검색
-
-
[먹을까? 말까?(99)] 미국 시리얼·음료 등 식품속 인공색소 금지 예고
- 미국이 석유 기반 합성 인공색소와 식품 사용을 전면 금지하는 방안을 추진한다. 인공색소가 일부 아동의 신경계 문제와 연관 있다는 지적이 이어지는 가운데, 로버트 F. 케네디 주니어 보건장관이 이르면 23일(현지시간) 관련 내용을 공식 발표할 예정이라고 BBC와 CNN이 22일 보도했다. 미 보건복지부(HHS)는 22일 성명을 통해 "케네디 장관이 시리얼, 과자, 음료 등에 사용되는 석유계 합성색소의 단계적 퇴출을 발표할 계획"이라며 "이는 '건강한 미국 만들기(Make America Healthy Again)' 정책의 일환으로 추진되는 주요 조치"라고 밝혔다. 구체적인 시행 시점은 공개되지 않았으며, 세부 내용은 기자회견을 통해 발표될 예정이다. 문제의 색소는 '레드40', '블루1', '옐로6' 등으로, 미국 내에서 시중에 판매되는 다수의 가공식품과 음료, 간식류에 널리 사용되고 있다. 시민단체인 식품과학공공이익센터(CSPI)는 이들 색소가 대부분 석유 기반 합성 화학물질로 제조되며, 주로 어린이 소비자를 겨냥해 가공식품의 외관을 화려하게 만드는 데 활용된다고 지적했다. CSPI의 피터 루리 박사(전 FDA 고위 관계자)는 "합성색소는 식품업체의 이익을 위해 존재하는 것이라며 "이들의 존재 목적은 과일 등 자연 재료 없이도 색감을 구현해 가공식품을 더욱 매력적으로 보이게 하는 데 있다"고 비판했다. 그는 "이들 색소는 식품에 없어도 무방하며, 이미 여러 나라에서는 천연색소로 대체되고 있다"고 덧붙였다. 뉴욕대 영양학과 명예교수 네리언 네슬 박사 역시 "이들 색소가 일부 아동의 행동 문제를 유발하고, 동물실험에서 암 등 건강문제와 연관성이 제기됐다"며 "그동안 충분한 안정성 논란이 제기된 만큼 사용 중단이 타당하다"고 평가했다. 네슬 박사는 "캐나다, 뉴질랜드, 영국 등에서 이미 천연 색소를 사용하는 방향으로 전환이 이뤄지고 있다"고 밝혔다. 실제로 켈로그사는 캐나다에서는 과일 시리얼 '후르트 루프(Froot Loops)'에 당근, 수박 주스 등 천연 원료에서 추출한 색소를 사용하고 있으나, 미국에서는 같은 제품에 여전히 합성색소로 제조하고 있다. 앞서 미국 식품의약국(FDA)은 올해 초, 암 유발 가능성이 제기된 '레드 다이 3(Red Dye 3)' 색소를 2027년부터 식품과 의약품에서 사용 금지하기로 결정했으며, 캘리포니아주는 지난해 해당 색소 사용을 주 단위에서 선제적으로 금지했다. 한편, 케네디 장관은 지난해 당시 대통령 선거 후보였던 도널드 트럼프와의 공동 유세 과정에서 "인공색소와 초가공식품을 규제하는 데 총력을 다하겠다"는 입장을 밝힌 바 있다. 이번 조치는 당시 공약을 이행하는 첫 번째 단계로 평가된다. 최근 들어 미국 내 일부 주 의회에서도 관련 입법이 탄력을 받고 있다. 웨스트버지니아주는 지난달 합성색소와 방부제를 포함한 식품첨가물 사용을 금지하는 법안을 통과시켰으며, 다른 주에서도 유사한 법안이 발의되고 있는 상황이다. 유럽연합(EU)은 일부 인공색소를 금지하거나, 사용 시 경고 문구를 의무화하고 있으며, 영국 보건당국도 지난 2008년 6종의 인공색소에 대해 사용 중단 방침을 발표한 바 있다. 미국 보건당국 역시 이번 조치를 계기로 합성색소 사용을 전면 재검토할 가능성이 커지고 있다.
-
- 생활경제
-
[먹을까? 말까?(99)] 미국 시리얼·음료 등 식품속 인공색소 금지 예고
-
-
[우주의 속삭임(111)] '우주 라디오'로 암흑물질 추적⋯액시온 주파수 탐지 장치 개발
- 우주의 대부분을 구성하는 것으로 알려진 암흑물질 탐색에 새로운 전기가 마련됐다. 과학자들이 '우주 라디오'에 비유되는 신형 암흑물질 검출기를 개발해, 향후 15년 이내 암흑물질 후보자인 '액시온(axion)'을 직접 포착할 가능성이 열렸다. 영국 킹스칼리지런던(KCL), 미국 하버드대, UC버클리 등 국제 공동 연구팀은 지난 16일(현지시간) 국제 학술지 네이처(Nature)에 발표한 논문에서 엑시온의 주파수를 포착하기 위한 특수 장비와 새로운 소재 기반의 탐색 기술을 소개했다. 해당 연구에 대해서는 과학 기술전문매체 사이테크 데일리가 보도했다. 연구팀은 이 장치에 대해 "40년 넘게 추적해 온 암흑물질의 실체를 규명할 수 있는 마지막 단계에 접어들었다"고 평가했다. 암흑물질은 우주 전체 질량의 약 85%를 차지하는 것으로 추정되며, 별이나 은하의 운동 등 중력 효과로 간접적으로만 존재가 추정되어 왔다. 하지만 직접 관측은 한 번도 성공한 적이 없다. 이번 연구에서 핵심이 된 입자인 '액시온'은 매우 가볍고, 일반 물질과의 상호작용이 극히 적어 포착이 어렵다고 알려져 있다. 이 입자는 파동처럼 행동하며 특정 주파수 대역에 존재할 수 있다고 이론상 제안돼 왔다. 연구진은 이론상 존재할 것으로 추정되는 액시온 주파수를 탐지하기 위해, '액시온 준입자(AQ, axion quasiparticle)'를 생성할 수 있는 특수 소재를 활용했다. 해당 장치는 일종의 '우주 라디오'처럼 작동해, 액시온이 존재할 법한 주파수를 조율하며 탐색을 진행한다. 탐지 시에는 미량의 빛을 방출하게 되며, 이는 액시온 존재를 확인할 수 있는 간접 신호가 된다. 이 장치의 핵심 소재는 망간비스무트텔루라이드(MnBi₂Te₄)로, 전자기적 특성이 뛰어나고 얇은 2차원 구조로 가공이 가능하다. 하버드대 주도하에 6년간 개발된 이 소재는 공기에 민감해 원자 수준의 얇은 층으로 정밀 제작됐으며, 외부 자극에 따라 전자적 성질이 정밀하게 조정될 수 있다. 연구책임자인 KCL의 데이비드 마시(David Marsh) 박사는 "1983년 액시온이 라디오 주파수처럼 작동할 수 있다는 이론이 제기된 이후, 우리는 이제 그 주파수를 실제로 조율할 수 있는 기술에 도달했다"며 "남은 건 탐지 범위를 확대하고, 시간을 들여 탐색하는 일"이라고 설명했다. 연구팀은 향후 5년 안에 실용적 수준의 AQ 검출기를 완성하고, 이후 10년 이상 고주파 영역을 정밀 수캔해 액시온을 찾겠다는 계획이다. 이번 검출기는 암흑물질의 규명이라는 물리학 최대 난제 중 하나에 결정적 단서를 제공할 수 있을 것으로 기대된다. 마시 박사는 "최근 액시온을 주제로 한 논문 수가 힉스 보손 발견 직전과 비슷한 수준에 이르렀다"며 "지금은 암흑물질 연구자들에게 흥미로운 시기"라고 덧붙였다. ◇ 참고문헌: '2D MnBi2Te4에서 액시온 준입자 발견(Observation of the axion quasiparticle in 2D MnBi2Te4)' by Jian-Xiang Qiu, Barun Ghosh, Jan Schütte-Engel, Tiema Qian, Michael Smith, Yueh-Ting Yao, Junyeong Ahn, Yu-Fei Liu, Anyuan Gao, Christian Tzschaschel, Houchen Li, Ioannis Petrides, Damien Bérubé, Thao Dinh, Tianye Huang, Olivia Liebman, Emily M. Been, Joanna M. Blawat, Kenji Watanabe, Takashi Taniguchi, Kin Chung Fong, Hsin Lin, Peter P. Orth, Prineha Narang, Claudia Felser, Tay-Rong Chang, Ross McDonald, Robert J. McQueeney, Arun Bansil, Ivar Martin, Ni Ni, Qiong Ma, David J. E. Marsh, Ashvin Vishwanath and Su-Yang Xu, 2025년 4월 16일, Nature. DOI: 10.1038/s41586-025-08862-x
-
- 포커스온
-
[우주의 속삭임(111)] '우주 라디오'로 암흑물질 추적⋯액시온 주파수 탐지 장치 개발
-
-
[신소재 신기술(170)] 경희대, '2차원 바일 준금속'서 원형 감광 기전 효과 세계 첫 입증
- 경희대학교 연구진이 차세대 양자소자 구현을 위한 중요한 단서를 세계 최초로 규명했다. 경희대는 21일 최석호 응용물리학과 고황 명예교수 연구팀이 '2차원 바일(Weyl) 준금속'에서 원형 감광 기전 효과(Circular Photogalvanic Effect, CPGE)가 발생한다는 사실을 입증했다고 밝혔다. 최교수 팀은 세계 최초로 금을 이온주입해 '위상 준금속(Topological semimetal)'인 '디락 준금속(Dirac semimetal)'을 '바일 준금속(Weyl semimetal)으로 영구상전이(phase transition)하는 방법을 개발했다. 바일 준금속(Weyl semimetal)은 최근 몇 년 사이 물리학과 재료과학 분야에서 주목받고 있는 차세대 양자 물질로, 고체 내 전자의 움직임이 고에너지 물리학의 이론적 입자 중 하나인 '바일 페르미온(Weyl fermion)'과 유사한 특성을 보이는 물질이다. 바일 준금속은 결정 구조 안에서 전자의 에너지와 운동량이 특정한 점(바일 노드)에서 선형적으로 교차하는 특성을 갖는다. 이 선형 교차점은 고체 내에서 마치 '질량이 없는 입자'처럼 움직이는 전자를 만들어낸다. 이러한 입자는 이론상 고에너지 물리에서 제안된 바일 페르미온에 해당한다. 다시 말하면, 바일 준금속은 내부 전자가 거의 질량이 없는 상태처럼 움직이며, 자기장의 세기와 방향에 극도로 민감한 양자물질이다. 이러한 전자 이동 특성 덕분에 정밀 자기장 센서, 초고속 전자소자, 나노소자 등 차세대 전자·광전자 기술에서 그래핀을 이을 유력한 후보로 주목받고 있다. 이 물질은 스마트폰과 자기공명영상(MRI) 장치 등 다양한 뷴야에 쓰이는 자기 측정 센서를 정밀하게 만들 수 있다. 특히 바일 준금속은 고유한 양자 역학적 현상들을 기반으로 양자소자 구현 가능성이 제기되며 세계 각국의 연구 경쟁이 치열하게 전개되는 분야다. '위상 물질'은 2차원 물질인 '그래핀'을 대용할 물질로 세계 연구자들의 이목을 집중시키고 있다. 이를 위한 기초 연구는 호라발히 ㅈ니행됐지만 으용ㅇ 연구는 상대적으로 저조한 실정이다. 또한 디락 준금속의 온도를 저온으로 낮추거나 압력을 크게 올릴 경우, 바인 준금속으로 상전이 된다는 연구 결과는 많이 보도횄지만, 소자활용에는 별다른 도움이 되지 못했다. 온도나 압력이 이전으로 바뀌면 원래의 디락 준금속 상태로 돌아갔기 때문이다. 연구팀은 이 가운데 바일 준금속의 핵심 양자 특성 중 하나인 원형 감광 기전 효과에 주목했다. 이 효과는 회전 편광된 빛이 특정한 방향의 전류를 유도하는 현상으로, 지금까지는 오직 3차원 바일 준금속에서만 실험적으로 확인된 바 있다. 경희대 연구진은 이를 2차원 구조로 구현하고자, 두께가 10나노미터(㎚) 이하인 초박막 위상 준금속을 제작해 2차원 바일 준금속으로 활용했다. 이후 회전하는 빛을 비추는 실험을 통해, 빛의 편광 방향에 따라 전류 흐름이 달라지는 CPGE 현상이 명확히 관측됐다. 최 교수는 "기존 3차원 구조는 부피가 크고 두꺼워 소형화와 집적화에 한계가 있었지만, 2차원 구조는 얇고 유연해 초소형 소자 개발에 유리하다"며, "이번 연구는 향후 양자정보처리, 스핀 기반 광전소자 등 핵심 기술 구현에 결정적 기초를 제공할 것"이라고 강조했다. 위상 물질인 디락 준금속을 간단하게 바일 준금속으로 영구상전이 시키고, 같은 물질의 다른 상들이 계면 등을 형성해 소자응용이 가능해졌다는 것이 이번 연구의 핵심 내용이다. 연구팀은 위상물질의 양자물성을 기반으로 실용적인 소자를 개발하려는 목표도 갖고 있다. 연구팀은 이번 성과가 고성능 에너지 변환 장치, 고감도 광전자 센서, 양자컴퓨팅 소자 개발 등 미래 지향적 기술의 실용화에 기여할 수 있을 것으로 기대하고 있다. 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구사업 지원을 통해 진행됐으며, 경희대 최석호 교수, 이원준 석사과정생(공동 제1저자)을 중심으로 울산대학교, 호주국립대학교(ANU), 호주 울런공대학교(University of Wollongong) 등의 공동 연구진이 참여했다. 연구 결과는 재료물리 분야의 권위 있는 국제 학술지 '머터리얼스 투데이 피직스(Materials Today Physics)' 최신호에 게재됐다.
-
- IT/바이오
-
[신소재 신기술(170)] 경희대, '2차원 바일 준금속'서 원형 감광 기전 효과 세계 첫 입증
-
-
[우주의 속삭임(110)] "지구 물의 기원, 소행성 아닌 지구 자체"⋯옥스퍼드대 기존 학설 뒤집는 연구 발표
- 지구상의 물이 외부 소행성에서 기원했다는 기존 학설이 뒤집혔다. 영국 옥스퍼드대 연구팀은 지구 형성 초기부터 지구 자체 물질 속에 수소가 풍부하게 존재했으며, 이 수소가 물 생성의 핵심 원천이었다는 가능성을 제시했다. 이번 연구는 국제 학술지 이카루스(Icarus)에 17일(현지시간) 게재됐다. 연구팀은 남극에서 2012년 채집된 희귀 운석 'LAR 12252'를 분석했다. 이 운석은 약 45억 5000만 년 전 지구 형성 당시 구성물질과 유사한 조성을 가진 '엔트사타이트 콘드라이트(enstatite chondrite)'로 알려져 있다. 연구에 사용된 분석 기법은 X선 근접 흡수 구조(XANES) 분광법으로, 옥스퍼드셔주 다이아몬드 라이트 소스 싱크로트론에서 운석 시료에 고강도 X 선을 조사해 원소의 존재와 화학적 결합 상태를 확인하는 방식이다. 분석 결과 운석의 미세 입자 매트릭스에서 풍부한 황화수소(H₂S)를 발견했다. 연구 초기에는 기존 연구처럼 콘드룰(Chondrule, 운석내 구형 결정 구조체)의 비결정 영역에 집중했지만, 우연히 콘드룰 바깥쪽 미세 입자 매트릭스 영역에서 황화수소 농도가 월등히 높다는 사실을 발견한 것. 이는 기존에 알려진 비결정질 영역보다 5배 이상 높은 수치로, 지구 외부에서 유입된 것이 아닌 운석 자체에 내재된 수소일 수 있는 가능성이 높다. 이전 과학계에서는 지구 형성 이후 약 1억 년 간 외부 소행성이 수소를 포함한 수화물질을 운반해왔고, 이로 인해 물이 형성됐다는 '소행성 기원설'이 지배적이었다. 하지만 옥스퍼드 연구팀은 지구 형성 물질 자체가 수소를 풍부하게 함유하고 있었다는 정반대의 결론에 도달한 것이다. 특히 연구팀은 운석의 산화나 균열 등 지구 오염의 흔적이 있는 영역에서는 수소가 거의 검출되지 않았다는 점에 주목했다. 이는 운석 내 수소가 지구내 오염에서 비롯되지 않았다는 강력한 반증이다. 이번 연구를 이끈 옥스퍼드대 지구과학과 박사과정 톰 배럿(Tom Barrett)은 "분석 결과 예상치 못한 위치에서 황화수소를 발견했을 때 흥분을 감추지 못했다"며 "이 수소가 지구 외부에서 온 것이 아니라면, 물은 지구 형성 재료에서 비롯된 고유한 부산물이라는 결정적인 증거가 될 수 있다"고 밝혔다. 공동 저자인 제임스 브라운 옥스퍼드대 부교수는 "이 연구는 지구가 어떻게 지금의 모습으로 진화했는지에 대한 근본적인 질문에 중요한 단서를 제공한다"며 "운석 연구를 통해 확인된 수소 함유량은 기존 추정치를 훨씬 뛰어넌는다"고 설명했다. 이번 연구는 지구의 물이 우연히 외부에서 유입된 것이 아니라, 지구의 구성물질에서 자연스럽게 유래했을 수 있다는 주장을 과학적으로 뒷받침한다. 또한, 유사한 유형의 운석을 통한 추가 연구가 진행된다면, 태양계 내 다른 행성들의 물 존재 가능성에 대한 새로운 통찰을 제공할 수 있을 것으로 기대된다.
-
- 포커스온
-
[우주의 속삭임(110)] "지구 물의 기원, 소행성 아닌 지구 자체"⋯옥스퍼드대 기존 학설 뒤집는 연구 발표
-
-
[기후의 역습(131)] 북극해 뒤흔드는 해빙과 오염물 확산⋯"시베리아 강 오염물질, 북극 생태계 위협"
- 지구 온난화로 인해 북극해의 해빙이 가속화되면서, 시베리아 강에서 유입된 오염물질이 북극해를 넘어 북대서양까지 광범위하게 확산되고 있다는 연구 결과가 발표됐다. 이번 연구는 북극의 해류 흐름과 오염 물질 경로를 정밀 추적하며, 기후 변화가 북극 생태계에 미치는 새로운 위협을 조명했다. 영국 브리스톨대학교가 주도하고 독일 킬대학교, 미국 우즈홀 해양연구소 등이 참여한 국제 공동 연구팀은 북극해의 주요 표층 해류인 '트랜스폴라 드리프트(Transpolar Drift)'를 따라 시베리아 강 유입물이 어떻게 이동하는지를 연중 관측 데이터와 동위원소 분석을 통해 정밀하게 규명했다고 사이테크데일리가 보도했다. 해당 연구는 지난 4월 14일 국제 학술지 '네이처 커뮤니케이션즈'에 발표됐다. 시베리아 강에서 북극을 넘어⋯이동하는 오염물질 연구팀은 시베리아 대륙붕에서 유입된 담수, 영양염, 미세플라스틱, 중금속 등 오염 물질이 북극해 중심부를 지나 프람 해협을 통해 노르딕해로 유입되는 횡단 북극 이동 경로를 분석했다. 특히 이 물질들이 단순히 해류를 따라 이동하는 것이 아니라, 계절적 해빙 형성과 해류 변화, 대륙붕의 유속 변화에 따라 경로가 크게 달라지는 고도로 역동적인 양상을 보인다고 강조했다. 트랜스폴라 드리프트는 과거 노르웨이 탐험가 프리드쇼프 난센(Fridtjof Nansen)이 1890년대 프람호 탐험 당시 처음 관측한 북극의 주요 흐름으로 알려져 있었으나, 이번 연구는 이 해류조차 시간·공간적으로 예측 불가능한 변동성을 지니고 있다는 점을 처음으로 입증했다. 해빙, 단순한 운반체 아닌 '능동적 확산 매개체' 연구를 이끈 브리스틀대학교 조지 라우커트(Dr. Georgi Laukert) 박사는 "시베리아 강에서 유입된 물질이 해류뿐 아니라 해빙 과정에서도 재분포되며, 특히 트랜스폴라 드리프트에서 생성된 해빙은 다양한 강원(江源)의 물질을 동시에 포착해 복합적으로 운반하는 역할을 한다"며 "해빙이 단순한 운반체를 넘어, 물질 분산 경로를 형성하는 주체로 기능한다"고 설명했다. 해양학자들은 이러한 복합적 경로를 추적하기 위해 산소, 네오디뮴 동위원소, 희토류 원소 등 지화학적 추적 기법을 동원해. 해수·해빙·눈 시료를 분석했다. 이들은 북극 최대 연구 탐사인 MOSAiC(2020~2021)의 일환으로 7척의 쇄빙선과 전 세계 과학자 600명 이상이 참여해 1년간 북극 전역에서 시료를 수집했다. 여름 해빙 축소가 해류 재편 촉진 이번 연구의 공동저자인 독일 알프레드 베게너 연구소 벤자민 라베 교수는 "지속적인 기온 상승과 여름 해빙 축소는 북극해의 표층 순환을 크게 바꾸고 있으며, 이는 담수 및 오염물질의 확산 범위와 속도에 중대한 영향을 미칠 수 있다"고 경고했다. 이어 "이러한 변화는 북극 생태계뿐 아니라 해양 생지화학적 순환, 전 지구적 해양 역학에도 광범위한 파급 효과를 미칠 것"이라고 덧붙였다. 연구팀은 이번 결과가 특정 오염물질의 농도나 영향에 초점을 맞추기보다는, 물질의 운반 메커니즘 그 자체를 밝힌 데 의의가 있다고 강조했다. 라우커트 박사는 "트랜스폴라 드리프트조차 이렇게 가변적이라면, 북극해 전체는 우리가 이전에 생각한 것보다 훨씬 더 민감하고 변동성이 클 수 있다"고 지적했다. 이번 연구는 기후 변화로 인한 극지방 해양 구조의 근본적 변화 가능성을 제시함으로써, 향후 북극 오염 물질의 확산 양상 예측과 생태계 보호 정책 수립에 중요한 과학적 기반을 제공할 것으로 기대된다. ◇ 참고 문헌: "트랜스폴라 드리프트를 따라 역동적인 해빙 경로가 시베리아 물질의 분산을 증폭시킨다(Dynamic ice–ocean pathways along the Transpolar Drift amplify the dispersal of Siberian matter)" 2025년 4월 14일, Nature Communications.
-
- ESGC
-
[기후의 역습(131)] 북극해 뒤흔드는 해빙과 오염물 확산⋯"시베리아 강 오염물질, 북극 생태계 위협"
-
-
[먹을까? 말까?(98)] 현미, 건강에 더 좋다? 미시간대 "비소 함량 주의 해야"
- 흔히 건강식으로 여겨지는 현미(brown rice)가 백미에 비해 영양소는 풍부하지만, 동시에 인체에 유해한 비소(arsenic) 함량도 높다는 연구 결과가 나왔다. 특히 어린아이들의 경우 비소 노출 위험이 상대적으로 커 주의가 필요하다는 지적이다. 미국 미시간 주립대학교 농업 및 자연자원대학 연구진이 학술지 '리스크 분석(Risk Analysis)'에 발표한 연구에 따르면, 미국내 유통되는 현미가 백미보다 무기 비소(inorganic arsenic) 함량이 높은 것으로 나타났다고 과학전문매체 사이테크데일리, 뉴욕포스트 등이 13일(현지시간) 보도했다. 현미는 벼의 왕겨를 벗겨낸 상태로 도정되지 않은 쌀로, 백미보다 비타민이나 식이섬유를 많이 포함하고 있어 상대적으로 탄수화물이 낮기 때문에 건강식품으로 취급되기도 한다. 반면 백미는 현미에서 겨층을 제거한 쌀로, 백미로 만드는 과정에서 영양분이 제거된다. 연구를 주도한 미시간대 존 A. 한나 석좌교수이자 수석연구원인 펠리시아 우(Felicia Wu)는 "현미 섭취가 더 높은 비소 노출을 초래하지만, 극단적인 수준으로 매일 다량을 섭취하지 않는 이상 성인의 건강에 장기적으로 심각한 문제를 야기할 가능성은 낮다"고 설명했다. 다만 "유아나 만 5세 이하의 어린이는 체중 대비 섭취량이 많고 민감도가 높아 비소 노출 위험이 클 수 있다"고 경고했다. 비소는 토양에 자연적으로 존재하는 독성 물질로, 논에서 재배되는 벼가 다른 곡물보다 비소를 더 많이 흡수하는 것으로 알려져 있다. 연구팀은 미국 환경보호청(EPA)의 '미국인 식생활 데이터베이스(What We Eat in America)'를 활용해 현미와 백미 섭취로 인한 비소 노출 비교를 분석했다. 그 결과 미국 내에서 재배된 쌀의 경우 현미의 무기 비소 비율은 48%로, 백미의 33%보다 높았다. 국제적으로 재배된 쌀에서도 비슷한 결과를 보였으며, 현미의 무기 비소 비율이 백미보다 높게 나타났다. 연구팀은 이러한 결과가 현미 자체가 건강에 해롭다는 의미로 받아들여져서는 안 된다고 강조했다. 펠리시아 우 교수는 "현미 섬유질과 단백질, 니아신 등 다양한 영양 성분을 포함하고 있으며, 비소 노출로 인한 위험과 영양적 이점 간의 균형을 종합적으로 고려해야 한다"고 말했다. 이번 연구는 향후 미국 식품의약국(FDA)이 식품내ㅑ 비소 함량 규제를 위한 근거로 활용될 전망이다. FDA는 이미 마시는 물인 식수내 비소 규제를 시행 중이며, 향후 식품 내 비소 허용 기준을 마련하는 '클로저 투 제로(Closer to Zero)' 계획을 추진하고 있다. ◇ 참고 문헌: '미국의 백미와 비교한 현미의 비소 함량 및 노출', Christian Kelly Scott 및 Felicia Wu, 2025년 2월 28일, 위험 분석. DOI: 10.1111/risa.70008
-
- 생활경제
-
[먹을까? 말까?(98)] 현미, 건강에 더 좋다? 미시간대 "비소 함량 주의 해야"
-
-
[퓨처 Eyes(79)] 꿈의 양자 컴퓨터 현실로 성큼⋯안정성과 혁신 향상 기대
- 미래를 혁신할 핵심 기술로 주목받는 양자 컴퓨터는 뛰어난 잠재력에도 불구하고 극도로 민감한 특성 때문에 '믿을 수 없는' 존재로 여겨져 왔다. 하지만 최근 과학계에서는 이러한 한계를 극복하고 꿈의 양자 컴퓨터를 현실로 만들기 위한 획기적인 연구 결과들이 잇따라 발표되고 있다. 주변 환경의 미세한 방해에도 안정적인 연산을 가능하게 하는 '마법 입자'에 대한 연구와, 기존 물리학의 상식을 뛰어넘는 특이한 성질을 가진 새로운 물질을 합성한 연구는 양자 컴퓨터 상용화의 길을 더욱 밝히고 있다. 불안정이라는 꼬리표를 떼고, 인류의 난제를 해결할 열쇠가 될 양자 컴퓨터. 그 꿈을 현실로 성큼 다가서게 만든 두 가지 혁신적인 연구 결과를 따라가 보자. 기존의 컴퓨터는 0과 1, 두 가지 상태만으로 정보를 처리하는 반면, 양자 컴퓨터는 큐비트라는 특별한 단위를 사용한다. 큐비트는 0과 1은 물론, 0과 1이 동시에 존재하는 '중첩'이라는 신비한 상태를 가질 수 있어 기존 컴퓨터로는 풀기 어려웠던 복잡한 문제들을 훨씬 빠르게 해결할 것으로 기대된다. 하지만 큐비트는 주변의 아주 작은 소리나 빛, 온도 변화에도 쉽게 영향을 받아 그 상태가 깨져버리는, 마치 모래성 같은 존재다. 과학자들은 오랫동안 이 불안정성을 극복하고 안정적인 양자 컴퓨터를 만드는 방법을 찾아왔다. 마요라나 입자, 양자 안정성의 새로운 희망 최근 옥스퍼드 대학교, 델프트 공과대학교, 아인트호벤 공과대학교 연구팀과 퀀텀 머신즈 등 국제 공동 연구팀은 '마요라나 영 모드(Majorana zero modes, MZM)'라는 특별한 입자를 이용하여 양자 컴퓨터의 안정성을 획기적으로 높일 수 있는 방법을 찾아냈다. 마요라나 영 모드는 주변 환경의 방해에도 강하게 저항하는 특이한 준입자로, 마치 옷감처럼 튼튼하게 얽혀 있어 외부의 간섭에도 쉽게 그 상태가 변하지 않아 이론적으로 오랫동안 안정적인 양자 정보를 저장하고 처리하는 데 매우 적합한 후보로 여겨져 왔다. 하지만 실제로 이 입자를 안정적으로 구현하는 것은 매우 어려운 과제였다. 연구팀은 양자점과 초전도 물질을 연결하여 만든 '3-사이트 기타예프 사슬'이라는 특별한 구조를 아주 정밀하게 설계했다. 이 특별한 사슬 구조는 마요라나 영 모드들을 마치 안전한 방에 격리시키듯, 서로 멀리 떨어뜨려 외부의 불안정한 요소로부터 보호하는 역할을 한다. 이 구조 안에서 마요라나 영 모드들이 서로 멀리 떨어져 안정적으로 존재할 수 있는 최적의 지점, 즉 '스위트 스폿'을 찾아낸 것이다. 이렇게 분리된 마요라나 영 모드들은 원치 않는 상호 작용을 줄이고 외부 노이즈에 대한 저항력을 크게 높여준다. 해당 연구 결과는 학술지 네이처 나노테크놀로지에 게재됐다. 연구를 이끈 옥스퍼드 대학교 재료학과의 그레그 매주어 박사는 "이번 연구 결과는 기타예프 사슬을 확장하는 것이 마요라나 안정성을 유지할 뿐만 아니라 향상시킨다는 것을 증명하는 중요한 진전"이라며, "옥스퍼드에 새로 설립한 연구 그룹을 통해 이 연구를 더욱 발전시켜 더욱 확장 가능한 양자점 플랫폼을 만드는 데 집중할 것"이라고 밝혔다. 앞으로 연구팀은 이 사슬을 더 길게 늘려 마요라나 영 모드들이 외부 환경으로부터 더욱 완벽하게 격리되어 안정성이 기하급수적으로 높아질 것으로 기대하고 있다. 이는 실용적인 양자 컴퓨터 개발에 중요한 발걸음이다. 새로운 물질의 탄생, 양자 기술의 혁신을 이끌다 한편, 러트거스 대학교 연구팀이 주도하는 국제 연구팀은 최근 기존의 양자 물리학으로는 이해하기 어려웠던 두 가지 특별한 물질을 결합하여 새로운 인공 구조를 만드는 데 성공했다. 마치 샌드위치처럼 얇게 쌓아 올린 이 구조는 미래 양자 컴퓨터의 핵심 재료가 될 수 있을 것으로 주목받고 있다. 연구팀이 결합한 두 가지 물질은 각각 독특한 성질을 가지고 있어 오랫동안 '불가능한 물질'로 여겨져 왔다. 하나는 원자력 발전소에서 방사성 물질을 가두는 데 사용되는 다이스프로슘 티타네이트로, 자연계에서 찾기 어렵다는 '자기 홀극(자기 단극)'이라는 특별한 입자를 붙잡아 둘 수 있는 성질을 가지고 있다. 마치 물 분자처럼 특별한 배열을 가진 이 물질은 내부에 작은 자석들이 갇혀 있어, 특정 조건에서 마치 N극만 있거나 S극만 있는 자석처럼 행동하는 자기 홀극을 만들어낼 수 있다. N극과 S극이 항상 함께 있는 일반적인 자석과 달리, 자기 홀극은 N극 또는 S극 중 하나만 가진 자석과 같은 입자다. 노벨상 수상자인 폴 디랙이 1931년에 그 존재를 예측했지만, 우주에서는 아직 발견되지 않았다. 다른 하나는 파이로클로어 이리데이트라는 새로운 자기 반금속으로, 독특한 전자적, 위상적, 자기적 특성 때문에 주로 실험 연구에 사용된다. 이 물질 안에는 빛처럼 빠르게 움직이고 회전 방향도 다른 '바일 페르미온(Weyl Fermions)'이라는 아주 작은 입자가 들어있다. 이 입자들은 마치 빛과 같은 속도로 움직이며, 전자의 흐름을 제어하는 데 매우 유용하여 미래의 초고속 전자 소자나 양자 컴퓨터의 재료로 주목받고 있다. 1929년 헤르만 바일에 의해 예측된 이 입자는 2015년에 처음으로 결정 형태로 발견되었으며, 전기를 매우 잘 통하게 하고 자기장이나 전자기장에 특별하게 반응하는 성질을 가지고 있어 전자 장치의 재료로 사용될 때 매우 안정적이다. 러트거스 대학교 물리학 및 천문학과의 자크 차칼리안 교수는 "이번 연구는 이전에는 불가능했던 방식으로 완전히 새로운 인공 2차원 양자 물질을 설계하는 새로운 방법을 제시하며, 양자 기술을 발전시키고 그 기본 속성에 대한 더 깊은 통찰력을 제공할 잠재력을 가지고 있다"고 말했다. 연구팀은 'Q-DiP'라는 새로운 장비를 직접 제작하여 이 두 가지 '불가능한' 물질을 원자 수준에서 정밀하게 쌓아 올리는 데 성공했다. 이 새로운 물질은 양자 컴퓨터는 물론, 차세대 양자 센서와 같은 첨단 기술에 활용될 수 있을 것으로 기대된다. 미래를 바꿀 양자 기술, 우리의 삶에 미칠 영향 지금까지 우리는 양자 컴퓨터라는 꿈을 향한 두 갈래의 획기적인 발걸음을 지켜보았다. 한 연구는 양자 컴퓨터의 안정성을 높이는 데 초점을 맞추었고, 다른 연구는 혁신적인 특성을 가진 새로운 물질을 제시했다. 극미의 세계에서 펼쳐지는 과학자들의 끊임없는 탐구는, 한때 공상과학 소설 속 이야기로만 여겨졌던 양자 컴퓨터를 현실의 문턱 앞으로 데려왔다. 양자컴퓨팅 기술이 상용화되면 신약 개발과 의학 연구에 혁신을 일으키고, 금융 , 물류, 제조 분야 등에서 비용을 획기적으로 절감해 일상 생활에 큰 영향을 미칠 것으로 보인다. 과학자들은 양자기술이 머신러닝 알고리즘에도 혁신을 일으켜 인공지능(AI) 시스템을 더욱 강력하게 만들 것으로 기대하고 있다. 불안정성을 극복하려는 노력과 상상조차 어려웠던 새로운 물질의 탄생은, 앞으로 우리가 경험하게 될 미래 컴퓨팅의 혁신을 예고하는 듯하다. 어쩌면 가까운 미래에는 지금은 상상할 수조차 없는 놀라운 능력으로 인류의 숙제를 해결하는 양자 컴퓨터가 우리 곁에 함께하게 될지도 모른다. 우리가 상상하는 미래는 과연 어떤 모습일까? 과학의 발걸음이 멈추지 않는 한, 꿈은 현실이 될 날을 기다리고 있다.
-
- 포커스온
-
[퓨처 Eyes(79)] 꿈의 양자 컴퓨터 현실로 성큼⋯안정성과 혁신 향상 기대
-
-
정부, 美 관세 위협에 반도체 산업 전방위 지원…수출·투자 대응 강화
- 한국 정부가 미국의 고율 관세 도입 움직임에 대응해 반도체 산업에 대한 전방위 지원에 나선다. 산업통상자원부는 10일 안덕근 장관 주재로 한국무역보험공사에서 반도체 업계 간담회를 열고 통상 리스크 대응 방안을 논의했다. 업계는 미국 내 생산 한계와 고부가 제품 경쟁력을 고려할 때 단기 영향은 제한적이라고 평가하면서도, 돌발 변수 가능성을 우려해 정부의 대미 협의를 요청했다. 정부는 관세 대응 컨설팅, 투자 인센티브 확대, 반도체 생태계 펀드 조성, 규제 완화, 해외 네트워크 강화 등 지원책을 단계별로 추진할 방침이다. [미니해설] '美 반도체 관세' 우려 커지자⋯정부, 수출·투자·규제 완화까지 총력 대응 나서 미국 정부가 반도체에 고율 관세를 부과할 가능성을 시사하면서 한국 정부가 수출 중심 산업인 반도체 업계 보호를 위해 전방위 대응에 나섰다. 산업통상자원부는 10일 안덕근 장관 주재로 서울 종로구 한국무역보험공사에서 반도체 업계 간담회를 열고, 미국의 통상 압박에 대한 대응과 경쟁력 강화를 위한 종합 대책을 논의했다고 밝혔다. 이번 조치는 최근 미국이 '국가별 상호관세' 도입 방침을 밝히며, 반도체에도 품목별 관세 적용 가능성을 언급한 데 따른 것이다. 앞서 트럼프 행정부는 철강에 25% 관세를 부과한 전례가 있어, 이번 조치가 실제로 이행될 경우 반도체 업계에도 큰 부담으로 작용할 수 있다. 간담회에 참석한 반도체 업계는 "미국 내 생산은 물리적 한계가 있고, 고대역폭 메모리(HBM) 등에서 한국 기업의 점유율이 높아 단기적으로는 영향이 크지 않다"고 진단했다. 그러나 "예측 불가능한 통상 환경 속에서 돌발 변수는 언제든지 발생할 수 있다"며 정부의 적극적인 대미 협의를 요청했다. 정부는 수출 애로 해소를 위해 대한무역투자진흥공사(KOTRA)의 '관세 대응 119'와 관세 바우처 제도를 활용해 원산지·관세 컨설팅을 지원하고, 수입 의존도가 높은 소재·부품의 비용 부담 완화 대책도 마련한다는 계획이다. 또한 국산 반도체의 활용을 확대하기 위해 '국가 AI 컴퓨팅 센터'에 도입을 추진하고, 중동·동남아 지역에 AI 데이터 센터 수출을 위한 현지 네트워크 지원도 강화한다. 기업 투자 유인을 높이기 위해 용인 반도체 클러스터 1호 팹 착공을 계기로 전력·폐수 등 기반시설 지원 한도를 상향하고, 송전망 지중화에 필요한 추가 재정 지원도 검토한다. 규제 개선도 병행된다. 반도체 제조시설에 대한 분산 에너지 설비 설치 의무를 완화하고, 유해 화학물질 소량 취급시설 설치 시 검토 기간을 단축하는 방안도 추진된다. 정부는 '트리니티 팹' 운영 법인을 상반기 중 설립하고, 소재·부품·장비(소부장) 개발 제품이 양산으로 신속히 이어질 수 있도록 지원 체계를 마련하기로 했다. 또 팹리스 기업 성장을 위해 자동차, 로봇, 방산, 사물인터넷(IoT) 등 4대 분야를 중심으로 1조원 규모의 온-디바이스 AI 반도체 개발 사업을 추진하고, 설계 검증용 첨단 장비와 설계 소프트웨어 등 인프라를 확충한다. 정부는 팹리스 기업의 스케일업을 위한 반도체 생태계 펀드를 조성하고 투자 실행을 통해 지속 성장 기반을 마련한다. 반도체 전문 인력 양성에도 투자를 확대하고, 국회와 협력해 ‘반도체 특별법’ 제정도 적극 추진할 계획이다. 안덕근 산업부 장관은 "우리가 직면한 통상과 공급망 리스크는 민관이 힘을 모아 대응해야 한다"며 "정부는 대미 협의를 지속하고 국가 역량을 총결집해 실효성 있는 반도체 지원 방안을 마련하겠다"고 밝혔다.
-
- IT/바이오
-
정부, 美 관세 위협에 반도체 산업 전방위 지원…수출·투자 대응 강화
-
-
[ESGC] '조용히, 그러나 치명적으로'⋯일상 속 플라스틱이 인체 침투하는 나노 입자로 변하는 과정 규명
- 플라스틱이 쓰레기통을 넘어 인간 세포 내부까지 침투하고 있다는 경고가 거듭 나오고 있는 가운데 과학자들이 일반 플라스틱이 나노 플라스틱으로 분해되는 과정을 처음으로 규명했다. 미국 컬럼비아대 공대 연구진은 일상에서 사용되는 플라스틱이 어떻게 수십억 개의 미세·나노플라스틱으로 분해되어 환경과 인체를 위협하는지를 분자 수준에서 규명했다고 과학 전문매체 어스닷컴과 웹사이트 PHYS.org 등 다수 외신이 보도했다. 이 연구는 국제학술지 '네이처 커뮤니케이션즈(Nature Communications)'에 게재됐다. 바이러스보다 작은 입자, 세포핵까지 침투 75년 전 시장에 출시된 플라스틱은 자연 상태에서 햇빛, 열, 수분 등에 노출되면 눈에 보이지 않는 크기의 미세조각으로 분해된다. 특히 나노플라스틱은 1마이크로미터(μm) 이하의 크기로, 인간 세포막은 물론 세포핵까지 통과할 수 있을 만큼 작다. 연구를 이끈 사낫 쿠마르(Sanat Kumar) 컬럼비아대 화학공학과 교수는 "이런 입자들은 공기와 물, 식품은 물론 인체 혈액과 심지어 남극의 눈 속에서도 검출된다"고 설명했다. 플라스틱 구조의 붕괴 메커니즘 현재 사용되는 플라스틱의 약 75%는 '반결정성 고분자(semicrystalline polymer)'로 구성되어 있다. 강력한 현미경으로 보면 플라스틱은 단단한 결정 구조와 유연한 비결정 구조가 층을 이루며 결합돼 있다. 연구진은 이 구조 중 유연한 층이 환경 자극에 가장 먼저 손상되며, 이로 인해 플라스틱 전체 구조가 무너진다는 점에 주목했다. 즉, 단단한 층에서는 플라스틱 분자가 강한 결정 구조로 단단하게 조직되어 있다. 부드러운 층에서는 분자 구조가 없고 비정질의 덩어리를 형성한다. 이러한 층이 수천개 쌓이면 가볍고 내구성이 뛰어나며 매우 다재다능한 플라스틱 재료가 만들어진다. 연구팀은 부드러운 층에서 나노플라스틱으로 분해되기 시작하며 환경적 열화로 인해 시간이 지남에 따라 약해지고 플라스틱이 스트레스를 받지 않아도 부서질 수 있다는 것을 발견했다. 부드러운 층은 그 자체로 환경에서 빠르게 분해된다. 그런데 부드러운 층이 파괴되면서 단단한 층이 부서지면 문제가 발생하기 시작한다. 이러한 결정질 조각이 수 세기 동안 환경에 남아 인간을 포함한 생명체에 심각한 피해를 줄 수 있는 나노 플라스틱 및 미세 플라스틱으로 분해되는 것이다. 쿠마르 교수는 "매립지처럼 겉보기에는 조용한 조건에서도 유연한 층은 쉽게 붕괴된다"며 "이때 단단한 결정성 조각들이 분리되면서 나노플라스틱이 된다"고 설명했다. 이 입자들은 자연 분해가 거의 불가능해 수백 년간 환경에 잔존할 수 있으며, 공기 중이나 수계, 식품을 통해 인체로 유입될 수 있다. "세포 안에서 DNA 교란 가능성도" 가장 작은 나노플라스틱은 세포핵까지 침투해 유전물질(DNA)에 영향을 줄 수 있다. 쿠마르 교수는 "이 입자들은 석면(asbestos)과 유사한 행동을 보이며, 암, 심혈관 질환, 뇌졸증 등과의 연관 가능성이 제기된다"고 경고했다. 그는 이어 "이제는 나노플라스틱이 단순한 환경문제를 넘어, 건강 문제이자 경제적 부담이 될 수 있다는 점을 인식해야 한다"고 덧붙였다. 나노플라스틱 적게 배출하는 소재 개발 필요 연구진은 문제 해결을 위해 플라스틱 구조 자체를 개선하는 방향을 제시했다. 특히 유연한 층을 강화하면 플라스틱이 나노 조각으로 분해되는 속도를 늦출 수 있다는 설명이다. 쿠마르 교수는 "강도나 유연성을 해치지 않으면서도 구조를 안정화하는 기술이 충분히 가능하다"며 "플라스틱 폐기보다는 재활용 비율을 높이는 것이 장기적으로는 더 경제적일 수 있다"고 말했다. '보이지 않는 위협'에 대응할 시점 통계 데이터 플랫폼 스태티스타에 따르면 전 세계 플라스틱 폐기물 발생량은 지난 40년 동안 7배 이상 증가하여 연간 3억 6000만 톤에 달했다. 또한 2040년까지 전 세계 플라스틱 오염이 두 배로 증가할 것으로 예상했다. 현재 전 세계에서 재활용되는 플라스틱은 전체의 2%에 불과하다. 그 외 대부분은 자연 속에서 미세·나노플라스틱으로 변해 인간과 생태계를 위협하고 있다. 쿠마르 교수는 "플라스틱 폐기에는 보이지 않는 건강 비용이 따른다. 지금 행동하지 않으면 그 대가는 생각보다 클 것"이라고 경고했다. 이번 연구는 우리가 일상적으로 사용하는 플라스틱 제품-물병, 식품 포장재 등-이 완전히 사라지는 것이 아니라 '작아질 뿐'이라는 사실을 과학적으로 증명했다. 플라스틱 오염 문제는 눈에 보이지 않는 크기로 조용히, 그러나 치명적으로 다가오고 있어 더욱 주의해야 한다. ◇ 참고 문헌: Nicholas F. Mendez et al, '반결정성 폴리머에서 정지 나노플라스틱 형성의 메커니즘', Nature Communications (2025). DOI: 10.1038/s41467-025-58233-3
-
- ESGC
-
[ESGC] '조용히, 그러나 치명적으로'⋯일상 속 플라스틱이 인체 침투하는 나노 입자로 변하는 과정 규명
-
-
[신소재 신기술(167)] 빛으로 유방암만 골라 제거⋯부작용 줄인 '스마트 폭탄' 美서 개발
- 미국 과학자들이 빛을 이용해 공격적인 유방암 세포만 선택적으로 파괴하는 신개념 치료법을 개발했다. 피부나 정상 장기에는 거의 영향을 주지 않아 기존 광역학 치료보다 부작용이 크게 줄어든 점이 특징이다. 미시간주립대학교(MSU)와 캘리포니아대학교 리버사이드(UC 리버사이드) 공동연구팀은 최근 암세포에 선택적으로 흡수되고, 빛에 반응해 세포를 파괴하는 '사이아닌-카보레인 염(cyanine-carborane salt)' 계열의 차세대 광역학 치료제 후보를 개발했다고 사이테크데일리가 보도했다. 사이아닌 카보레인 염은 빛에 반응하고 암세포에 선택적으로 흡수되는 새로운 화합물이다. 연구 결과는 독일 화학회 국제학술지 '앙게반테 케미 인터내셔널 에디션(Angewandte Chemie International Edition)'에 게재됐다. 이번 연구는 생화학자 소피아 런트(Sophia Lunt) 교수와 화학공학자 리처드 런트(Richard Lunt) 교수 부부 연구진이 주도했으며, UC 리버사이드의 화학자 빈센트 라발로(Vincent Lavallo) 교수와 협력해 진행됐다. 이들이 개발한 신소재는 기존 광역학 치료(PDT, photodynamic therapy)의 한계를 극복한 것이 핵심이다. PDT는 암세포 내에 축적된 광민감성 물질을 빛으로 활성화해 암세포를 파괴하는 방식이다. 그러나 기존 승인된 치료물질은 체내에 오래 남아 일상생활에 불편을 주며, 햇빛 노출 시 피부 화상을 유발하는 부작용도 있었다. 연구진은 이 같은 문제를 해결하기 위해, 근적외선에 반응하면서도 암세포에만 선택적으로 흡수되는 사이아닌-카보레인 염을 설계했다. 근적외선은 눈에는 보이지 않지만 인체 조직을 깊이 통과할 수 있어, 피부나 장기 깊숙한 암세포까지 타격이 가능하다. MSU 박사후연구원 힐리아나 메데이로스(Hyllana Medeiros)는 "전통적 광역학 치료를 받은 환자는 치료 후 수개월간 햇빛을 피해야 하는 부담이 있었지만, 새 물질은 부작용이 대폭 줄어들어 환자의 삶의 질 향상에 기여할 수 있다"고 설명했다. 광역학 치료(PDT)는 광민감제(빛에 반응하는 약물)를 주입하고, 특정 파장 빛을 쬐어 암세포만 선택적으로 파괴하는 치료 방식이다. 실제 이번 연구에서 해당 물질을 적용한 생쥐의 전이성 유방암 종양은 효과적으로 제거됐으며, 정상 세포에는 거의 영향을 주지 않았다. 이 같은 정밀 타격성 덕분에 '스마트 폭탄(smart bomb)'이라는 별칭도 붙었다. 연구 제1저자인 아미르 로샨자데(Amir Roshanzadeh) 박사과정생은 "이번 기술은 전이성 유방암뿐 아니라 향후 다양한 암종에도 확장 가능성이 있다"며 "정밀 약물전달 플랫폼으로의 발전도 기대된다"고 말했다. 리처드 런트 교수는 "이 같은 성과는 암생물학, 화학, 소재공학 등 서로 다른 분야의 과학자들이 협업할 때 가능하다"며 "학제간 융합연구가 미래 의학 혁신의 열쇠"라고 강조했다.
-
- IT/바이오
-
[신소재 신기술(167)] 빛으로 유방암만 골라 제거⋯부작용 줄인 '스마트 폭탄' 美서 개발
-
-
[먹을까? 말까?(97)] "검은콩·블루베리, 미세플라스틱 해독 효과"⋯짙은 색 과일·채소 주목
- 미세플라스틱이 인체에 미치는 유해성을 줄이는데 특정 식품이 도움이 될 수 있다는 연구 결과가 발표됐다. 중국 과학자들이 주도한 국제 연구팀은 최근 발표한 논문에서 블루베리나 흑미, 검은콩 등 짙은 색을 띠는 채소와 과일이 미세플라스틱에 의한 세포 손상을 완화할 수 있다고 밝혔다. 해당 내용에 대해서는 영국 일간지 데일리메일이 7일(현지시간) 온라인판에 게재했다. 연구팀은 '안토시아닌(anthocyanin)'이라는 천연 항산화 물질을 주목했다. 블루베리, 블랙베리, 검은콩, 자색고구마, 흑미, 석류, 적포도 등에 풍부한 안토시아닌은 직물의 짙은 자색, 붉은색, 남색 등을 만들어내는 수용성 색소로, 인체내 활성산소를 제거하는 항산화 작용을 한다. 이번 연구는 총 89편의 기존 논문을 종합 검토한 문헌 리뷰 형태로, 미국 학술지 'Journal of Pharmaceutical Analysis(약물분석저널)'에 게재됐다. 미세플라스틱, 호르몬 교란부터 불임까지 유발 미세플라스틱은 식품, 물, 의류, 생활용품 등에 널리 퍼져 있으며, 이미 대부분의 인체 내에 축적되어 있다는 연구 결과들이 나오고 있다. 이 물질은 체내에 들어오면 세포 속으로 침투해 DNA 손상, 호르몬 불균형, 염증 반응을 유발하고, 그 결과 대사 장애, 심혈관 질환, 심지어 생식 능력 저하로까지 이어질 수 있다. 미세플라스틱은 특히 산화 스트레스(oxidative stress)를 유발하는 주범으로 지목된다. 이는 활성산소가 과다하게 생성되어 세포를 손상시키는 현상으로, 만성 염증과 노화, 암, 심장병 등 각종 질환과 관련이 깊다. '짙은 색일수록 항산화 성분 높아' 연구팀은 실섬실 실험과ㅑ 동물 실험을 중심으로 안토시아닌이 미세플라스틱이 유발하는 세포 손상을 어떻게 완화하는 지 검토했다. 예를 들어, 한 실험에서는 검은콩과 흑미에 많은 '시아니딘 3-글루코사이드(Cyanidin-3-glucoside, C3G)'라는 성분을 쥐에게 투여한 결과, 정자 수가 증가하고 고환 조직 손상이 완화된 것으로 나타났다. 또한 석류와 붉은 사과에 풍부한 '시아니딘 3, 5디글루코사이드(Cyanidin-3,5-diglucoside)'는 실험실에서 남성호르몬 생성세포에 작용해, 미세플라스틱 유사 물질로 유발된 산화 스트레스를 줄이고 테스토스테론 분비를 회복시켰다. 여성 생식 건강에 긍정적 영향을 미쳤다는 동물 실험 및 세포 실험 결과도 함께 인용됐다. 블루베리 하루 1컵 섭취 권장 다만 이번 연구는 대부분 동물이나 세포를 대상으로 한 기초 연구로, 사람에게도 동일한 효과가 나타나는 지 확인하기 위해서는 추가 임상 연구가 필요하다는 점을 연구진은 명확히 했다. 안토시아닌의 구체적인 일일 섭취 권장량은 명시되지 않았지만, 기존 연구에서는 약 50mg 즉 블루베리 한 컵 분량이 유익한 수준으로 제시됐다. 미국 통계에 따르면, 현재 평균적인 식단에서 섭취하는 안토시아닌의 양은 이에 미치지 못하는 것으로 분석된다. 이에 전문가들은 블루베리, 크랜베리, 자색 양배추, 붉은 포도, 아사이베리 등 자색·남색·적색 식품을 식단에 꾸준히 포함시킬 것을 권장하고 있다. 미세플라스틱 노출 줄이기 위한 실천법도 병행해야 전문가들은 안토시아닌 섭취 외에도 플라스틱 포장 식품 구입 최소화, 전자레인지용 플라스틱 용기 사용 금지, 일회용 플라스틱 도구 사용 자제, 플라스틱 도마나 조리기구의 대체 사용 등을 통해 미세플라스틱 노출 자체를 줄이는 것이 중요하다고 조언한다. 연구에 참여하지 않은 미국 통합의학 전문의 앙젤로 팔코네 박사는 "과일과 채소의 색이 짙고 선명할수록 안토시아닌 함량이 높은 경향이 있다"며, "딸기류는 물론, 자색 옥수수, 흑미, 붉은 고구마도 우수한 공급원"이라고 덧붙였다.
-
- 생활경제
-
[먹을까? 말까?(97)] "검은콩·블루베리, 미세플라스틱 해독 효과"⋯짙은 색 과일·채소 주목
-
-
[먹을까? 말까?(96)] '우주 된장' 맛은 어떨까?⋯국제우주정거장서 발효 실험
- 과학자들이 국제우주정거장(ISS)에서 콩을 발효시켜 세계 최초로 우주 된장(우주 미소·space miso)을 탄생시켰다. 미소는 일본 요리에서 사용하는 된장을 말한다. 국제우주정거장에서 발효된 '우주 된장'이 처음으로 지구에 돌아와 세상에 모습을 드러냈다. 과학자들은 이번 실험이 우주 환경에서의 미생물 생존 가능성과 향후 우주 탐사 시 식량 다양성 확대에 기여할 수 있을 것으로 기대하고 있다. 2일(현지시간) CNN에 따르면 미국 매사추세츠공과대학(MIT)의 매기 코블렌츠와 덴마크 공과대학의 조슈아 에반스 박사는 2020년 3월, 조리된 콩 반죽을 담은 용기를 ISS로 보냈다. 이 반죽은 약 30일간 미세중력 환경에서 발효 과정을 거친 뒤 '우주 된장'이 완성된 후 지구로 귀환시켰다. 해당 실험은 2025년 4월 2일 학술지 아이사이언스(iScience)에 게재됐다. 된장이 담긴 용기에는 온도, 습도, 압력, 방사선 등을 실시간으로 측정하는 센서가 부착돼 발효 환경을 정밀하게 기록했다. 우주 발효와 비교하기 위해 미국 캠브리지와 덴마크 코펜하겐 두 곳에서 같은 재료를 이용한 된장을 발효시켰다. 에반스 박사는 CNN과의 인터뷰에서 "우주에서의 발효는 전례가 없던 시도였기에 결과를 예측하기 어려웠다"고 밝혔다. 그는 "우주 된장은 색이 더 어둡고, 육안상으로도 더 많이 흔들린 흔적이 있었다"며 "이는 우주로의 운반 과정에서 발생한 영향으로 보인다"고 설명했다. 연구진은 우주 환경의 미세중력, 방사선 노출 등의 요소가 미생물의 성장과 대사 작용에 영향을 미쳤을 가능성을 제기했다. 실제로 '우주 된장'은 지구에서 발효된 된장과 유사한 감칠맛을 지녔지만, 구수한 맛이 강했고 볶은 견과류 향이 느껴졌다고 한다. 코블렌츠 박사는 "우주에서도 미생물 군집이 생존하고 활동할 수 있음을 보여주는 사례"라며, "이번 실험은 우주에서의 생명 가능성과 식문화 확장을 위한 기초자료가 될 수 있다"고 강조했다. 이번 실험은 우주 식량의 다양화 가능성을 실험한 여러 시도 중 하나다. 그간 우주에서는 상추, 무, 고추 등의 신선 농작물 재배 실험이 진행되어 왔으며, 2021년에는 고추 수확을 기념해 ISS 내에서 '타코 파티'가 열리기도 했다. 한편 일본 주류업체 아사히 슈조는 자사의 인기 브랜드 '닷사이'를 우주에서 발효시키기 위한 실험을 준비 중이다. 해당 업체는 일본우주항공연구개발기구(JAXA)를 통해 ISS 내 '기보(Kibo)' 모듈에 접근할 수 있는 권한을 확보했으며, 우주 양조 장비 개발을 병행해 2025년 시험 발사에 나설 예정이다. 이번 연구는 향후 우주 탐사와 장기 체류 임무에서 건강과 문화적 다양성을 동시에 고려한 식량 개발의 단초로 평가된다. 다만, 에반스 박사는 "우주 된장의 영양학적 가치에 대한 정밀 분석은 아직 진행 중이며, 단백질 조성이나 생리활성 물질의 함량 등은 추가 검토가 필요하다"고 덧붙였다.
-
- 포커스온
-
[먹을까? 말까?(96)] '우주 된장' 맛은 어떨까?⋯국제우주정거장서 발효 실험
-
-
[퓨처 Eyes(78)] 중국, '칩 혁명' 쏘아 올릴 레이저 개발⋯ASML 독주 시대 '흔들'
- 손톱보다 작은 반도체 칩, 그 안에는 세상을 움직이는 빛이 새겨져 있다. 바로 극자외선(DUV) 레이저 광선이다. 현재 이 빛을 다루는 기술은 네덜란드의 거대 기업 ASML이 굳건히 움켜쥐고 있다. 그러나 최근, ASML의 아성에 도전하는 한줄기 빛이 포착됐다. 중국과학원(CAS)의 연구자들이 기존과는 전혀 다른 방식으로, 차세대 반도체 생산의 판도를 뒤흔들 '꿈의 레이저' 개발에 성공한 것이다. 국제광공학회(SPIE)는 지난 3월 22일, CAS 연구진이 실험실 환경에서 반도체 포토리소그래피에 사용되는 193nm 파장의 빛을 방출하는 고체 심자외선(DUV) 레이저를 개발했다고 발표했다. 이는 기존의 가스 기반 엑시머 레이저 방식과는 완전히 다른 접근 방식으로 더욱 주목받고 있다. 심자외선 레이저는 매우 짧은 파장에서 고에너지 빛을 방출하며, 반도체 제조, 고해상도 분광법, 정밀 소재 개공과 양자 기술 분야에서 중요한 역할을 한다. 기존의 엑시머 또는 가스 방전 레이저와 비교하면 DUV 레이저는 응집성이 더 낮고 더 낮은 전력 소비를 제공해 더 작고 효율적인 시스템을 구축할 수 있다. 만약 이 새로운 극자외선 레이저 광원 기술이 실제 대량 생산에 적용될 수 있다면, 이는 곧 첨단 공정 기술을 활용한 차세대 반도체 칩 생산 장비 개발의 가능성을 열어젖히는 혁신적인 성과로 평가받을 수 있다. 하지만 고체 레이저의 성능을 대규모 생산에 필요한 수준으로 끌어올릴 수 있을지는 아직 미지수다. 기존 DUV 레이저 기술의 한계 현재 ASML, 캐논, 니콘 등 주요 반도체 장비 기업들은 193nm 파장의 DUV 레이저를 만들기 위해 주로 불화아르곤(ArF) 엑시머 레이저를 사용한다. 이 방식은 아르곤과 플루오린 가스를 혼합한 챔버에 고전압 전기 펄스를 가해 불안정한 ArF 분자를 만들고, 이 분자가 다시 안정화되면서 193nm 파장의 빛을 방출하는 원리를 이용한다. 이 레이저는 짧고 강한 에너지 펄스 형태로 최대 100~120W의 출력을 내며, 최신 액침 DUV 장비의 경우 초당 8000~9000번(8~9kHz)의 빠른 속도로 빛을 쏜다. 이 빛은 복잡한 광학 시스템을 거쳐 반도체 웨이퍼에 회로 패턴이 담긴 마스크를 통과하며 미세한 회로를 새기는 데 사용된다. 중국과학원의 새로운 해법 '고체 레이저' 하지만 CAS 연구팀은 이러한 기존 방식 대신 완전히 새로운 고체 방식을 택했다. 이들은 자체 제작한 이터븀(Yb)이 첨가된 YAG(Yttrium Aluminum Garnet) 결정 증폭기를 이용해 1030nm 파장의 레이저 빔을 먼저 만든다. 이 빔을 두 갈래로 나눈 뒤, 각각 다른 광학 과정을 거쳐 최종적으로 193nm 파장의 빛을 얻는 방식이다. 첫 번째 경로에서는 1030nm 빔을 비선형 광학 과정인 4차 조화파 발생(FHG)을 통해 원래 파장의 1/4인 258nm 빔으로 변환시킨다. 이 과정에서 약 1.2W의 출력이 발생한다. 두 번째 경로에서는 나머지 1030nm 빔을 광학 파라메트릭 증폭기에 넣어 1553nm 파장의 빔을 만들고, 이 빔은 약 700mW의 출력을 갖는다. 최종적으로 이 두 개의 빔, 즉 258nm와 1553nm 파장의 빔을 직렬로 연결된 리튬 삼붕산염(LBO) 결정에 통과시켜 평균 전력 70mW, 6kHz의 주파수, 그리고 880MHz보다 좁은 선폭을 가진 193nm 파장의 결맞는 빛을 얻게 된다. CAS 측은 이 테스트 시스템의 스펙트럼 순도가 현재 상용 시스템과 견줄 만한 수준이라고 밝혔다. CAS 시스템이 만들어낸 193nm 파장의 빛은 고체 레이저 방식으로 얻어진 것으로, 평균 전력은 70mW, 주파수는 6kHz, 선폭은 880MHz 미만이다. 이는 ASML의 ArF 엑시머 기반 생산 시스템이 제공하는 100~120W 출력, 9kHz 주파수와 비교하면 아직 성능 면에서 크게 뒤처지는 수준이다. 과학기술 전문매체 톰스 하드웨어는 "ASML의 제품보다 훨씬 낮은 성능"이라고 지적했다. 그럼에도 불구하고 이번 CAS의 성과는 매우 중요한 의미를 갖는다. 기존의 가스 기반 방식이 아닌 고체 방식으로 193nm 파장의 레이저를 만들었다는 점 자체가 혁신적인 시도이기 때문이다. 특히 CAS 연구팀은 여기서 한발 더 나아가 1553nm 빔에 나선형 위상판을 적용하여 궤도 각운동량을 갖는 소용돌이 빔을 생성하는 데 성공했다. 사이테크 데일리는 이를 두고 "최초로 고체 레이저에서 193nm 소용돌이 빔이 생성된 것"이라고 강조하며, "이러한 빔은 하이브리드 ArF 엑시머 레이저의 시딩에 유망하며 웨이퍼 처리, 결함 검사, 양자 통신 및 광학 미세 조작에 중요한 응용 분야를 가질 수 있다"라고 보도했다. 소용돌이 빔은 빛이 진행하면서 회전하는 독특한 형태를 띠는데, 이는 물질을 아주 정밀하게 제어하거나 정보를 담아 전달하는 등 다양한 분야에서 활용될 수 있는 첨단 기술이다. 특히 양자 기술 분야에서는 소용돌이 빔이 양자 통신이나 양자 컴퓨팅의 효율성을 크게 높일 수 있을 것으로 기대된다. 미래 반도체 기술의 판도 바꿀까 비록 현재 CAS 시스템의 출력은 상업용 반도체 생산에 필요한 수준에 크게 못 미치지만, 이번 연구는 고체 레이저 기반의 새로운 DUV 광원 개발 가능성을 열었다는 점에서 큰 의미를 갖는다. 높은 처리량과 안정적인 공정이 필수적인 반도체 제조 분야에서 CAS의 기술이 상용화되기까지는 앞으로 여러 세대의 추가적인 개발이 필요할 것으로 예상된다. 사이테크 데일리는 "이 혁신적인 레이저 시스템은 반도체 리소그래피의 효율성과 정밀도를 향상시킬 뿐만 아니라 첨단 제조 기술을 위한 새로운 길을 열어준다. 193nm 소용돌이 빔을 생성하는 능력은 해당 분야에서 더 큰 발전을 이끌어 전자 장치 생산 방식을 혁신할 가능성이 있다"라고 전망했다. 이번 연구를 이끈 쉬안훙원 박사를 비롯한 중국과학원 연구팀의 작은 빛줄기가 미래 반도체 산업의 거대한 지각 변동을 일으킬 수 있을지, ASML이 굳건히 지켜온 빛의 성채에 균열을 낼 수 있을지 귀추가 주목된다. ◇ 참고 문헌: 『광학 파라메트릭 증폭기를 이용한 소형 협대역 선폭 고체 193nm 펄스 레이저 광원 및 그 소용돌이 빔 생성』 저자: 장지타오, 헝샤오보, 왕준우, 천성, 왕샤오지에, 퉁천, 리정, 쉬안훙원, 2025년 3월 9일, 어드밴스드 포토닉스 넥서스. DOI: 10.1117/1.APN.4.2.026011
-
- 포커스온
-
[퓨처 Eyes(78)] 중국, '칩 혁명' 쏘아 올릴 레이저 개발⋯ASML 독주 시대 '흔들'
-
-
[신소재 신기술(165)] '불가능한 재료의 융합'⋯양자컴퓨팅 문 여는 인공 구조체 탄생
- 국제 공동연구진이 기존 과학 이론으로는 공존하기 어려웠던 두 가지 물질을 원자 단위에서 결합해, 새로운 양자 인공 구조체를 구현하는 데 성공했다. 이 연구는 향후 양자컴퓨팅과 차세대 센서 기술에 중요한 기반이 될 수 있다는 평가를 받고 있다. 미국 러트거스대학교 뉴브런즈윅 캠퍼스 물리천문학과 자크 차칼리안(Prof. Jak Chakhalian) 교수 연구팀이 주도한 이번 연구 결과는 세계적 과학 저널 나노 레터스(Nano Letters)에 표지 논문으로 게재됐다고 웹사이트 PHYS.org가 1일(현지시간) 보도했다.. 연구진은 약 4년에 걸친 실험을 통해 원자 단위에서 '디스프로슘 타이타네이트(dysprosium titanate)'와 '피로클로르 이리데이트(pyrochlore iridate)'라는 두 인공 물질을 결합한 초미세 '양자 샌드위치 구조'를 개발했다. 이 두 물질은 각각 특이한 전자기 및 양자역학적 성질로 인해 기존에는 서로 결합이 불가능한 것으로 여겨졌다. 한쪽 층을 이루는 디스프로슘 타이타네이트는 일명 '스핀 아이스(spin ice)'라고 불리는 물질로, 내부 스핀 배열이 물의 얼음 구조를 닮았다. 이 구조는 자연계에서는 존재하지 않는 것으로 알려진 '자기 홀극(magnetic monopole, 자기 단극)'을 유사 입자로 출현시킬 수 있다. 자기 홀극은 1931년 노벨물리학상 수상자인 폴 디랙이 예언했으나 자유 상태에서는 존재가 확인되지 않았다. 다른 쪽 층은 피로클로르 이리데이트라는 자성 준금속으로, 생다론적 입자인 '바일 페르미온(Weyl fermion)'을 포함하고 있다. 바일 페르미온은 1929년 헤르만 바일이 처음 제안했으며, 2015년에야 결정 구조 내에서 실험적으로 확인된 바 있다. 빛처럼 빠르게 움직이며 좌·우 회전을 구분할 수 있는 이 입자는 외부 잡음이나 불순물에 강한 전자적 안정성을 갖는다. 이처럼 각기 다른 특성을 지닌 두 물질을 원자 수준에서 안정적으로 접합한 것은 기존의 재료과학이 풀지 못한 난제를 해결한 것으로 평가된다. 차칼리안 교수는 "이번 연구는 인공 양자 물질 설계의 새로운 지평을 열었으며, 이전에는 상상할 수 없었던 방식으로 양자 기술의 본질을 탐구할 수 있게 됐다"고 밝혔다. 실험을 위한 결정적 전환점은 연구팀이 자체 제작한 '양자현상 탐색 플랫폼(Q-DiP, Quantum phenomena Discovery Platform)'이라는 장비였다. 이 장치는 적외선 레이저 가열기와 정밀 레이저 빔 조합을 통해 초정밀 원자층 증착이 가능하며, 절대온도에 가까운 극저온에서도 물질의 양자 상태를 탐색할 수 있도록 설계됐다. 현재 이 장비는 미국 내 유일한 장비로, 실험 장비 자체로도 과학적 성과로 평가받는다. 이 연구에는 박사과정의 마이클 테릴리(Michael Terilli), 우총치(Tsung-Chi Wu), 학부생 시절부터 참여한 도로시 도티(Dorothy Doughty), 재료과학자 미하일 카리예프(Mikhail Kareev) 등이 핵심 기여자로 참여했다. 이번에 개발된 양자 구조체는 향후 양자컴퓨팅의 핵심 구성 요소로 활용될 가능성이 크다. 특히 특정 양자 상태를 안정적으로 유지하는 데 필요한 전자 및 자기적 특성이 우수하다는 점에서, 차세대 양자센서와 스핀트로닉스(spintronics) 장치 개발에 직접적인 응용이 가능하다. 양자컴퓨팅은 정보를 처리하는 데 있어 기존 컴퓨터의 이진 논리를 뛰어넘는 '중첩' 상태를 활용한다. 이는 한 번에 여러 연산을 동시에 수행할 수 있게 해 신약 개발, 금융 알고리즘, 인공지능(AI) 처리 등 다양한 분야에서 혁신적인 성과를 기대하게 한다. 차칼리안 교수는 "이번 연구는 단순한 물질 합성의 진보를 넘어, 양자 기술을 위한 물질 설계의 새로운 시대를 여는 첫걸음"이라며 "향후 양자 센서 기술을 포함한 응용과학 분야에 중대한 영향을 미칠 것"이라고 강조했다.
-
- IT/바이오
-
[신소재 신기술(165)] '불가능한 재료의 융합'⋯양자컴퓨팅 문 여는 인공 구조체 탄생
-
-
[먹을까? 말까? (95)] 사무실 커피 머신 커피, 심혈관 건강에 악영향 줄 수 있어
- 스웨덴 과학자들의 연구 결과, 사무실 커피 머신에서 추출한 커피가 심혈관 건강에 부정적인 영향을 미칠 가능성이 있는 것으로 나타났다. 스웨덴 웁살라대학(Uppsala University)과 찰머스공과대학(Chalmers University of Technology) 연구팀이 진행한 연구에 따르면, 사무실 커피 머신으로 추출한 커피에서 LDL 콜레스테롤(저밀도 지단백 콜레스테롤)을 높이는 성분인 '카페스톨(cafestol)'과 '카웨올(kahweol)'이 상대적으로 높은 농도로 검출됐다. 해당 연구에 대해서는 과학 전문매체 사이테크 데일리와 미국 일간지 폭스뉴스가 심층 보도했다. 커피 머신과 추출 방법에 따라 카페스톨과 카웨올과 같은 유해한 디테르펜의 양이 크게 달라질 수 있으며, 커피를 자주 마시는 사람은 자신도 모르게 LDL 콜레스테롤 수치가 높아질 수 있다. 끓인 커피에는 콜레스테롤을 높이는 디테르펜인 카페스톨과 카웨올이 많이 들어 있다는 것은 이미 잘 알려진 사실이다. 반면 종이 필터를 사용하는 드립 필터 커피 메이커는 이들 물질을 매우 효과적으로 제거한다. 연구진은 스웨덴 내 다양한 직장에 설치된 14종의 사무실용 커피 머신에서 추출한 커피와 종이 필터 또는 프렌치 프레스 방식으로 추출한 일반 커피의 성분을 비교 분석했다. 사용된 커피는 5가지 일반 브랜드의 분쇄 커피였다. 그 결과, 일반적인 종이 필터를 사용하는 가정용 드립 방식에 비해 대부분의 사무실 커피 머신이 필터링 성능이 떨어져 LDL 콜레스테롤을 높이는 유해 성분이 다량 검출된 것으로 확인됐다. 머신 종류에 따라 성분 농도 차이 커 이번 연구에서 가장 일반적인 커피 머신 유형인 브루잉 머신은 디테르펜 농도가 가장 높은 커피를 생산했다. 연구진은 페큘레이터 커피, 에스프레소, 프렌치 프레스 커피, 끓인 커피, 패브릭 필터를 통해 부은 끓인 커피를 비교 분석했다. 끓인 커피에는 한 잔당 가장 높은 수준의 디테르펜이 함유되어 있었다. 일부 에스프레소 샘플에도 높은 수치가 포함되어 있었지만, 그 수치는 큰 편차를 보였다. 연구 책임자인 데이비드 이그만(David Iggman) 박사는 "커피 추출 과정에서 필터링이 콜레스테롤 수치를 높이는 물질의 함량을 결정하는 핵심 요소"라며 "모든 커피 머신이 이러한 성분을 제대로 걸러내지는 못했다"고 밝혔다. 특히 머신 종류에 따라 성분 농도 차이가 크게 나타났으며, 같은 머신에서도 시기에 따라 농도 변화가 있었다고 덧붙였다. 연구팀은 커피 머신의 필터 청소 방식도 성분 농도에 영향을 줄 수 있다고 지적했다. 금속 필터를 반복적으로 청소하면 필터의 구멍이 마모되어 유해 성분 제거 능력이 떨어질 수 있다는 설명이다. 필터링 잘 된 '드립 커피'가 최선의 선택 이그먼 박사는 "대부분의 커피 샘플에는 커피를 마신 사람들의 LDL 콜레스테롤 수치와 향후 심혈관 질환 위험에 영향을 미칠 수 있는 수치가 포함되어 있었다. 매일 많은 양의 커피를 섭취하는 사람들에게는 가급적 필터링이 잘된 드립 방식의 커피를 마시는 것이 바람직하다"며 "이번 연구로 인해 커피 섭취 습관과 심혈관 건강과의 연관성에 대한 관심이 높아지기를 기대한다"고 강조했다. 이번 연구는 국제 학술지 '영양, 대사 및 심혈관 질환(Nutrition, Metabolism & Cardiovascular Diseases)'에 게재됐다. ◇ 참고 문헌: 『사무실 커피 머신과 기존 부루잉 방법의 카페스톨(Cafestol) 및 카웨올(kahweol) 농도 비교Cafestol and kahweol concentrations in workplace machine coffee compared with conventional brewing methods』 Erik Orrje, Rikard Fristedt, Fredrik Rosqvist, Rikard Landberg and David Iggman, 2025년 2월 20일, 학술지 "영양, 대사 및 심혈관 질환(Nutrition, Metabolism and Cardiovascular Diseases)". DOI: 10.1016/j.numecd.2025.103933
-
- 생활경제
-
[먹을까? 말까? (95)] 사무실 커피 머신 커피, 심혈관 건강에 악영향 줄 수 있어
-
-
[신소재 신기술(163)] 美 연구진, '인공 태양'으로 그린수소 생산량 2배 높였다
- 미국 연구진이 인공 태양을 활용한 신소재를 개발해 친환경 수소 생산 효율을 두 배 이상 높이는 데 성공했다. 미국 노스캐롤라이나 농공대학(North Carolina Agricultutal and Technical State University) 비슈누 바스타코티((Bishnu Bastakoti) 박사팀은 최근 태양에너지를 활용한 친환경 수소(그린수소)의 생산량을 기존 상용 소재 대비 약 2배 가까이 늘리는 신소재 개발 성과를 발표했다. 해당 연구에 대해서는 과학 전문 매체 인터레스팅 엔지니어링이 지난 26일(현지시간) 보도했다. 미국 에너지정보청(EIA)에 따르면, 2023년 미국의 1차 에너지 생산량 중 석유, 천연가스, 석탄 등 화석연료의 비중은 약 84%에 달했다. 이처럼 높은 화석연료 의존도는 온실가스 배출을 가속화하며 기후변화를 심화시키고 있어, 지속 가능한 대체 에너지원의 개발이 시급한 과제로 떠오른 상태다. 기존의 갈색 수소, 회색 수소, 청색 수소 생산 방식은 모두 온실 가스를 배출하는 반면, 그린 수소는 태양광을 에너지 원으로 사용해 더옥 깨끗한 에너지 생산 방식으로 주목 받고 있다. 바스타코티 박사 연구팀은 태양광 시뮬레이터를 활용해 수소 생산 과정에서 발생하는 빛의 강도 변동성 문제를 극복했다. 팀은 빛에 노출된 물 분자의 에너지 전달과 분리 과정을 정밀하게 측정해 수소 생성량의 일관성과 신뢰성을 확보했다. 연구의 핵심은 철 타이타네이트(iron titanate)를 기반으로 한 신소재로, 연구팀은 이 물질을 벌집 모양(honeycomb)의 구조로 설계하여 효율성을 극대화했다. 특히 다공성 벌집 구조는 넓은 표면적 덕분에 전하와 물질 전달을 최적화할 수 있어 촉매 반응을 크게 개선하는 데 기여했다. 연구팀이 개발한 이 소재는 2~50나노미터(㎚) 크기의 기공을 가진 메조포러스(mesoporus) 범위에 속하며, 기존의 상용 촉매 소재 대비 수소 생상량이 약 2배 가까이 증가한 것으로 나타났다. 바스타코티 박사는 "효율적이고 재상 가능한 에너지원으로 미래 에너지 수요를 충족할 수 있음을 널리 알리는 것이 중요하다"며 "석탄에서 천연가스로 전환했듯이 화석연료에서 그린수소로의 전환이 필요하다"고 강조했다. 연구팀의 이번 성과는 재료과학 및 광촉매 분야의 국제 학술지 '스몰(Small)'에 게재됐다. 또한 최근 네팔에서 열린 '과학자와의 만남(Meet the Scientist)' 컨퍼런스에서도 경제성 측면의 논의와 함께 큰 관심을 받았다.
-
- ESGC
-
[신소재 신기술(163)] 美 연구진, '인공 태양'으로 그린수소 생산량 2배 높였다
-
-
[먹을까? 말까?(94)] 심장·뇌·장까지 돕는다⋯'슈퍼 푸드' 딸기의 과학적 건강 효과
- 딸기는 항산화성분과 식이섬유, 각종 비타민과 미네랄이 풍부한 대표적인 건강 과일로 꼽힌다. 미국 농무부(USDA) 기준, 딸기 한 컵(슬라이스 기준 약 150g)은 열량은 85kcal에 불과하지만 비타민 C 97.5mg, 식이섬유 3g, 칼륨 254mg, 엽산 40㎍ 등을 함유하고 있다고 식품 전문 매체 이팅웰은 전했다. 특히 딸기는 항산화 성분이 뛰어나 다양한 질병 예방 효과가 과학적으로 입증되고 있다. 염증 완화부터 심장·뇌 건강까지 딸기의 붉은 색을 내는 안토시아닌(anthocyanin)은 강력한 항산화·항염증 식물 화합물이다. 딸기 1kg에는 약 73mg의 안토시아닌이 포함되어 있으며 이를 컵 단위로 환산하면 약 13mg에 해당한다. 꾸준한 딸기 섭취는 체내 항산화 수준을 높이고, 염증성 지표를 낮추는 것으로 나타났다. 영양학자 샤니키아 화이트(M.S., RDN, LDN)는 "딸기의 항산화 성분은 심장 건강 개선, 인지 기능 향상, 장 건강 증진과 관련이 있다"고 설명했다. 딸기는 심혈관 건강에도 긍정적인 영향을 준다. 리사 영(Ph.D., RDN) 교수는 "딸기에 풍부한 항산화 물질과 항염 성분이 혈압을 낮추고, 콜레스테롤 수치를 개선하며, 심장 질환 위험을 줄이는 데 도움이 된다"고 말했다. 실제 연구에 따르면 하루 2.5회분의 딸기를 섭취할 경우, 나쁜 콜레스테롤(LDL)의 수치와 입자 크기 모두 개선되는 효과가 관찰됐다. 뇌 기능 보호·인지 저하 완화 딸기의 항산화 성분은 신경세포를 보호하고 신경 간의 소통을 원활하게 하여 뇌 건강을 지키는 데 기여한다. 냉동건조 딸기 24g(신선 딸기 2컵 상당)을 90일간 섭취한 실험에서 피험자의 언어 기억, 공간 학습, 기억력이 개선된 것으로 나타났다. 내과전문의 심란 말호트라(Simran Malhotra)는 "딸기를 많이 섭취하는 사람은 알츠하이머 치매 발병 비율이 34% 낮고, 전반적인 뇌 기능도 향상된다는 연구 결과가 있다"고 전했다. 장내 미생물 환경 개선·인슐린 저항성 완화 딸기에 풍부한 식이섬유와 폴리페놀은 장내 유익균의 성장을 촉진하는 프리바이오틱 효과를 갖는다. 영양사 사라 글린스키(RD)는 "딸기 섭취는 장내 미생물 다양성을 증가시키고, 장 건강에 긍정적인 영향을 미친다"고 설명했다. 실제로 딸기 파우더를 4주간 섭취한 실험에서 장내 미생물의 구성 변화가 확인됐다. 또한 딸기는 혈당을 일시적으로 올릴 수 있는 탄수화물을 포함하고 있지만, 풍부한 식이섬유와 폴리페놀 덕분에 인슐린 저항성을 개선하는 효과도 보고되고 있다. 일정 기간 딸기를 식단에 포함하면 공복 혈당 및 식후 인슐린 수치가 낮아지고, 인슐린 민감도가 개선되는 경향이 관찰됐다. 딸기 섭취시 주의 사항 딸기는 대부분의 사람에게 안전하지만, 특정 질환이나 민감 체질을 자긴 사람들은 섭취량에 주의가 필요하다. 과민성 장 증후군(IBS)을 가진 사람의 경우, 과량 섭취시 딸기에 포함된 과당(프럭토오스)으로 인해 복부 불편감이나 소화 장애를 겪을 수 있다. 글린스키는 "하루 5개 정도의 중간 크기 딸기는 IBS 환자도 무리 없이 섭취할 수 있다"고 조언했다. 또한 딸기는 천연 방어 성분으로 살리실산(salicylate)을 포함하고 있는데, 이는 일부 민감한 사람에게 두통, 발진 등을 유발할 수 있으며, 심한 경우 아나필락시스 반응이 나타날 수도 있다. 살리실산 성분이 특정 약물과 상호작용할 가능성도 있으므로, 관련 약물을 복용 중인 사람은 전문가와 상담이 필요하다. 식이섬유 함량이 높은 딸기를 과도하게 섭취할 경우 복부 팽만이나 설사를 유발할 수 있으므로, 평소 저섬유 식단을 유지한 사람은 천천히 섭취량을 늘리는 것이 바람직하다. 딸기는 단순한 과일을 넘어, 과학적으로 검증된 '천연 건강 보조제'다. 꾸준한 섭취는 심장과 뇌, 장 건강을 지키는 데 유익하며 특히 식이섬유와 비타민C가 부족한 현대인에게 유용한 식품으로 평가 받는다.
-
- 생활경제
-
[먹을까? 말까?(94)] 심장·뇌·장까지 돕는다⋯'슈퍼 푸드' 딸기의 과학적 건강 효과
-
-
[퓨처 Eyes(77)] 지구 자전=무한 동력?⋯멈추지 않는 에너지의 비밀
- 지구가 팽이처럼 끊임없이 회전하는 힘, 그 속에 숨겨진 무한한 에너지를 인류가 사용할 수 있을까? 최근 미국의 과학자들이 지구 자기장과 특별한 물질의 '마법' 같은 만남을 통해 극미량이지만 전기를 생성하는 데 성공하며 오랫동안 잊혀졌던 아이디어를 다시금 뜨거운 논쟁의 중심으로 불러왔다. 과연 지구 자전 에너지는 미래를 밝힐 새로운 희망이 될 수 있을까? 미국 프린스턴 대학교의 크리스토퍼 치바를 비롯해 CIT의 제트추진연구소, 스펙트럴 센서 솔루션스(Spectral Sensor Solutions)의 물리학자 3명이 지구 자전 에너지로부터 전기를 생산할 수 있다는 혁신적인 아이디어를 제시하며 과학계의 이목을 집중시키고 있다고 사이언티픽 아메리칸, PHYS.org, 인터레스팅 엔지니어링 등 과학 전문 매체들이 최근 잇따라 보도했다. 이들은 지구 자기장과 특별한 장치의 상호작용을 통해 극미량이지만 실제로 전기가 생성되는 것을 실험적으로 확인하며 오랜 논쟁에 새로운 불씨를 지폈다. 과학 전문 학술지 '피지컬 리뷰 리서치'에 발표된 이 연구 결과는 지구라는 거대한 발전기의 잠재력을 엿볼 수 있게 해준다. 사실 지구의 회전 에너지를 활용하려는 시도는 과거에도 있었지만, 대부분 이론적인 가능성에 머물렀다. 기존의 과학적 이해로는 지구 자기장 내에서 움직이는 도체가 전기를 발생시키더라도 곧바로 전자의 재배열로 인해 전압이 상쇄되어 실제 에너지로 이어질 수 없다는 것이 일반적인 견해였다. 하지만 이번 연구팀은 이러한 기존 이론의 틀을 깨고 새로운 접근 방식을 제시했다. 상쇄되지 않는 미세한 전류, 실험으로 확인 연구팀은 전압 상쇄 현상을 막고 대신 미세한 전압을 포착하기 위해 특별한 장치를 고안했다. 핵심은 망간-아연 페라이트라는 특수한 물질로 만든 원통이었다. 이 물질은 약한 도체이면서 동시에 자기장을 특정한 방식으로 제어하는 역할을 한다. 팀은 이 원통(실린더)을 지구 자전 방향과 지구 자기장에 특정 각도(57도) 기울여 북쪽-남쪽 방향으로 배치했다. 이는 지구의 자전 운동과 지구 자기장에 수직이 되는 각도이다. 다음으로 전압을 측정하기 위해 연구팀은 실린더의 양쪽 끝에 전극을 배치한 다음 광전 효과를 방지하기 위해 불을 껐다. 놀랍게도 연구팀은 실린더 양 끝에서 18마이크로볼트라는 아주 작은 전압이 발생하는 것을 확인했다. 이는 단일 뉴런이 발화할 때 방출되는 전압의 극히 일부에 불과하지만, 다른 외부 요인으로는 설명하기 어려운 지구의 자전에서 나오는 에너지임을 강력하게 시사했다. 연구팀은 실린더 끝 사이의 온도 차이로 인해 발생할 수 있는 전압을 고려했다면서 각도를 변경하거나 제어 실린더를 사용했을때는 그러한 전압이 측정되지 않았다고 설명했다. 이러한 결과에 대해 연구를 이끈 크리스토퍼 치바는 "아이디어 자체는 직관에 어긋나지만, 실험은 매우 신중하게 진행됐다"며 "매우 설득력 있고 놀라운 결과"라고 평가했다. 하지만 모든 과학자가 그의 의견에 동의하는 것은 아니다. 암스테르담 자유대학교의 은퇴한 물리학자 링커 와인하르덴은 이 연구에 대해 여전히 회의적인 입장을 표하며, 자신의 실험에서는 동일한 효과를 발견하지 못했다고 밝혔다. 그는 "치바 등의 이론이 옳을 수 없다고 여전히 확신한다"고 단언하며, 추가적인 검증의 필요성을 강조했다. 지구 자기장과 특수 물질의 절묘한 조화 그렇다면 지구의 자전 에너지가 어떻게 미세한 전류로 바뀔 수 있었을까? 연구팀은 발전소의 원리와 유사하다고 설명했다. 발전소에서는 자기장 속에서 도체가 움직이면 전자가 이동해 전류가 발생한다. 지구도 마찬가지로 자전하면서 지구 자기장의 일부를 통과하는 도체가 있다면 전기가 발생할 수 있다. 하지만 지구 자기장은 비교적 균일하기 때문에 통상적인 도체에서는 전자가 스스로 배열되어 전기적인 힘이 상쇄된다. 그러나 연구팀이 사용한 망간-아연 페라이트 원통은 이러한 균일한 지구 자기장을 특정한 형태로 왜곡시키는 역할을 한다. 복잡한 계산을 통해 연구팀은 이 특수한 물질과 원통형 구조가 지구 자기장을 예상치 못한 형태로 만들어내고, 이로 인해 발생하는 자기적인 힘이 내부의 전기적인 힘으로 상쇄되지 않아 전류가 흐르게 된다는 것을 밝혀냈다. 이는 마치 좁은 길목을 통과하는 물줄기가 압력을 받아 더 강하게 흐르는 것과 비슷한 원리라고 할 수 있다. 넘어야 할 과제와 미래 에너지 혁명의 가능성 이번 연구는 지구 자전이라는 거대한 에너지원을 활용할 수 있는 새로운 가능성을 열었다는 점에서 매우 고무적이다. 하지만 아직 실용적인 에너지원으로 발전하기 위해서는 해결해야 할 과제가 많다. 우선 다른 연구팀의 독립적인 검증이 필수적이다. 링커 와인하르덴의 지적처럼, 다양한 환경과 조건에서 동일한 실험을 반복하여 일관된 결과를 얻어야만 이 현상이 실제로 지구 자전에 의한 것임을 확신할 수 있다. 만약 추가 검증을 통해 이 연구 결과가 확증된다면, 다음 단계는 장치의 규모를 확대하여 실제로 유용한 수준의 에너지를 생산하는 것이다. 크리스토퍼 치바 역시 "우리 방정식은 규모 확대가 어떻게 가능한지 보여주지만, 실제로 그것이 가능하다는 것을 입증하는 것은 완전히 다른 문제"라며 신중한 입장을 보였다. 현재까지 생성된 전압은 매우 미미한 수준이기 때문에, 실생활에 활용하기 위해서는 엄청난 규모의 장치 개발과 효율 증대 노력이 필요할 것이다. 더욱이 이 기술은 지구의 운동 에너지를 사용하는 것이기 때문에, 장기적으로 지구 자전 속도에 아주 미미한 영향을 줄 수 있다는 점도 고려해야 한다. 연구팀의 계산에 따르면, 만약 전 세계의 모든 전력을 이 방식으로 생산한다면 1세기 동안 지구의 자전 속도는 7밀리초 느려질 것으로 예상된다. 이는 달의 인력과 같은 자연 현상에 의한 변화와 비슷한 수준이지만, 지구 자전에 미치는 장기적인 영향에 대한 심층적인 연구가 필요할 것이다. 이번 연구는 아직 초기 단계이지만, 인류가 오랫동안 꿈꿔왔던 무한한 에너지원, 지구 자전 에너지 활용의 작은 씨앗을 뿌렸다는 점에서 큰 의미를 갖는다. 마치 팽이가 멈추지 않고 돌아가듯, 지구의 자전은 영원히 계속될 것이다. 이 영원한 움직임 속에 숨겨진 에너지를 우리가 현실로 만들 수 있을지는 아직 미지수다. 하지만 이번 연구는 불가능해 보였던 꿈에 한 걸음 더 다가섰음을 보여준다. 앞으로 과학자들의 끊임없는 탐구와 혁신적인 기술 개발을 통해, 지구 자전 에너지가 정말로 우리의 미래를 밝혀줗 새로운 희망이 될 수 있을지 흥미진진한 여정을 함께 지켜보자
-
- 포커스온
-
[퓨처 Eyes(77)] 지구 자전=무한 동력?⋯멈추지 않는 에너지의 비밀
-
-
[먹을까? 말까?(93)] LA 오존 오염의 숨겨진 주범은 '요리'⋯휘발성물질 배출, 자동차와 맞먹어
- 청정 엔진 보급과 전기차 확산으로 자동차 배기가스 배출이 감소하는 가운데, 최근 미국 로스앤젤레스(LA) 도심의 오존 오염을 악화시키는 의외의 원인이 발견됐다. 바로 음식 조리 과정에서 나오는 휘발성 유기화합물(VOCs)이다. 미국 해양대기청(NOAA)은 최근 연구에서 LA 지역 오존 형성의 약 26%가 음식 조리 과정에서 방출된 VOCs에 의한 것으로 분석됐다고 밝혔다. 이는 자동차 배출가스가 초래하는 오존 형성량(29%)과 거의 맞먹는 수준이다. 이 연구는 국제학술지 『대기화학과 물리학(Atmospheric Chemistry & Physics)』 최신호에 게재됐다. 연구진은 기존의 대기오염 모델에서 빠졌던 요리 배출물질을 추가해 LA 도심의 실제 대기 상태와 화학반응 과정을 정밀하게 분석했다. 연구를 주도한 NOAA 화학과학연구소 첼시 스톡웰 박사는 "도심 지역 VOCs의 상당 부분이 조리 과정에서 배출된다는 점은 기존에도 알려져 있었지만, 그동안 공식적인 오염물질 목록이나 대기 질 모델에는 제대로 반영되지 않았다"며 "이 물질들은 화학적 반응성이 매우 높기 때문에, 이를 간과하면 오존 생성에 대한 도시 차원의 대응 전략 수립에 빈틈이 생길 수 있다"고 지적했다. VOCs는 지표면 오존을 생성하는 두 가지 핵심 요소 중 하나다. VOCs가 차량 배기가스의 질소산화물(NOx)과 햇빛 아래에서 광화학 반응을 일으키면 유해한 오존이 형성된다. 높은 농도의 지표 오존은 사람과 동물, 식물에 심각한 피해를 준다. 미국 환경보호국(EPA)의 규제와 각종 환경 정책으로 지난 수십 년간 차량 배기가스를 억제하면서 오존 농도는 미국 전역에서 크게 개선됐다. 하지만 최근 몇 년간은 대기질 개선 속도가 정체되거나 오히려 일부 지역에서는 다시 오존 농도가 증가하는 현상이 나타나고 있다. 이러한 변화는 학계가 도시의 오염물질 구성을 새롭게 점검하는 계기가 됐다. NOAA 연구진은 특히 2021년 LA와 라스베이거스를 대상으로 수행한 대규모 대기오염 조사 프로젝트(SUNVEx)의 결과를 바탕으로 이번 연구를 진행했다. 당시 공기 샘플 분석 결과 라스베이거스 도심에서 포착된 인간 활동 기원의 VOCs 가운데 약 21%가 식용유와 지방에서 나오는 것으로 확인됐다. 음식점 밀집 지역일수록 음식 조리 배출물질 농도가 현저히 높았다. 연구진이 이번 분석에서 음식 조리 배출물을 정교하게 모델링한 결과, LA 도심에서 인간 활동에 의해 발생하는 오존 생성량 가운데 45%는 페인트, 접착제, 개인위생용품 등 휘발성 화학제품(VCPs)에 의한 것으로 나타났다. 뒤이어 자동차 배출가스가 29%, 음식 조리 과정이 26%로 나타났다. 비록 전체 오존 오염에서 음식 조리 배출물의 비중은 상대적으로 낮지만, 연구진은 이 분야가 앞으로의 대기질 개선을 위한 중요한 연구 영역이라고 강조했다. 스톡웰 박사는 "현대 도심에서 변화하는 VOCs 배출 구조를 정확히 파악하고 오존 오염 저감 방안을 마련하기 위해서는 음식 조리 배출물을 더 체계적으로 조사해야 한다"며 "다른 도시에서도 이 같은 배출이 오존 오염에 영향을 미치는지 추가 연구가 필요하다"고 밝혔다.
-
- ESGC
-
[먹을까? 말까?(93)] LA 오존 오염의 숨겨진 주범은 '요리'⋯휘발성물질 배출, 자동차와 맞먹어
-
-
[기후의 역습(125)] 자연 탄소 흡수 능력 감소 추세, 기후 변화 가속화 경고
- 자연적인 이산화탄소(CO₂) 격리 과정이 약화되고 있으며, 이로 인해 기후 변화가 더욱 가속화될 것이라는 연구 결과가 발표되어 주목을 받고 있다. 스코틀랜드 스트라스클라이드 대학교 연구팀은 식물이 광합성을 통해 대기 중 CO₂를 흡수하고 저장하는 탄소 격리 과정이 1960년대에는 연간 0.8%씩 증가했으나, 2008년을 정점으로 하락세로 전환되어 현재는 연간 0.25%씩 감소하고 있다고 밝혔다. 과거 1960년대의 탄소 격리 성장률이 지속되었다면 자연 탄소 격리는 1960년부터 2010년까지 50% 증가했을 것이지만, 현재의 감소 추세가 이어진다면 250년 안에 절반으로 줄어들 것이라는 분석이다. 해당 연구에 대해서는 글래스고우 스트라스칼라이드 대학교가 17일(현지시간) 홈페이지를 통해 밝혔다. CO₂ 인위적 배출 상쇄 능력 약화 자연 탄소 격리는 최근 연간 약 1.2%씩 증가하고 있는 인간 활동으로 인한 탄소 배출량을 일부 상쇄하는 역할을 한다. 이러한 상쇄 효과를 유지하기 위해서는 인간의 탄소 배출량을 연간 0.3%씩 감축해야 한다. 이는 약 1억 톤의 CO₂ 감축에 맞먹는 양이다. 본 연구 결과는 영국 왕립 기상학회(Royal Meteorological Society) 학술지 '웨더(Weather)'에 게재됐다. 연구의 공동 저자인 스트라스클라이드 대학교 지속가능발전센터 방문 교수 제임스 커런(James Curran) 박사는 "지구 육지의 대부분은 북반구에 위치하며, 북반구의 여름철에는 풍부한 식생이 대기 중의 막대한 양의 CO₂를 흡수한다"고 설명했다. 커런 박사는 이어 "북반구의 겨울철에는 일부 CO₂가 죽은 식물의 자연 분해를 통해 대기 중으로 다시 방출되지만, 일부는 뿌리, 토양 및 휴면 상태의 목질 물질에 갇혀 남아있다. 인간 활동으로 인한 추가적인 배출 때문에 CO₂ 농도의 전체적인 곡선은 여전히 매년 상승하고 있다"고 덧붙였다. 그는 또한 "탄소 격리를 포함한 생물 다양성과 관련 생태계 서비스를 재건하기 위한 모든 노력이 시급하다. 삼림 벌채를 중단하고, 생태계 복원을 장려하며, 산불을 예방해야 한다. 회복력이 뛰어나고 향상된 생태계 서비스를 제공하는 대규모 서식지의 경우, 단편화를 우선적으로 해결해야 하며, 화석 연료를 단계적으로 폐지하고, 목재 및 섬유 제품을 더 넓은 순환 경제의 일환으로 가능한 한 오랫동안 재사용해야 한다"고 강조했다. "탄소 격리 감소는 이미 진행중" 커런 교수는 탄소 격리가 여전히 증가하고 있으며 미래의 어느 시점에서 감소하기 시작할 것이라는 광범위한 믿음이 존재하지만, 데이터는 이미 감소가 진행 중임을 보여준다고 지적했다. 그는 "대기 중 CO₂ 증가는 식물의 비료와 같은 역할을 하며, 특히 캐나다와 러시아의 광활하고 추운 북위 지역에서 지구 온난화로 식물이 더 빠르고 쉽게 잘 자랄 수 있는 것은 알려진 사실이다"라고 말했다. 커런 교수는 "위성 관측 결과 지구의 식생이 확산되면서 '더 푸르게' 변하고 있는 것으로 보고되지만, 과도한 열, 가뭄, 홍수, 바람 피해, 산불, 사막화, 그리고 잠재적으로 더 넓게 퍼지는 식물 해충 및 질병으로 인한 식생 성장 손상 등 다른 모든 영향으로 인해 그 단순한 가정이 반박된다"고 설명했다. 이 연구에 사용된 데이터는 하와이 마우나 로아 화산 북쪽 측면에 위치한 마우나 로아 천문대(MLO)에서 제공했다. 해발 3397m에 위치한 마우나 로아 천문대는 1950년대부터 대기 변화와 관련된 데이터를 지속적으로 모니터링하고 수집해온 최고의 대기 연구 시설이다. 2022년 마우나로아 화산이 폭발하면서 용암이 진입로를 가로질러 시설로 가는 전선을 끊어버려 마우나로아 천문대에서의 측정이 중단됐다. 현재 천문대는 차량으로 접근이 불가능하고 지역 전력회사의 전력 공급이 중단된 상태다. 천문대 직원들은 4개의 천문대 건물에 제한적인 태양광 발전을 설치해 글로벌 모니터링 연구실과 스크립스의 중요한 CO₂ 기록 및 기타 대기 측정값을 포함한 약 33%의 측정값을 현장에서 복구했다. ◇ 참고 문헌: James C. Curran et al, Natural sequestration of carbon dioxide is in decline: climate change will accelerate, Weather (2025). DOI: 10.1002/wea.7668
-
- ESGC
-
[기후의 역습(125)] 자연 탄소 흡수 능력 감소 추세, 기후 변화 가속화 경고



