퓨팅 아키텍처, 컴퓨터 과학 등 다양한 분야의 과학적 문제 해결에 활용될 예정이다. 기존 컴퓨터와 어떻게 다른가? 뉴로모픽 컴퓨터는 기존 컴퓨터와 아키텍처부터 근본적으로 차별화된다. 미국 오크리지 국립연구소(Oak Ridge National Laboratory)의 컴퓨터 과학자 프라사나 데이트 박사는 리서치게이트(ResearchGate)에 올린 글에서 뉴로모픽 컴퓨터가 인공 신경망을 기반으로 구축된다고 설명했다. 기존 컴퓨터는 0과 1로 이루어진 이진 데이터를 처리하는 반면, 뉴로모픽 컴퓨터는 '스파이크 입력'이라는 일련의 불연속적인 전기 신호를 사용한다. 또한, 칩 자체에 메모리와 연산 능력을 통합하여 데이터 이동 거리를 줄이고 병렬 처리를 가능하게 함으로써 전력 소비를 획기적으로 감소시킨다. 인텔은 "하라 포인트가 AI 에이전트, 대규모 언어 모델, 스마트 시티 인프라 관리와 같은 '미래 지능형 응용 분야'에 대한 실시간 연속 학습을 가능하게 할 수 있다"고 밝혔다. 인텔 랩스 뉴로모픽 컴퓨팅 랩(Neuromorphic Computing Lab)의 마이크 데비스(Mike Davies) 소장은 "오늘날 인공지능 모델의 컴퓨팅 비용이 지속 불가능한 속도로 증가하고 있다"고 지적했다. 그는 "현재 인공지능 산업은 확장 가능한 근본적으로 새로운 접근 방식을 절실히 필요로 한다"고 강조하며, 이에 인텔은 딥 러닝 효율성과 혁신적인 두뇌 영감 학습 및 최적화 기능을 결합한 첨단 뉴로모픽 컴퓨터 '하라 포인트'를 개발했다고 설명했다. 데비스 소장은 "하라 포인트를 통한 연구가 대규모 인공지능 기술의 효율성과 적응성을 크게 향상시킬 수 있을 것으로 기대한다"고 덧붙였다. 현재 하라 포인트는 연구용 프로토타입 단계라 구매는 불가능하다. 하지만 인텔은 이 혁신적인 시스템이 미래 인공지능 제품의 기반이 되고 인공지능으로 인한 컴퓨팅 집약도를 효과적으로 줄이는 데 기여할 것으로 기대하고 있다. 뉴로모픽 컴퓨팅, AI혁신 이끌까? 뉴로모픽 컴퓨팅(Neuromorphic Computing)은 인간 뇌의 놀라운 신경 가소성, 즉 경험을 통해 적응하고 변화하는 뇌의 능력을 모방하는 시스템 구축에 초점을 맞춘 첨단 연구 분야이다. 이진 코드를 사용하는 기존 컴퓨팅 시스템과 달리 뉴로모픽 시스템은 인공 뉴런과 시냅스의 복잡한 네트워크를 활용하여 정보를 처리한다. 연구자들은 뉴로모픽 컴퓨팅이 인간 두뇌의 놀라운 학습 능력을 모방하여 시스템의 효율성을 극대화하고 정보 처리 능력을 향상시킬 수 있다고 기대한다. 인공지능 시스템은 이전 경험과 데이터를 활용하여 지속적으로 학습하고 발전할 수 있을 것으로 전망된다. 인텔의 혁신적인 노력 외에도, 구글 딥마인드(Google DeepMind)는 단순히 증가하는 데이터로 AI 작업을 훈련하는 것이 아니라 메모리에서 학습하도록 가르치는 '뉴로AI(NeuroAI)' 개념을 연구하고 있다. 뉴로모픽 하드웨어 시스템의 또 다른 예로는 IBM의 '노스폴(NorthPole)' 반도체가 있다. 이는 인간 두뇌의 정보 처리 방식을 모방하지만 단일 칩에 구현된 첨단 시스템이다. 인텔의 뉴로모픽 컴퓨터 시스템은 비디오, 음성, 무선 통신 등 다양한 워크로드를 처리하는 딥 러닝 모델을 크게 강화할 수 있는 잠재력을 지닌다. 인공지능 분야의 게임 체인저인가? 초기 연구 결과에 따르면, 하라 포인트는 인공지능 작업에서 와트당 15조 연산(TOPS/W)이라는 놀라운 에너지 효율성을 달성했다. 대부분의 기존 인공 신경망 처리 장치(NPU)와 다른 인공지능 시스템들이 보여주는 와트당 10 TOPS 이하의 수치를 훨씬 뛰어넘는 성능이다. 뉴로모틱 컴퓨팅은 인공지능 응용 분야에서 특히 유망한 기술로 여겨지고 있다. 로보틱스, 자율주행 차량, 지능형 카메라 시스템, 실시간 의사 결정 시스템 등 다양한 분야에서 활용될 수 있다. 또 뉴모로틱 칩은 전력 소모가 매우 낮아 배터리 수명이 중요한 모바일 기기나 원격 센서에 적합하다. 그러나 고도의 복잡성과 대규모 통합을 요구하는 뉴로모틱 칩의 설계와 제조는 아직까지 도전 과제로 남아 있다. 또한 이 기술을 기존의 컴퓨팅 시스템과 효울적으로 통합하는 방법도 주요 과제 중 하나다. 뉴로모픽 컴퓨팅 기술은 아직 초기 개발 단계이지만, 하라 포인트와 유사한 규모의 시스템들은 빠르게 개발되고 있다. 호주 서부 시드니 대학교 국제 뉴로모픽 시스템 연구 센터(ICNS)는 2023년 12월 유사한 시스템을 배치할 계획이라고 발표했다.
-
- 포커스온
-
[퓨처 Eyes(33)] 인텔, 인간 뇌 모방 뉴로모픽 컴퓨터 '하라 포인트' 공개
-
-
[신소재 신기술(37)] 레이저로 구동되는 초고속 잠수함 개발
- 중국 하얼빈 공업대학 연구팀은 레이저를 사용해 잠수함을 제트 엔진과 거의 동등한 속력으로 추진하는 기술을 개발 중이라고 주장했다. 하얼빈은 중국 최초의 실험 잠수함 개발 지역이다. 홍콩 매체 사우스 차이나 모닝 포스트(SCMP) 보도에 따르면, 하얼빈 공대 연구팀은 중국의 군사력이 이 획기적인 기술 개발에 임박했다고 밝혔다. 레이저 추진 잠수함 기술의 핵심 원리는 독창적이다. 레이저가 수중에서 플라즈마를 생성해 소위 '폭발 파(detonation wave)'를 만들어 잠수함을 앞으로 나아가게 하는 아이디어가 이 기술의 핵심이다. SCMP에 따르면 일본 연구팀은 20년 전 처음으로 이러한 레이저 추진 방식을 제안했다. 이후 중국에서는 과학자들이 최소 10년 이상 이 기술을 실용화하기 위해 노력해 왔다. 지금까지 레이저 추진 기술의 시도는 대부분 실패했다. 과학자들은 잠수함을 특정 방향으로 밀 수 있는 레이저 출력 실현이 거의 불가능하다는 것을 알게됐다. 하지만 하얼빈 공대 연구팀은 이제 해답을 찾았다고 말했다. SCMP는 이 기술을 사용하는 잠수함은 레이저 출력을 방출하는 아주 얇은 광섬유(머리카락 한 가닥보다 얇은 광섬유)로 코팅되어 있다고 전했다. 연구팀은 중국 광학회에서 발간하는 영문 학술지 '중국 광학학보(Acta Optica Sinica)'의 최근 논문에서 이같이 밝혔다. 연구팀은 코팅 광섬유를 사용하면 단 2메가와트의 레이저 출력만으로 상업용 제트 엔진보다 약간 적은 수치인 최대 7만 뉴턴의 추력을 생성할 수 있다고 주장했다. 추진력 제공 외에도 지향성 레이저 에너지는 수중 투사체 표면을 기포로 덮어 속도를 높이는 '슈퍼 캐비테이션(supercavitation, 고속으로 움직이는 물체 주변에 형성되는 기포로 가득찬 공간)' 현상을 유발할 수 있다. 이론적으로 이를 통해 잠수함은 음속보다 빠르게 이동하고 소나(음파탐지기·SONAR)에 감지되지 않게 할 수 있다. 기계 동력이 없기 때문에 기계적인 소음 진동도 발생하지 않기 때문이다. 소나(SONAR)는 'Sound Navigation And Ranging'의 약자로, 음파탐지기, 음향탐지기 혹은 음탐기라고도 불리며, 음파를 이용해 수중 목표의 방위와 거리를 측정하는 장비이다. 이 소식은 미국이 새로운 수중 무기 기술 연구에 막대한 투자를 하고 있는 중국에게 잠수함 군비 경쟁에서 밀릴 것을 우려하고 있다는 지난해 보도 이후 나온 것이다. 레이저 추진 잠수함이라는 개념은 SF 영화를 떠올리게 하지만, 이러한 기술의 군사적 활용은 주목할 만한 가치가 있다. 퓨처리즘은 이러한 이론적 발전 소식은 미국이 잠수함 개발 경쟁에서 중국에 뒤쳐질 수 있다는 우려를 낳고 있다고 전했다. 중국은 최근 새로운 수중 무기 기술 연구에 많은 투자를 하고 있다. 논문의 프로젝트 리더인 게 양(Ge Yang)은 SCMP가 인용한 논문에서 "이 방법은 수중 무기에도 적용할 수 있으며, 슈퍼 캐비테이션 현상을 일으켜 수중 투사체, 수중 미사일 또는 어뢰의 수중 사거리를 크게 향상시킬 수 있다"고 밝혔다.
-
- 포커스온
-
[신소재 신기술(37)] 레이저로 구동되는 초고속 잠수함 개발
-
-
[먹을까? 말까?(7)] 미세 플라스틱이 가장 많이 들어 있는 음식은?
- 아침 밥과 점심, 저녁 식사로 우리는 얼마나 많은 플라스틱을 먹었을까? 이는 공상 과학 영화에 등장하는 내용이 아니다. 즉석 조리 음식과 배달 음식이 넘쳐나는 현재 우리 식탁을 점검해야 할 때가 되었다. 최근 외신에서는 미세 플라스틱이 인체에 미치는 폐해에 대한 보도가 넘쳐나고 있다. "놀랍게도 소금 대체재로 알려진 히말라야 소금에 미세 플라스틱이 엄청나게 함유돼 있다는 사실을 알고 있는 사람은 드물다. 새우와 과일, 당근 등 각종 채소, 즉석밥은 물론 쌀에도 미세 플라스틱이 들어 있다"고 CNN은 22일 보도했다. 2024년 2월 발표된 연구에 따르면 동식물성 단백질 샘플의 90%에서 0.2인치(5mm) 미만에서 2만5000분의 1인치(1마이크로미터)에 이르는 미세한 폴리머 조각인 미세플라스틱 양성 반응이 나왔다. 1마이크로미터보다 작은 것은 나노 플라스틱으로 10억 분의 1미터 단위로 측정해야 한다. 2021년에 발표된 한 연구에 따르면 채식주의자조차도 미세 플라스틱을 피해갈 수 없다. 플라스틱 크기가 아주 작으면 과일과 채소는 뿌리 시스템을 통해 미세 플라스틱을 흡수하여 식물의 줄기, 잎, 씨앗, 열매에까지 이들 미세 플라스틱을 옮길 수 있다. 다시 말하면 육안으로 확인할 수 없지만 우리가 먹는 과일과 채소 등 식용 식물들의 잎이나 뿌리, 열매 등에 이미 다량의 미세 플라스틱이 포함되어 있다는 의미다. 일상 생활에서 흔히 접하지만 미처 인식하지 못했던 미세 플라스틱이 함유된 음식을 다음과 같이 정리했다. 소금·설탕·과일·채소, 전부 미세 플라스틱 함유 소금도 플라스틱이 함유돼 있다. 2023년에 발표된 연구에 따르면 땅에서 채굴한 굵은 히말라야 핑크 소금에 미세 플라스틱이 가장 많았고, 그다음으로 검은 소금과 해양 소금이 그 뒤를 이었다. 2022년 연구에 따르면 설탕도 "인간이 미세 오염 물질에 노출되는 중요한 경로"로 밝혀졌다. 대부분 플라스틱으로 만들어진 티백도 엄청난 양의 플라스틱을 배출할 수 있다. 캐나다 퀘벡의 맥길 대학교 연구진은 플라스틱 티백 하나를 끓일 때 약 116억 개의 미세 플라스틱과 31억 개의 나노 플라스틱 입자가 물로 방출된다는 사실을 발견했다. 동양인들의 주식인 쌀도 미세 플라스틱을 지니고 있다. 호주 퀸즐랜드 대학교의 연구에 따르면 사람들이 밥 100g(1/2컵)을 먹을 때마다 3~4밀리그램의 플라스틱을 섭취한다. 특히 플라스틱 용기에 들어 있는 인스턴트 밥(즉석밥)의 경우 1회 제공량당 미세 플라스틱 섭취량은 13밀리그램으로 증가한다고 한다. 연구원들은 쌀을 씻으면 플라스틱 오염을 최대 40%까지 줄일 수 있다고 말했다. 또한 쌀에 많이 함유되어 있는 비소도 줄일 수 있다고 한다. 생수도 미세 플라스틱 오염을 벗어날 수 없다. 2024년 3월 발표된 연구에 따르면 표준 크기의 생수 두 병에 해당하는 1리터의 물에는 나노 플라스틱을 포함한 7가지 유형의 플라스틱 입자가 평균 24만 개 포함되어 있는 것으로 나타났다. 산모의 태반과 모유에도 미세 플라스틱 발견 미세 플라스틱은 이미 사람의 폐, 산모와 태아의 태반 조직, 모유, 사람의 혈액에서 발견됐다. 그러나 안타깝게도 최근까지 이러한 폴리머가 신체의 장기와 기능에 어떤 영향을 미치는지에 대한 연구는 거의 없었다. 2024년 3월 발표된 연구에 따르면 목의 동맥에 미세 플라스틱이나 나노 플라스틱이 있는 사람은 그렇지 않은 사람보다 향후 3년 동안 심장마비, 뇌졸중 또는 어떤 원인으로든 사망할 확률이 두 배나 높다고 한다. 전문가들은 인체 건강에 가장 우려스러운 플라스틱 오염 물질은 바로 '나노 플라스틱'이라고 지적했다. 그 이유는 아주 미세한 플라스틱 입자가 인체의 주요 장기의 개별 세포와 조직에 침입해 세포 과정을 방해하고 비스페놀, 프탈레이트, 난연제, 과불화화합물 또는 PFAS(자연 상태에서 절대 분해되지 않는 '영원한 화학물질')와 같은 내분비 교란 화학물질과 중금속을 침착시킬 수 있기 때문이다. 펜실베이니아주 이리에 위치한 펜 스테이트 베렌드의 지속가능성 책임자인 셰리 "샘" 메이슨은 이전 CNN 인터뷰에서 "이러한 화학물질은 모두 플라스틱 제조에 사용되므로 플라스틱이 우리 몸에 들어오면 그 화학물질도 함께 들어오는 것"이라고 말했다. 메이슨은 "체온이 외부보다 높기 때문에 이러한 화학 물질은 플라스틱에서 이동go 우리 몸속으로 들어가게 된다"면서 "이러한 화학 물질은 간과 신장, 뇌로 전달될 수 있으며 심지어 태반 경계를 넘어 태아에게까지 전달될 수 있다"고 설명했다. 반면, 국제생수협회 대변인은 앞서 CNN에 "현재 나노 및 미세 플라스틱 입자의 잠재적인 건강 영향에 대한 과학적 합의는 없다. 따라서 가정과 추측에 근거한 언론 보도는 대중을 불필요하게 겁주는 것 이상도 이하도 아니다"라고 말했다. 소고기 등 모든 유형의 단백질도 오염돼 지난 2월 '환경 연구(Environmental Research)'에 게재된 연구에서 연구진은 소고기, 빵가루를 입힌 새우, 닭 가슴살과 너겟, 돼지고기, 해산물, 두부, 명태 피쉬 스틱, 갈은 소고기와 유사한 식감의 식물성 크럼블, 식물성 생선 스틱 등 여러 식물성 육류 대체품을 포함해 일반적으로 소비되는 12가지 이상의 단백질에 대해 조사했다. 연구 결과에 따르면 빵가루 입힌 새우에는 1회 제공량당 평균 300개 이상의 미세 플라스틱 조각이 발견돼, 미세한 플라스틱이 가장 많이 함유된 식품으로 이름을 올렸다. 그 뒤를 이어 식물성 너겟이 1회 제공량당 100개 미만으로 2위를 차지했고, 치킨 너겟, 명태 피쉬 스틱, 최소한의 가공을 거친 화이트 걸프 새우, 갓 잡은 키웨스트 핑크 새우, 식물성 생선 스틱이 그 뒤를 이었다. 가장 오염이 적은 단백질은 닭 가슴살이었으며, 돼지 등심과 두부가 그 뒤를 이었다. 연구 결과를 소비자 소비 데이터와 비교한 결과, 미국 성인의 미세 플라스틱 평균 노출량은 연간 11,000~29,000개이며, 연간 최대 380만 개의 미세 플라스틱에 노출될 것으로 추정된다. 사과와 당근, 미세 플라스틱 가장 많이 오염돼 바다는 플라스틱으로 가득 차 있으며, 이들 플라스틱이 우리가 먹는 해산물에 어떻게 유입되는지는 여러 연구를 통해 밝혀졌다. 그러나 2020년 8월 발표된 한 연구에 따르면 채소와 소, 돼지 등 육상 동물 단백질과 미세 플라스틱에 대한 연구는 거의 이루어지지 않았다. 학술지 '환경 과학(Environmental Science)'에 발표된 이 연구에서는 다양한 과일과 채소에서 10㎛(1마이크로미터는 빗방울 지름 정도) 미만의 플라스틱 입자가 5만2050~23만3000개 발견됐다. 연구 결과에 따르면 사과와 당근은 각각 그램당 10만개 이상의 미세 플라스틱을 함유해, 가장 오염된 과일과 채소였다. 가장 작은 미세 플라스틱 입자는 당근에서 발견되었고, 가장 큰 플라스틱 조각은 양상추에서 발견됐다. 참고로 양상추는가장 오염이 적은 채소였다. 플라스틱으로 가득찬 세계 최근 분석에 따르면 오늘날 전 세계에는 엄청난 수의 플라스틱이 존재한다. 그 중 최소 4200종에서 인체와 환경에 '매우 유해한' 것으로 간주되는 1만6000개의 플라스틱 화학물질이 존재한다. 이러한 화학물질은 환경에서 분해되면서 미세 플라스틱으로 변한 다음 나노 플라스틱으로 변할 수 있는데, 이 입자는 너무 작아 수십 년 동안 과학계에서 이를 발견하는 데 어려움을 겪었다. 새로운 기술을 활용한 최근 연구에 따르면 미국에서 판매되는 인기 생수 브랜드 3곳의 나노플라스틱 수가 리터당 11만개~37만 개에 달하는 것으로 나타났다. 앞서 말했듯이 1리터는 약 16온스(약 480ml, 음료에서 일반적인 그란데 사이즈) 생수 두 병에 해당하는 양이다. 연구 저자들은 어떤 브랜드의 생수를 연구했는지는 밝히지는 않았다. 이전 기술을 사용한 연구에서는 같은 양의 생수에서 더 큰 미세 플라스틱과 함께 약 300개의 나노 플라스틱만 확인됐다. 플라스틱 오염을 줄이는 방법 메이슨은 생수에서 발견되는 플라스틱 오염의 노출을 줄이기 위해 유리 또는 스테인리스 스틸 용기에 담긴 수돗물을 마시라는 오랜 전문가의 조언을 거듭 지적했다. 이러한 조언은 플라스틱으로 포장된 다른 음식과 음료에도 적용된다고 그녀는 덧붙였다. 메이슨은 "사람들은 플라스틱을 흘린다고 생각하지 않지만 실제로는 흘린다"면서 "우리가 피부 세포를 끊임없이 벗겨내는 것과 거의 같은 방식으로 플라스틱은 상점에서 구입한 샐러드나 플라스틱으로 포장된 치즈의 플라스틱 용기를 열 때 등 깨진 작은 조각을 끊임없이 포장된 내용물에 흘리고 있다"고 설명했다. 전문가들에 따르면 우리가 섭취하는 플라스틱에 대해 과학이 더 많은 내용을 밝혀주기까지 사람들은 플라스틱 노출을 줄이기 위해 노력해야 한다. 먼저 플라스틱 용기에 보관된 음식은 먹지 않도록 하는 것이 좋다. 대신 유리, 에나멜 또는 호일에 보관된 식품을 찾아보라고 전문가는 권했다. 또한 천연 섬유로 만든 옷을 입고 천연 소재로 만든 소비재를 구입하는 것이 좋다. 특히 플라스틱 용기에 음식을 담아 전자레인지에 돌리지 말고, 유리 용기에 담아 전자레인지를 돌리는 것이 좋다. 또한 가스레인지에서 음식을 가열해서 데우는 방법도 있다. 전문가들은 "가능한 한 신선한 식품을 많이 섭취하고, 플라스틱으로 포장된 가공식품 및 초가공식품의 구매를 제한하는 것이 바람직하다"고 강조했다.
-
- 생활경제
-
[먹을까? 말까?(7)] 미세 플라스틱이 가장 많이 들어 있는 음식은?
-
-
[신소재 신기술(36)] 완두콩 크기 뇌 임플란트 장치 개발
- 미국 라이스 대학 엔지니어들은 인간 환자에게 시연된 가장 작은 이식형 뇌 자극기를 개발했다. 이 완두콩 크기의 뇌 임플란트 장치는 '오버 브레인 테라퓨틱(DOT, Digitally programmable Over-brain Therapeutic)'이라고 불리며, 경추막(두개골 바닥에 연결된 보호막)을 통해 뇌를 자극하는데 사용된다고 사이테크데일리가 22일(현지시간) 보도했다. 제이콥 로빈슨의 라이스 연구실과 신경 공학회사 모티프 뉴로테크(Motif Neurotech), 임상의 사미르 셰스(Sameer Sheth) 박사와 수닐 셰스(Sunil Sheth) 박사가 공동으로 개발한 혁신적인 장치 DOT는 선구적인 자기전기 전력 전송 기술 덕분에 외부 송신기를 통해 무선으로 전력을 공급받을 수 있다. 이 장치는 두개골 바닥에 부착된 보호막을 통해 뇌 자극에 사용될 수 있어 의료 분야에 큰 가능성을 보여주고 있다. 디지털 프로그래밍이 가능한 DOT 장치는 현재의 신경 자극 기반 치료법보다 환자의 자율성과 접근성이 뛰어나고 다른 뇌-컴퓨터 인터페이스(BCI)보다 덜 침습적인 치료 대안을 제공함으로써 약물 내성 우울증 및 기타 정신과적 또는 신경학적 장애 치료에 혁명을 일으킬 수 있다. 이 연구는 최근 '사이언스 어드밴시즈(Science Advances)' 저널에 게재됐다. 이 뇌 임플란트 장치의 폭은 9mm(밀리미터)이며 14.5v(볼트)의 자극을 전달할 수 있다. 라이스 바이오테크 런치 패드를 통해 설립된 스타트업 모티프 뉴로테크의 설립자이자 CEO인 로빈슨은 "우리의 뇌 임플란트는 이 자기 전기 효과를 통해 모든 에너지를 얻는다"고 말했다. 모티프 뉴로테크는 신경 장애 치료법을 혁신할 수 있는 BCI의 잠재력을 연구하는 여러 신경공학 회사 중 하나다. 로빈슨은 "신경 자극은 약물 부작용과 효능 부족으로 적절한 치료 옵션이 없는 사람들이 많은 정신 건강 분야에서 치료를 가능하게 하는 핵심 기술"이라고 말했다. 연구팀은 이 장치를 인간 환자에게 일시적으로 테스트하여 운동 피질(운동을 담당하는 뇌 부분)을 자극하고 손의 움직임 반응을 생성하는 데 사용했다. 그 다음 연구팀은 돼지를 대상으로 30일 동안 이 장치가 뇌와 안정적으로 상호작용하는 것을 보여주었다. 향후에는 우울증이나 다른 질환을 가진 환자의 실행 기능을 향상시킬 수 있도록 이 장치를 전두엽피질과 같은 뇌의 다른 부위 위에 삽입할 수도 있다. 기존 삽입형 뇌 자극 기술은 피부 아래 다른 부위에 삽입되어야 하는 상대적으로 큰 배터리로 구동되며, 긴 전선을 통해 자극 장치에 연결된다. 이러한 설계상의 한계로 인해 더 많은 수술이 필요하며, 개인에게 더 많은 하드웨어 삽입 부담, 전선 파손 또는 고장 위험, 그리고 향후 배터리 교체 수술이 필요했다. 라이스대학 연구팀은 외부 송신기를 사용하여 무선으로 장치에 전원을 공급함으로써 배터리를 아예 없앴다. 임상 테스트 및 향후 연구 방향 우즈 박사는 "이전에는 이 정도 크기의 임플란트에는 무선 전력 전송이 불가능했기 때문에 경막을 통해 뇌를 자극하는 데 필요한 신호의 품질과 강도가 불가능했다"고 설명했다. 로빈슨 박사는 이 기술을 집에서 편안하게 사용할 수 있을 것으로 기대했다. 의사가 치료를 처방하고 장치 사용에 대한 지침을 제공하지만, 환자가 치료 방법을 완전히 통제할 수 있다는 것. 로빈슨은 "환자가 집에서 모자를 쓰거나 웨어러블을 착용하여 임플란트에 전원을 공급하고 통신하고, 아이폰이나 스마트워치에서 '이동'을 누르면 임플란트의 전기 자극이 뇌 내부의 신경 네트워크를 활성화할 것"이라고 설명했다. 이 장치를 이식하려면 뇌의 뼈에 장치를 삽입하는 최소 침습 30분의 시술이 필요하다. 임플란트와 절개 부위는 거의 보이지 않으며 환자는 수술 당일 퇴원해서 집으로 돌아갈 수 있다. 베일러 의과대학의 교수이자 연구 부의장, 맥에어 장학생, 컬렌 재단 신경외과 기부 석좌인 셰스 박사는 "심장 박동조율기는 심장 치료의 매우 일상적인 부분"이라면서 "신경 및 정신 질환의 경우 무섭고 침습적일 것 같은 뇌심부자극술(DBS)이 이에 해당한다"고 비유했다. 셰스 박사는 "DBS는 실제로 상당히 안전한 시술이지만 여전히 뇌 수술이며, 그 위험성으로 인해 이를 기꺼이 받아들이고 혜택을 받을 수 있는 사람의 수가 매우 제한적이다. 그래서 이런 기술이 필요한 것이다. 외래 수술 센터에서 피부 수술에 지나지 않는 30분 정도의 간단한 뇌 임플란트 시술은 DBS보다 훨씬 더 많은 사람들이 받아들일 가능성이 높다라고 설명했다. 그는 "따라서 이 치료법이 더 침습적인 대안만큼 효과적이라는 것을 보여줄 수 있다면 정신 건강에 훨씬 더 큰 영향을 미칠 수 있을 것"이라고 덧붙였다. 예를 들어 간질과 같은 일부 질환의 경우 장치를 영구적으로 또는 대부분의 시간 동안 착용해야 할 수도 있지만, 우울증이나 강박증과 같은 장애의 경우 하루에 단 몇 분의 자극만으로도 표적 신경 네트워크의 기능에 원하는 변화를 가져올 수 있다. 로빈슨은 다음 단계에 대해 연구 측면에서 "임플란트 네트워크를 만들고, 자극하고 기록할 수 있는 임플란트를 만들어 자신의 뇌 신호를 기반으로 적응형 개인 맞춤형 치료를 제공할 수 있다는 아이디어에 정말 관심이 있다"고 말했다. 한편, 모티프 뉴로테크는 치료법 개발의 관점에서 사람을 대상으로 한 장기 임상시험에 대한 미 식품의약국(FDA) 승인을 받기 위한 절차를 진행 중이다. 이 연구는 로버트 및 제니스 맥네어 재단, 맥네어 의학 연구소, DARPA 및 국립과학재단의 일부 지원을 받았다. ※ 출처: "미니어처 배터리 없는 경막외 피질 자극기" Joshua E. Woods, Amanda L. Singer, Fatima Alrashdan, Wendy Tan, Chunfeng Tan, Sunil A. Sheth, Sameer A. Sheth 및 Jacob T. Robinson, 2024년 4월 12일, Science Advances. DOI: 10.1126/sciadv.adn0858
-
- 포커스온
-
[신소재 신기술(36)] 완두콩 크기 뇌 임플란트 장치 개발
-
-
삼성전자, 업계 최초 '9세대 V낸드' 양산…290단 적층 구현
- 삼성전자가 업계 최초로 '1Tb(테라비트) TLC(Triple Level Cell) 9세대 V낸드' 양산을 시작해 메모리 기술에서 리더십을 강화했다. 이 기술은 인공지능(AI) 시대의 고용량 및 고성능 낸드에 대한 수요 증가에 대응하기 위한 것이다. 삼성전자는 23일, '더블 스택' 구조를 적용한 최고 단수 제품인 9세대 V낸드를 양산한다고 발표했다. 이 제품은 현재 주력 제품인 236단 8세대 V낸드를 뒤이어, 약 290단 수준의 기술로 구현되었다고 한다. 더블 스택 기술은 낸드플래시 메모리의 각 레이어를 두 번의 '채널 홀 에칭' 과정을 통해 나누고 이를 단일 칩으로 결합하는 고난도의 제조 방식을 의미한다. 삼성전자는 이 채널 홀 에칭 기술을 통해 한 번의 공정으로 업계 최대의 단수를 달성하는 생산 효율성을 크게 향상시켰다고 설명했다. 채널 홀 에칭 기술은 몰드층을 순차적으로 쌓은 후 한 번에 전자가 이동하는 홀(채널 홀)을 형성하는 방식으로, 적층 단수가 높아질수록 한 번에 더 많은 채널을 생성할 수 있어 생산 효율이 증가한다. 이 과정은 높은 정밀도와 고도의 기술이 요구된다. 낸드 메모리의 적층 경쟁이 치열해지면서 적층 공정의 기술력이 더욱 중요해지고 있다. V낸드에서 원가 경쟁력은 가능한 적은 공정 단계로 높은 적층 단수를 달성하는 데 있어, 스택 수가 적으면 거쳐야 하는 공정 수도 줄어들어 시간과 비용을 절감할 수 있어 경쟁력을 높인다. 삼성전자는 업계 최소 크기 셀(Cell), 최소 몰드(Mold) 두께를 구현해 '1Tb TLC 9세대 V낸드'의 비트 밀도(단위 면적당 저장되는 비트의 수)를 이전 세대에 비해 약 1.5배 증가시켰다. 더미 채널 홀(Dummy Channel Hole) 제거 기술로 셀의 평면적을 줄이고, 셀 크기 축소로 인한 간섭 현상을 제어하기 위해 셀 간섭 회피 기술과 셀 수명 연장 기술을 적용해 제품의 품질과 신뢰성을 향상시켰다. 9세대 V낸드는 차세대 낸드플래시 인터페이스인 '토글(Toggle) 5.1'을 적용해 8세대 V낸드 대비 33% 향상된 최대 3.2Gbps(초당 기가비트)의 데이터 전송 속도를 구현했다. 삼성전자는 이를 토대로 PCIe 5.0 인터페이스를 지원하며 고성능 SSD 시장을 확대하여 낸드플래시 기술의 리더십을 강화할 계획이다. 또한, 9세대 V낸드는 저전력 설계 기술을 적용해 이전 세대 제품에 비해 전력 소비를 약 10% 줄였다. 삼성전자는 올해 하반기에 'QLC(Quad Level Cell) 9세대 V낸드'의 양산을 시작하는 등 AI 시대의 요구에 부응하는 고용량, 고성능 낸드 개발에 박차를 가할 예정이다. 삼성전자 메모리사업부 플래시개발실장 허성회 부사장은 "낸드플래시 제품의 세대가 진화함에 따라 고용량, 고성능 제품에 대한 고객의 요구가 증가하고 있다"며 "극한의 기술 혁신을 통해 생산성과 제품 경쟁력을 향상시켰다. 9세대 V낸드를 통해 AI 시대에 적합한 초고속, 초고용량 SSD 시장을 선도할 것"이라고 말했다. 시장조사기관 옴디아의 보고에 따르면, 낸드플래시 매출은 2023년 387억 달러에서 2028년에는 1148억 달러로 성장할 것으로 예상되며, 이는 연평균 약 24%의 성장률을 보일 전망이다. 이러한 성장은 AI 서버 시장의 확대와 직결되어 있으며, 높은 데이터 전송 속도와 성능을 요구하는 신규 AI 서버 설치가 증가함에 따라 SSD에 대한 수요도 증가하고 있다. 옴디아는 "AI 관련 작업에서의 훈련 및 추론 수요 증가와 함께, 대규모 언어 모델(LLM)과 추론 모델에 필요한 데이터 저장을 위해 더 큰 저장 용량이 요구되고 있다"고 말했다. 이러한 시장 수요 증가로 인해 낸드 적층 기술의 경쟁도 치열해지고 있다. 삼성전자는 작년 3분기 실적 발표에서 2030년까지 1,000단 V낸드 개발 계획을 발표했다. SK하이닉스는 작년 8월 미국에서 열린 '플래시 메모리 서밋 2023'에서 업계 최초로 300단을 넘는 '1Tb TLC 321단 4D 낸드' 샘플을 공개하며, 이를 2025년 상반기부터 양산할 계획임을 밝혔다. 마이크론은 2022년에 세계 최초로 232단 낸드를 양산하기 시작했다. 후발주자인 중국의 YMTC(양쯔메모리테크놀로지)도 지난해 232단 낸드 생산을 시작한 데 이어 올해 하반기에는 300단 이상의 제품 출시를 계획하고 있다. 한편, 삼성전자 주식은 이날 '9세대 V낸드' 양산 발표 이후 소폭 상승했다. 이날 23일 11시 27분 현재 삼성전자 주가는 전일 대비 0.26% 올라 7만6300원에 거래됐다.
-
- IT/바이오
-
삼성전자, 업계 최초 '9세대 V낸드' 양산…290단 적층 구현
-
-
LG전자·카카오모빌리티, '로봇' 배송 서비스 25일 선봬
- LG전자와 카카오모빌리티가 협력해 이달 25일부터 대형 오피스, 호텔, 아파트, 병원 등을 대상으로 로봇 배송 서비스를 시작한다. 이 서비스에서 LG전자의 인공지능(AI) 자율주행 배송 로봇인 '클로이 서브봇'이 카카오모빌리티의 로봇 배송 플랫폼 '브링'(BRING)에 통합되어 사용된다. 22일 LG전자와 카카오모빌리티는 오는 25일 서울 성동구 성수동 '누디트 서울숲'에서 첫 선을 보이는 로봇 배송 서비스는 기업간거래(B2B) 분야 사업 확대에서 본격적으로 속도를 낼 계획이라고 발표했다. LG전자는 AI 기반의 클로이 로봇과 함께 로봇의 배송 현황과 상태를 모니터링할 수 있는 관제 솔루션을 제공한다. 카카오모빌리티는 이를 자체 로봇 배송 서비스에 통합해서 운영한다. '브링온' 플랫폼, 배송 주문 자동 분류 서비스를 이용하는 고객은 애플리케이션(앱)을 통해 건물 내 상점에서 커피나 음식 등을 주문할 수 있으며, 주문된 항목은 로봇의 서랍에 실려 배송된다. 로봇은 독립적으로 엘리베이터를 호출하고 탑승하며, 자동문을 통과해 한 번에 최대 4곳까지 물품을 배달하는 시스템이다. 양사는 2022년 '미래 모빌리티 서비스 혁신을 위한 업무 협약'을 체결하고 AI 로봇 배송 서비스 사업화를 위해 기술적으로 협력해왔다. 이러한 협력을 바탕으로 카카오모빌리티는 자체 로봇 개방형 API(응용 프로그램 인터페이스) 플랫폼인 '브링온(BRING-ON)'과 로봇 배송 서비스 '브링(BRING)'을 출시했다. '브링온' 플랫폼은 카카오모빌리티의 인공지능을 활용한 최적 배차 및 수요 예측 등의 고급 모빌리티 기술을 집약적으로 활용한다. 이 플랫폼은 복잡한 배송 주문을 자동으로 분류하고 각 로봇에 최적화된 배차를 제공하여 관리자의 개입을 최소화하고 배송 효율성을 극대화하는 것이 특징이다. LG 클로이 서브봇, 최대 30kg 적재 LG전자가 제공하는 LG 클로이 서브봇은 양문형 디자인으로, 네 개의 서랍에 최대 30kg의 물건을 적재할 수 있다. 이 로봇은 일반적인 크기(약 350mL)의 커피를 최대 32잔까지 운반할 수 있으며, 위생을 고려해 항균 처리된 소재와 탈취 기능을 갖춘 환기팬을 적용했다. 로봇의 6개 바퀴에는 독립 서스펜션(충격 흡수 장치)이 적용되어 건물 내에서도 안정적으로 주행할 수 있다. 또한, 보안과 잠금 장치를 갖추고 있어 안전한 운용이 가능하다. 로봇 전면에는 10.1인치 디스플레이가 탑재되어 이동 중인 광고판 역할을 하며, 올해 '레드닷 디자인 어워드'와 'iF 디자인 어워드'에서 수상함으로써 디자인 우수성을 인정받았다. LG전자는 '2030 미래 비전'을 실현하기 위해 상업용 로봇 사업 분야에서의 배송과 물류 서비스를 강화하고 있으며, 이를 신사업 육성의 한 축으로 삼고 있다. 최근에는 AI 기반 자율주행 서비스 로봇 스타트업인 베어로보틱스에 6000만 달러(약 800억원)를 투자해 사업 영역을 확장하고 있다. LG전자는 여러 해에 걸친 로봇 사업 경험을 바탕으로, LG전자는 로봇 공급뿐만 아니라 최종 소비자에게 상품을 전달하는 '라스트 마일 배송'에 이르는 유통 단계 전반에 걸쳐 토털 솔루션을 구축할 계획이다. 미국의 시장조사기관 마켓앤마켓에 따르면, 글로벌 자율화 라스트마일 배송 시장은 지난해 약 9억 달러(약 1조 2100억원)에서 2030년까지 약 42억 달러(약 5조6600억원)로 성장할 것으로 전망된다. 연평균 성장률은 22.7%에 달할 것으로 예상된다. 시장조사기관 럭스리서치는 오는 2030년 전체 물류 중 20%가 로봇을 통해 이루어질 것으로 예측했다. 노규찬 LG전자 로봇사업담당은 "서비스 로봇은 다양한 환경에서 활용하기 위해 AI, 통신, 관제를 포함한 고도화된 플랫폼 기술력을 필요로 한다"며 "다년간 축적된 로봇 솔루션 역량과 노하우를 기반으로 새로운 고객 경험을 제공할 것"이라고 밝혔다.
-
- IT/바이오
-
LG전자·카카오모빌리티, '로봇' 배송 서비스 25일 선봬