검색
-
-
NASA, 전기추진 시스템(AEPS) 자격 시험 성공
- 미국 항공우주국(NASA)과 항공우주 회사인 에어로제트 로켓다인(Aerojet Rocketdyne)사가 12킬로와트(kW) 태양 전기추진(SEP) 엔진인 고도의 전기추진 시스템(AEPS)에 대한 자격 시험을 성공적으로 완료했다고 유니버스 투데이(Universe Today)가 최근 보도했다. AEPS는 현재 제조 중인 전기추진(이온 추진이라고도 함) 시스템 중 가장 강력한 것으로, 달과 그 너머에 있는 장기 우주여행에 사용될 예정이다. 12킬로와는 1330개 이상의 LED 전구를 작동시킬 수 있을만큼 강력하며, 이번의 성공적인 자격 시험은 NASA가 지난 7월 자격 시험을 시작한 이후 이루어진 것이다. NASA의 글렌(Glenn) 연구 센터에서 AEPS 프로젝트 매니저를 맡고 있는 클레이튼 카셀은 "AEPS는 진정한 차세대 기술"이라며 "현재의 전기추진 시스템은 약 4.5킬로와트의 전력을 사용하는 반면, AEPS는 단일 추진기에서 전력을 크게 증가시킨다"고 말했다. 이어 "이 기능은 미래 우주 탐사를 위한 무한한 기회를 열어준다. AEPS는 우리를 더 멀리, 더 빠르게 이끌 것"이라고 덧붙였다. AEPS의 자격 시험에서 관찰된 엔진의 푸른 배기 플륨은 이온화된 제논 가스에서 생성된다. 기존의 화학 추진은 액체 추진제를 연료로 사용하여 매우 짧지만 강력한 에너지 폭발을 일으켜 우주선을 원하는 방향으로 추진한다. 반면, 전기 추진은 비활성 가스 추진제를 연료로 사용하여 에너지는 더 적지만 지속 시간이 길어 효율성이 높고 장기 우주 임무에 적합하다. NASA가 계획 중인 게이트웨이 우주 정거장에는 AEPS 기술이 중요한 역할을 할 예정이다. 게이트웨이의 파워 앤드 프로펄전 엘리먼트에 세 개의 AEPS 전기추진체를 장착하여 게이트웨이 주변의 원하는 궤도를 유지하고 지구와의 고속 통신 및 전체 우주 정거장에 대한 전력 공급 등 다양한 기능을 수행할 예정이다. 게이트웨이는 2025년 발사를 목표로 하고 있으며, NASA의 아르테미스 임무의 중요한 부분으로 국제 및 상업적인 파트너와 협력하여 몇 년 안에 달 남극에 도달할 예정이다. AEPS의 리드 엔지니어인 로히트 샤스트리(Rohit Shastry)는 "이 기술이 어떤 종류의 임무를 수행하게 될지 지켜보는 것이 흥미로울 것 같다. 우리는 지금까지 이루어진 것의 한계를 뛰어넘고 성능과 기회를 향상시키기 위해 큰 도약을 하고 있다"라고 말했다. AEPS는 태양 전기 엔진을 기반으로 하는 전기 추진 시스템이지만, 다른 형태의 전기 추진 시스템으로는 핵 반응기를 사용하는 핵 전기 추진(NEP)이 있다. AEPS는 현재 제작 중인 가장 강력한 전기 추진체이며, NASA는 이전에도 전기 추진을 딥스페이스 임무에 사용한 바 있다. 예를 들어 2015년 발사된 NASA의 던(Dawn) 우주선은 이온 추진 시스템을 사용한 최초의 과학 탐사선이었다. 던 우주선은 중량이 1240kg에 달하는 비교적 작은 탐사선으로 7년 반 동안 우주를 날아 소행성 베스트와 세레스를 탐사했다. 최근인 지난 10월 13일에 성공적으로 발사된 NASA의 프시케(Psyche) 탐사선은 태양 전기 추진을 사용한 것으로, 소행성 16 프시케로 가는 36억 킬로미터(22억 마일) 여행을 하고 있다. AEPS의 성공적인 자격 시험은 전기추진 기술의 발전에 있어 중요한 진전이며, 이는 미래 우주 탐사를 위한 새로운 가능성을 열어줄 것으로 기대된다.
-
- 산업
-
NASA, 전기추진 시스템(AEPS) 자격 시험 성공
-
-
이탈리아 해군, 드론으로 지중해 희토류 채굴 나선다
- 이탈리아 해군이 지중해에서 리튬 등 희토류 채굴에 나선다. 유럽 방위 전문매체 디펜스 뉴스는 지난 10월 26일(현지시간) 이탈리아 군 고위관계자를 인용, 이탈리아 해군이 곧 지중해의 해저 희토류 채굴을 검토중이라고 보도했다. 마테오 페레고 디 크렘나고(Matteo Perego di Cremnago) 이탈리아 국방부 차관은 디펜스 뉴스와의 인터뷰에서 "지중해 해저에 희토류가 있다는 것을 알고 있다"며 "바다 밑으로 들어가서 채굴할 수 있다"고 말했다. 희토류 광물과 리튬은 배터리, 휴대폰, 레이저, 위성이나 마이크로칩을 만드는 데 핵심 원료로 서구에서 수요가 매우 높다. 현재 중국이 희토류 매장량이 세계에서 가장 풍부한 것으로 알려졌다. 유럽에서는 육지에서 채굴할 수 있는 희토류를 찾는 작업이 진행 중이지만, 조사에 따르면 바다 밑에도 희토류가 풍부한 지층이 존재한다. 크렘나고 국방부 차관은 해저 희토류 채굴을 보호하고 해저 인터넷 케이블 방어할 수 있을 것으로 예측했다. 그는 이탈리아 해군은 이러한 전략적 노력에 보안을 제공할 수 있는 방법을 계획하기 위해 이미 업계와 논의하고 있다고 덧붙였다. 차관은 "해군은 잠수부, 잠수함, 기뢰 제거기 등을 제공할 수 있으며 무인 기술이 중요할 것"이라고 말했다. 그는 "해저에서 활동 후 수면으로 올라와 태양 에너지로 자율 재충전할 수 있는 드론은 인프라와 해저 채굴을 모니터링할 수 있을 것"이라고 설명했다. 전기자동차 배터리에 필수적이며 전 세계가 가스 연료 차량에서 탈피하는 데 핵심적인 역할을 하는 리튬은 주로 호주와 중국, 남미에서 채굴된다. 유럽은 2050년까지 35배 더 많은 리튬이 필요할 것으로 예측하고 있다. 유럽위원회의 우르줄라 폰 데어 라이엔 위원장은 백색 분말인 리튬이 "곧 석유와 가스보다 훨씬 더 중요해질 것"이라고 말했다. 지난해 발트해에서 발생한 노르드 스트림 가스관 공격 이후 전략적 해저 인프라를 보호해야 할 필요성이 더욱 절실해졌다. 공격 이후 이탈리아 해군은 이탈리아 최대 민간 케이블 공급업체와의 계약의 일환으로 잠수함을 사용해 지중해 해저 인터넷 케이블을 감시하고 방해 행위를 저지하기로 약속했다. 올해 이탈리아는 해저에서 전 세계를 가로지르는 에너지 파이프라인과 인터넷 케이블에 대한 해저 보안을 강화하기 위한 EU의 영구 구조 협력(PESCO) 계획의 새로운 프로젝트를 주도하고 있다. 이탈리아 해군 관계자는 가까운 미래에 파이프라인과 케이블을 순찰하는 해저 해군 드론이 해저에 있는 충전소에 들러 배터리를 충전하고 데이터를 전송하면 몇 달 동안 잠수 상태를 유지할 수 있게 될 것이라고 말했다. 페레고 디 크렘나고 차관은 해저 인프라를 보호하는 해군의 미래 역할은 내년에 이탈리아 라 스페치아(La Spezia)에 문을 열 예정인 새로운 해저 기술 센터에서 기업, 대학, 연구센터, 해군을 한데 모아 연구할 것이라고 말했다. 한편, 환경 단체들은 해저 채굴이 해저의 자연 서식지를 훼손할 것이라고 주장하며 희토류 채굴 중단을 촉구했다. 한국, '탐해3호'로 해저 희토류 탐사 한국도 희토류 등 자원을 탐사하기 위해 한국지질자원연구원에서 '탐해(探海) 3호'를 운용하고 있다. 1868억원에 이르는 대규모 연구개발(R&D) 예산이 투입된 탐해3호는 2023년 7월6일 진수식을 가졌다. 탐해3호는 내년 4월부터 석유가스 등 해저 자원 탐사, 이산화탄소 해저 저장소 선정, 해저지층구조 변화 탐지 등 다양한 임무를 수행할 예정이다. 산업통상자원비가 건조비를 지원했고 지질자원연구원에서 운용하게 된다. 그동안은 탐해 2호가 1997년 취항해 26년여간 물리탐사연구를 수행했다. 지질연이 완성한 '태평양 해저 희토류 지도'에 따르면 태평양 해저 0~5m 기준으로 현재 희토류 매장이 확인된 지역은 159곳에 이른다. 희토류가 비교적 고르게 분포된 남위 30도, 서경 140도 부근 남태평양 1개 지역에서만 약 4860t가량 매장돼 있는 것으로 추정된다. 네오디뮴 등 핵심 5개 희토류의 경제적 가치만 2400억원 가량에 이른다. 연구진은 희토류 매장 지역의 특성을 인공지능(AI)으로 분석해 서태평양 등 매장 가능성이 높은 지역을 추가로 예측하고 있다.
-
- 산업
-
이탈리아 해군, 드론으로 지중해 희토류 채굴 나선다
-
-
NASA, 금속성분 풍부한 '프시케' 소행성 탐사
- 미국 항공우주국(NASA)은 화성과 목성 사이의 궤도에 있는 프시케(Psyche)라는 금속성분이 풍부한 소행성 탐사를 시작했다. 미국 매체 더 힐에 따르면 프시케는 철과 니켈 등의 금속으로 풍부하며, 길이가 280km에 달하는 거대한 소행성이다. NASA는 이 소행성이 충돌로 인해 표면의 암석이 제거된 채 남아있는 행성 핵으로 보고 있으며, 이를 통해 지구를 포함한 행성들의 핵이 어떻게 형성되었는지에 대한 단서를 찾을 수 있을 것으로 기대하고 있다. NASA의 제트 추진 연구소(JPL)는 지난 10월 13일 프시케 탐사선을 우주로 쏘아 올렸다. 이 탐사선은 약 6년 동안 40억km를 여행해 2029년 8월에 동일한 이름의 목적지인 프시케 소행성에 도착할 예정이다. 그 전에 탐사선은 2026년 5월 화성 근처를 지나며 화성의 중력을 이용해 속도를 증가시키고 방향을 조절한다. 행성에 도착한 후에는 약 26개월 동안 고도 65~700km 상공에서 프시케를 공전하며 지형과 구성 성분, 자기, 중력 등 다양한 정보를 수집할 계획이다. 이번에 탐사를 진행하는 '프시케' 탐사선은 소행성 이름을 따서 붙여졌다. 다중 스펙트럼 이미저, 감마선과 중성자 분광계, 자력계와 X-밴드 중력 과학 조사를 포함한 여러 도구를 탑재하고 있다. 또한 전파가 아닌 레이저를 사용하여 훨씬 더 빠른 속도로 데이터를 지구로 다시 보내는 심우주 광통신 장치를 테스트한다. 프시케 탐사 임무는 태양계의 탄생과 진화에 대한 많은 정보를 밝혀내어 과학에 도움이 될 것으로 기대한다. 아울러 우주의 천연 자원 채굴에 대한 정보도 수집한다. 일부 전문가들은 프시케 소행성의 광물 가치를 약 10조 달러(약 1경3430조원)로 추정하고 있다. '지구 물리학 연구 저널(Journal of Geophysical Research)'의 한 논문은 대략 11.65조 달러로 추정하기도 했다. 정확한 가치는 아직 확인되지 않았지만 미래에 이 소행성의 풍부한 광물을 채굴하려는 많은 시도가 예상된다. 핵 융합 추진 기술 발전 기대 프시케 혹은 다른 소행성에서의 채굴을 시작하기 위해서는 향후 5~6년 동안 새로운 기술 개발이 필요하다. 지구와 프시케 사이의 거리가 매우 멀기 때문에, 현재의 기술로는 소행성에서 광물을 채굴하고 지구로 귀환시키는 데 엄청난 비용이 들 것으로 예상되기 때문이다. 핵 융합 추진 기술이 개발된다면, 지구와 프시케 사이의 이동 시간이 크게 단축될 것으로 보인다. 이 기술을 활용하면 로봇을 이용해 소행성에서 자원을 채굴하고 정제한 후, 채굴된 자원을 우주 산업 인프라로 운송하는 광산 선박의 활용이 가능해질 것이다. 프시케와 같은 태양계의 천체들은 경제적인 이윤을 창출할 수 있으며, 이는 많은 이점을 가지고 있다. 소행성 채굴은 지구에서의 채굴과 달리 환경에 미치는 부정적인 영향이 없다. 저명한 천체 물리학자 닐 드 그래스 타이슨(Neil deGrasse Tyson)은 소행성과 달의 채굴에 대해 긍정적인 견해를 제시했다. 그는 이러한 채굴 활동이 천연 자원에 대한 충돌과 갈등을 줄일 수 있을 것이라고 말했다. 한국, 다누리 탐사 계획 우리나라도 우주 광물 채굴 분야에 뛰어들기 위한 준비를 하고 있다. 한국항공우주연구원은 2029년부터 2031년까지 '다누리'라는 이름의 소행성 탐사선을 개발 중이다. '다누리'는 지구로부터 약 1.5억km 떨어진 '162173 APL' 소행성을 목표로 하고 있다. 이 소행성은 지름이 약 500m이며, 철, 니켈, 황, 규산염 등의 광물이 풍부하다. '다누리'는 2029년 8월에 발사되어 2031년 12월에 APL 소행성에 도착할 예정이며, 그곳의 지형, 구성 성분, 자기장 등을 조사할 계획이다. '프시케'와 '다누리'의 탐사는 우주 광물 채굴의 실현 가능성을 입증하는 중요한 단계가 될 것이다. 우주 광물 채굴이 현실화되면 지구의 자원 문제를 해결하고, 새로운 경제적 기회를 열어줄 것으로 예상된다.
-
- 산업
-
NASA, 금속성분 풍부한 '프시케' 소행성 탐사
-
-
나사, 베누 소행성 샘플서 '탄소와 물' 존재 확인
- 나사(NASA)가 우주에서 채취해 지구로 가져온 45억 년 된 소행성 '베누(Bennu)' 샘플에 탄소와 물의 존재가 확인됐다. 베누 샘플 연구는 지구 생명체의 구성 요소가 암석에서 어떻게 출현했는지 실마리를 제공할 것으로 보인다. 미국 항공우주국(NASA)은 11일(현지시간) 텍사스주 휴스턴에 있는 존슨우주센터(JSC)에서 지난 9월 24일 귀환한 소행성 탐사선 '오시리스-렉스'(OSIRIS-REx)가 채취한 '베누' 샘플을 처음으로 공개했다. 이 발견은 NASA의 오시리스-렉스(OSIRIS-REx, 기원, 스펙트럼 해석, 자원 식별 및 보안 - 레골리스 탐사선) 과학팀의 예비 평가의 일부였다. 빌 넬슨 NASA 국장은 "오시리스-렉스 샘플의 돌과 먼지에는 물과 많은 양의 탄소를 포함하고 있다"며 "과학자들이 앞으로 여러 세대에 걸쳐 지구 생명체의 기원을 조사하는 데 도움이 될 것"이라고 밝혔다. 풍부한 물과 탄소 함유 NASA는 소행성의 암석과 먼지에 담긴 비밀은 앞으로 수십 년 동안 연구되어 태양계가 어떻게 형성되었는지, 지구에 생명체의 전구 물질이 어떻게 뿌려졌는지, 지구와의 소행성 충돌을 피하기 위해 어떤 예방 조치를 취해야 하는지에 대한 통찰력을 제공할 것으로 기대했다. 넬슨 국장은 "오시리스-렉스 샘플은 지금까지 지구로 보내진 소행성 샘플 중 가장 탄소가 풍부하다"며 "첫 번째 분석 결과, 점토 광물 속에 물이 상당히 많이 함유돼 있다. 광물과 유기 분자 모두에 탄소도 있다"고 말했다. NASA 존슨의 큐레이션 전문가들은 특별히 지어진 새로운 클린룸에서 지난 열흘 동안 샘플 반환 하드웨어를 조심스럽게 분해하여 그 안에 들어 있는 대량의 샘플을 엿볼 수 있었다. 당초 소행성 샘플은 60g으로 계획됐지만 과학자들은 처음 과학용 캐니스터 뚜껑을 열었을 때 수집기 헤드, 캐니스터 뚜껑, 베이스 외부를 덮고 있는 소행성 물질을 추가로 발견했다. 여분의 물질이 너무 많아서 기본 샘플을 수집하고 담는 세심한 과정이 느려졌다는 설명이다. 넬슨은 "이 물질들은 지구 형성에 중요한 요소"라며 "이는 생명체가 탄생할 수 있었던 원소의 기원을 규명하는 데 도움이 될 것"이라고 말했다. 태양계와 지구 원소 규명 기대 처음 2주 동안 과학자들은 주사 전자 현미경, 적외선 측정, X-선 회절, 화학 원소 분석을 통해 이미지를 수집하여 행성 초기 물질에 대한 "빠른" 분석을 수행했다. 또한 X-선 컴퓨터 단층 촬영을 통해 입자 중 하나의 3D 컴퓨터 모델을 생성하여 다양한 내부를 들여다봤다. 이 초기 모습을 통해 샘플에 탄소와 물이 풍부하다는 증거를 확인할 수 있었다. 오시리스-렉스 소행성 탐사선에 탑재된 캡슐은 2016년 9월 케이프 커내버럴 우주센터에서 발사된 지 7년 만에 38억6000마일(62억km)에 달하는 대장정 끝에 지난 2023년 9월 24일 지구로 무사히 귀환했다. 이 탐사선은 2020년 10월 지구에서 약 3억3300만㎞ 떨어진 곳에 있는 베누 표면에서 흙과 자갈 등 샘플 250g을 채취한 뒤 2021년 5월 지구로의 귀환을 시작했다. 이는 미국으로선 첫 번째 소행성 샘플 채취였지만, 앞서 일본이 이토카와(2010년), 류구(2020년) 소행성으로부터 각각 채취한 샘플 1g 미만과 5.4g보다는 많은 양이다. 기상 현상과 지각 변동 등으로 크게 변형된 지구와 달리 베누는 45억년 전 태양계 형성 초기의 물질을 그대로 간직하고 있을 것으로 추정되고 있다. 투손 애리조나 대학교의 오시리스-렉스 수석 연구자인 단테 로레타(Dante Lauretta)는 "소행성 베누의 먼지와 암석 속에 보존된 고대의 비밀을 들여다보면서 우리는 태양계의 기원에 대한 심오한 통찰력을 제공하는 타임캡슐을 열어보고 있다"라고 말했다. 로레타는 "탄소가 풍부한 물질과 물을 함유한 점토 광물이 풍부하게 존재하는 것은 우주 빙산의 일각에 불과하다. 수년간의 헌신적인 협력과 최첨단 과학을 통해 이루어진 이러한 발견은 우리가 살고 있는 천체뿐만 아니라 생명의 시작에 대한 잠재력을 이해하는 여정으로 우리를 이끌고 있다"고 전했다. 우주 신비 규명 기대 한편, NASA는 존슨우주센터 내 전용 청정실에서 앞으로 2년간 베누의 샘플을 정밀 분석할 예정이다. 베누에서 채취된 샘플이 어떻게 소행성이 형성되고 진화했는지 우주 유산의 신비를 풀 수 있을 것으로 기대를 모으고 있다. 또한 이를 통해 지구에 생명체 출현에 대한 인류의 오랜 궁금증을 풀고 앞으로 이 소행성이 지구를 어떻게 비껴갈 수 있는지를 연구하는 데에도 도움을 줄 수 있을 것으로 보고 있다. 과학자들은 베누가 지금부터 약 160년 후 지구와 충돌할 가능성이 큰 것으로 추정하고 있다. NASA는 미래 세대의 과학자를 포함한 전 세계 과학자들의 추가 연구를 위해 베누 소행성 샘플의 최소 70%를 존슨 기지에 보존할 예정이다. 아울러 올가을에는 스미소니언 박물관, 휴스턴 우주 센터, 애리조나 대학교에 추가 샘플을 대여하여 공개적으로 전시할 계획이다.
-
- 산업
-
나사, 베누 소행성 샘플서 '탄소와 물' 존재 확인
-
-
나사, 소행성 베누 시료 첫 개봉
- 과학자들은 지난달 베누 소행성에서 가져온 시료에 놀라운 반응을 보였다. 그 놀라움의 원인은 어떤 것일까? 이 질문의 답은 오는 10월 11일 미국 우주항공국(NASA)의 라이브 방송을 통해 밝혀질 예정이다. 미국 CNN에 따르면, NASA의 오시리스 렉스(OSIRIS-Rex) 탐사선은 7년의 임무를 성공적으로 마무리하고 행성에서 취득한 시료를 곧 분석할 계획이다. 과학자들은 지난 9월 26일, 과학자들이 탐사선의 시료 용기를 열자, 용기 주변과 내부에서 암석과 토양을 수집하는 데 사용된 기구로부터 어둡고 미세한 물질을 발견했다. CNN은 이것이 소행성에 대한 초기 통찰을 제공하는 중요한 장면이라고 전했다. 이 시료는 지난 9월 24일, 미국 유타 사막의 국방부 유타 시험훈련장에 예상보다 3분 빠르게 도착했다. 탐사선은 베누라는 소행성에 착륙해 시료를 채취한 후 지구로 귀환했고, 이 과정에서 약 60억 2100만km(38.6억 마일)를 이동했다. 소행성은 태양계 형성 시기의 유물로, 행성이 초기에 형성되며 겪은 혼란스러운 시기의 모습을 반영한다. CNN은 지구 근처의 소행성들이 지구에 위협을 가하므로, 그들의 구성과 궤도를 파악하는 것이 지구와의 충돌 위험을 회피하기 위한 중요한 방법이라고 설명했다. 현재, 이 시료는 나사의 휴스턴 존슨 우주센터에 있는 청정실에서 정밀 분석을 위해 보관 중이다. 탐사선은 2020년 10월 터치 앤 고(Touch-and-Go) 방식의 TAGSAM 시료 획득 메커니즘을 이용해 베누 표면의 시료를 성공적으로 수집했다. 이 과정에서 많은 양의 물질이 획득되어 빠르게 분석할 수 있을 것이라는 기대가 컸다. 그러나 메커니즘 내부에서 아직 전체 시료에 접근하기 전에도 충분한 양의 물질이 확인되었다. 오시리스 렉스의 큐레이션 책임자인 크리스토퍼 스니드(Christopher Snead)는 "물질의 양이 많아 예상했던 것보다 분석에 더 많은 시간이 걸릴 것으로 보인다"라고 전했다. 미국 CNN 보도에 따르면, 현재 TAGSAM 헤드를 통해 수집된 시료의 초기 분석이 진행 중이며, 베누에서 얻은 물질에 대한 첫 번째 결과가 곧 공개될 것으로 예상된다. 오시리스 렉스는 2018년 12월 발사된 후 약 2년여 만에 지구에서 약 1억3000만km 떨어진 태양 궤도를 도는 소행성 베누의 상공에 도착했다. 2020년 10월에는 베누 표면에 착륙하여 시료를 채취한 후, 2021년 5월에 지구로 귀환하기 시작했다. 린지 캘러(Lindsay Keller) 오시리스 렉스의 시료 분석팀 대표는 "우리는 시료를 원자 단위까지 정밀하게 분석할 수 있는 세심한 기술을 갖추고 있으며, 이 분석을 위한 최고의 전문가와 최첨단 설비를 보유하고 있다"고 성명에서 밝혔다. 팀은 베누에서 얻은 시료의 초기 분석을 위해 주사 전자 현미경, X선, 적외선 기기 등을 활용하여 재료의 화학적 특성을 파악하며, 수화된 광물과 유기 입자의 존재를 확인한다. 또한, 소행성 내에 특정 광물이 풍부하게 존재하는지도 파악할 예정이다. 과학자들은 베누에서 얻은 풍부한 시료를 통해 무엇을 우선적으로 예상해야 할지에 대한 보다 명확한 인식을 갖게 될 것으로 예상하고 있다. 그들은 베누와 같은 소행성이 지구 초기 형성 단계에서 필수적인 원소인 물과 같은 물질을 지구에 전달했을 가능성을 검토하고 있다. 한편, 이 시료를 지구로 전달한 탐사선은 '오시리스 아펙스(OSIRIS-APEX)'라는 이름으로 재명명되었으며, 2029년에 지구 근처에서 맨 눈으로도 관측 가능한 거리까지 접근하는 소행성 아포피스의 연구를 위해 이동 중이다.
-
- 산업
-
나사, 소행성 베누 시료 첫 개봉
-
-
나사 탐사선 '오시리스 렉스', 7년 만의 귀환⋯소행성 베누 샘플 채취
- 미국 항공우주국(NASA)에서 쏘아올린 소행성 연구 우주 탐사선 오시리스 렉스(OSIRIS-REx)가 7년 만의 귀환을 앞두고 있다. 미국 우주항공전문매체 스페이스닷컴(SPACE.com)에 따르면, 나사의 오시리스 렉스 미션의 소행성 샘플 반환 캡슐이 2023년 9월 24일(현지시간) 오전 10시 EDT (GMT 1400)에 미국 유타 주의 더그웨이 근처에 위치한 국방부 유타 시험 및 훈련 범위(Department of Defense's Utah Test and Training Range)에서 착륙할 예정이다. 2016년 9월에 발사된 오시리스 렉스는 2020년 10월에 소행성 베누에 도착해 표면에서 샘플을 성공적으로 채취했다. 이제 9월 24일, 7년 간의 깊은 우주 여정을 마치고 채취한 샘플을 지구로 가져옴으로써 NASA는 새로운 우주 탐사 역사의 한 페이지를 장식하게 될 것으로 보인다. 천문학자 지안루카 마시(Gianluca Masi)는 이번 오시리스 렉스의 지구 접근을 이탈리아 체카노의 망원경으로 관측할 계획이다. 그는 이날 밤에는 무료 라이브 스트림으로 오시리스 렉스의 귀환을 공개할 예정이며, 관심 있는 이들은 해당 방송을 통해 직접 관찰할 수 있다. 한편, NASA는 2017년에 오시리스 렉스 탐사선을 소행성 베누 탐사를 위해 발사했다. 이 탐사선은 2020년에 소행성에 도착해 샘플을 성공적으로 채취했고, 그 샘플이 이제 지구로 안전한 귀환을 몇시간 앞두고 있다. 특별한 반환 캡슐과 낙하산을 이용해, 소중한 샘플들이 안전하게 지구에 돌아올 예정이다 탐사선의 샘플 반환 캡슐은 착륙 약 4시간 전에 모체선에서 분리될 예정이며, 이후 지구로의 귀환 여정을 시작하게 된다. 천문학자들은 망원경을 통해 오시리스 렉스의 탐사 대상인 소행성 베누를 관측했을 때, 단단한 물체로 판단했다. 그러나 오시리스 렉스 미션의 주요 과학자 케빈 월쉬의 분석에 따르면, 베누는 느슨한 자갈과 다공성의 저밀도 바위로 이루어진 '지옥 같은' 공간이라는 사실이 드러났다. 오시리스 렉스 우주선은 2023년 9월 24일로 예정된 소행성의 샘플을 지구로 반환하기 위해 마지막 궤도 조정을 진행했다. 현재 이 우주선은 지구로부터 약 280만 km 거리에 있으며, 시속 약 23,000km로 지구에 접근 중이다. 24일 일요일, 지구에서 약 10만2000km 위의 공간에서 오시리스 렉스는 샘플 캡슐을 분리해 유타 사막의 36마일 x 8.5마일 구역에 착륙시킬 예정이다. 이 작업을 위해 나사와 미국 군대가 현장에서 대기 중이다. 이 샘플 캡슐에는 500미터 폭의 소행성 베누에서 채취된 물질이 담겨있다. 이 물질은 태양계의 역사에 관련된 중요한 정보를 담고 있을 것으로 예측된다. 오시리스 렉스가 2018년에 소행성 베누에 접근했을 때, 그 모습은 예상했던 것과 크게 달랐다. 이 프로젝트의 주요 과학자인 다른테 로레타는 "소행성의 표면 구조가 우리의 예상과는 크게 달라, 우주선은 베누의 느슨하고 자갈로 덮인 표면에 안전하게 착륙하기 위해 재프로그래밍이 필요했다"고 스페이스 닷컴에 전했다. 2016년 시작된 7년 미션의 마무리 단계에 접어든 오시리스 렉스는 지난 9월 10일 강력한 추진 엔진을 발사해 지구로의 궤도 변경을 수행했다. 그러나 오시리스 렉스의 미션이 단순히 지구에 안착하는 것으로 끝나지 않는다. 캡슐 내부가 오염될 수 있으므로 이를 텍사스 휴스턴의 존슨 우주 센터에 위치한 이동식 클린룸으로 옮겨진다. 클린룸에서는 캡슐의 외부를 깨끗하게 제거하여 내부 샘플에 접근해야 한다. 존슨 우주 센터의 관계자는 "베누에서 가져온 샘플 중 4분의 1은 오시리스 렉스 팀이 보관하게 될 것"이라며 "나머지 샘플은 향후 수십 년간 다양한 연구에 활용될 예정"이라고 밝혔다.
-
- 포커스온
-
나사 탐사선 '오시리스 렉스', 7년 만의 귀환⋯소행성 베누 샘플 채취
-
-
美 나사, 1경 규모 금속 행성 탐사선 10월 발사
- 미국 텍사스주 크기의 행성이 엄청난 속도로 지구를 향해 돌진하고 있다. 미국 우주항공국(NASA)는 비행선을 보내 이 행성에 구멍을 뚫고, 핵탄두를 설치해 폭파하는 방법으로 행성을 둘로 쪼개는 아이디어를 낸다. 영화 '아마겟돈' 이야기다. 그런데 영화 같은 일이 실제로 벌어질 전망이다. 나사는 이번엔 행성을 폭파하는 것이 아니라 어떤 광물이 있는지 조사하기 위해 비행선을 발사한다. 독일의 날씨전문 누리집 '다스베터(daswetter)'에 따르면, 과학자들은 '16프시케(16 Psyche)'라는 이름의 소행성을 탐사할 예정이다. 이번 탐사는 행성의 구성을 파악하기 위한 것이다. 이 소행성은 지난 1852년 3월 17일 이탈리아의 천문학자 안니발레 드 가스프리스(Annibale de Gasparis)가 발견했으며, 소행성대에서 가장 무거운 10개의 소행성 중 하나로 꼽힌다. 과학자들의 이번 탐사는 행성의 형성과 관련된 금속 및 기타 구성 요소에 대한 탐색을 목적으로 한다. 우주는 끊임없이 새로운 비밀을 품고 있으며, 이를 탐사하는 과학자들의 노력은 계속 이어진다. 소행성 '16프시케'는 철, 니켈, 금 등의 금속 성분을 주요 구성 요소로 갖는다. 이러한 특징은 태양계를 구성하는 미행성 핵이 대체로 금속 성분으로 형성됐을 가능성을 시사하며, 과학계는 이 점에 큰 관심을 가지고 있다. 나사가 그린 위의 프시케 상상도처럼 이 소행성의 형태는 감자와 유사한 불규칙한 모양을 하고 있다. 어쩌면 편평한 타원형으로 보일 수도 있다. 적도를 가로지르는 가로 길이는 약 280km, 세로 길이는 232km로, 전체 표면적은 약 16만5800 ㎢에 이른다. 최근의 연구에서는 이 소행성의 주요 성분이 금속으로 되어 있다고 분석됐다. 일반적으로 유리와 모래에서 발견되는 금속성분과 규산염의 복합체로 이해하면 된다. 레이더를 통한 관찰과 소행성의 열관성 측정 결과, 프시케는 암석과 금속의 조합으로 이루어져 있을 가능성이 높다. 특히, 전체 부피 중 30~60% 정도가 금속성분으로 구성되어 있는 것이 확인됐다. 과학자들은 광학과 레이더 관찰을 이용해 프시케의 3D 모델을 구축했다. 이 모델에는 두 개의 함몰된 분화구가 포함되어 있다. 그 결과 소행성 표면에는 금속 함량과 색상에 상당한 차이가 있음이 드러났다. 이 소행성은 우리 태양계를 구성하는 요소 중 하나인 소행성 핵에서 파생된 대량의 금속성분으로 이루어져 있을 가능성이 높다고 과학자들은 추정하고 있다. 소행성 프시케는 태양계 형성 초기에 자주 일어났던 여러 차례의 격렬한 충돌을 견뎌낸 것으로 추정된다. 이는 우리에게 지구의 핵이나 다른 암석 행성의 핵이 어떻게 형성되었는지에 대한 통찰을 제공할 수 있다. 프시케는 태양으로부터 3억7800만~4억9700만km 떨어진 화성과 목성 사이의 태양을 공전한다. 이는 2.5~3.3AU(1AU, Astronomical unit, 지구와 태양 사이의 거리)거리로, 프시케가 태양 주위를 회전하는데 지구 시간으로 약 5년이 걸리지만, 자체 축(프시케의 하루)을 중심으로 한 번 회전하는 데는 4시간이 조금 넘게 걸린다. 나사는 2023년 10월 5일에 '프시케(Psyche)'라는 탐사선을 발사할 계획이다. 이 탐사선은 중력을 이용해 화성 상공을 지나가며, 이후 태양 전기 추진을 활용해 소행성에 접근할 예정이다. 탐사선이 소행성에 도착하면, 4개의 다른 궤도에서 탐사 활동을 시작한다. 주된 연구 목적은 프시케가 실제로 소행성의 핵심 부분인지 파악하는 것이다. '프시케 임무'의 핵심 과학적 목표는 행성 형성의 기본 구성 요소를 분석하고, 이전에 경험하지 못한 새로운 세계를 탐험할 계획이다. 연구팀은 프시케에 핵의 잔여 물질이 있는지, 그 연대는 어느 정도인지, 그리고 지구의 핵과 유사한 환경에서 형성되었는지, 그 표면의 특성은 어떠한지를 밝히려고 한다. 프시케 탐사 우주선과 태양전지는 테니스장 정도의 크기다. 우주선의 몸체는 소형 픽업트럭 보다 약간 크고, 높이는 농구 골대 정도다. 우주선에는 △금속성분과 규산염 성분을 구분할 수 있는 고해상도 멀티스펙트럴 이미저(Multispectral Imager) △ 소행성의 원소 구성을 감지하는 감마선 및 중성자 분광계, △ 잔류 자기장을 감지하고 측정하는 자력계, △ X-밴드 무선 통신 시스템을 사용해 중력장을 고정밀도로 측정하고 프시케의 내부 구조에 대한 정보를 얻을 수 있는 전파과학, △ 짧은 시간에 많은 데이터를 전송할 수 있는 심우주 광통신(DSOC) 등이 탑재된다. 16프시케가 예상대로 대량의 금속으로 이루어져 있다면 그 가치는 약 10조 달러(한화로는 약 1경3280조원)로 추정된다. 그러나 이번 탐사 임무의 주요 목적은 단순한 채굴이나 경제적 이익이 아니라 해당 행성의 구성물질을 파악하는 것에 있다. 미국과 일본 등 우주 강국은 다른 소행성 탐사 프로젝트도 활발히 진행 중이다. 2019년에 발사된 일본의 우주선 '하야부사2'는 2030년 이후 다른 소행성으로의 여정을 계획하고 있다. 나사의 '오시리스 렉스' 탐사선은 소행성 베누(Bennu)에서 수집한 샘플을 지구로 가져오기 위해 오는 9월24일 복귀할 예정이다.
-
- IT/바이오
-
美 나사, 1경 규모 금속 행성 탐사선 10월 발사
-
-
인도 달 탐사선, 영화 '인터스텔라'보다 적은 운행 비용 화제
- 인도의 달 탐사선 '찬드라얀 3호'가 최근 성공적으로 달 남극 지역에 착륙했다. 특히 이번 탐사선의 총 탐사운행 비용이 헐리우드 대작 영화 '인터스텔라'의 제작비보다 적게 들었다는 점이 화제가 되었다. 영국 언론 '인디펜던트'에 따르면 '찬드라얀 3호'는 지난 8월 말 남극 근처에 성공적으로 도달했다. 인도의 달 착륙은 미국, 소련, 중국에 이어 4번째이며 특히 달 남극에 착륙한 것은 인도가 처음이다. 외신에 따르면 찬드라얀 3호는 약 61억 5000만 루피 (약 7500만 달러)라는 아주 적은 비용으로 달 착륙에 성공했다. 찬드라얀 3 운행 비용은 블록버스터급 여러 우주 영화 제작 비용보다 저렴하다. 영화 '인터스텔라(Interstellar)'의 제작비는 1억6500만 달러, 영화 '그레비티(Gravity)'는 1억 달러, '마션(The Martian)'은 1억 800만 달러가 투입됐다. 게다가 영국 내에서 가장 비싼 주택 가격인 2억 파운드(약 3289억 원)와 비교하면, 이번 '찬드라얀 3호' 프로젝트 비용은 그보다 3.5배나 저렴한 것으로 나타났다. 인도가 지난 2019년 달 착륙을 시도한 '찬드라얀 2호'는 이번 '찬드라얀 3호'보다 30%나 높은 예산이 투입됐으나 달 착륙은 실패했다. 그러나 엔지니어들은 '찬드라얀 2호'를 발사하면서 얻은 경험을 토대로 '찬드라얀 3호'가 성공적으로 달에 착륙할 수 있었다고 전했다. 인도우주연구기구(ISRO) 측은 "달을 우주 탐사의 전초 기지로 만들기 위해서는 여러 차례의 탐사와 연구가 필요하다"며 "앞으로 달의 자원을 활용하여 기지 건설 및 지원물품 보급 방안을 연구하게 될 것"이라고 전했다. 나렌드라 모디 인도 총리는 달 탐사선이 남극에 도착한 지난 8월 30일 소셜미디어에 "찬드라얀 3호가 인도의 우주 오디세이에 새로운 전기를 작성했다"고 밝혔다.
-
- 산업
-
인도 달 탐사선, 영화 '인터스텔라'보다 적은 운행 비용 화제
-
-
달, 고대 얼음 없다..."달 탐사 전략 수정"
- 달의 영구음영 지역에 존재하는 것으로 알려진 얼음이 탄생 초기에 생성된 '고대 얼음'이 아니라는 연구 결과가 공개됐다. 달의 영구음영 지역(permanently shadowed regions, PSR)은 달의 남극과 북극 등 햇빛이 전혀 들지 않는 영원한 음지를 말한다. 과학 기술 전문 매체 인터레스팅엔지니어링에 따르면 행성과학연구소의 새로운 연구 결과, 달의 얼음이 우리가 알고 있는 것보다 훨씬 '젊다'는 사실이 밝혀졌다. 이번 발견으로 달 탐사 전략이 크게 수정될 전망이다. 행성과학연구소의 노버트 쇼르호퍼 선임 연구원이 이끄는 연구팀은 최근 '사이언스 어드밴스(Science Advances)' 학술지에 발표한 논문에서 달의 영구음영 지역(PSR)에 저장된 얼음은 약 34억년 전에 형성된 것으로 기존 추정치인 45억년보다 훨씬 '젊다'는 연구 결과를 공개했다. 쇼르호퍼 박사는 "이번 연구 결과로 달의 지질학적 이해뿐만 아니라 얼음 발견 예측에 대한 전략도 크게 수정될 것"이라고 말했다. 특히, 이 얼음은 달에서의 인간 생명 유지와 연료 생산 자원으로의 활용 가능성 때문에 많은 주목을 받고 있다. 달은 지구로부터 점점 멀어지면서 중요한 스핀 축 방향의 변화를 겪었다. 이 변화 이후에 영구적으로 그림자가 드리운 지역(PSR)이 등장하고 확장됐다. 달의 얼음은 수십억 년에 걸쳐 보존된 것으로 알려져 왔으며, 이로 인해 태양빛에서 가려진 PSR 지역은 여러 탐사 임무의 핵심으로 여겨져 왔다. 그러나 이번 연구 결과는 달 탐사의 궤도를 크게 변경할 필요가 있다는 점이 밝혀졌다. 지난해 발표된 프랑스의 한 연구와도 일치하는 이번 연구 결과는 지구와 달 사이의 거리 변화를 중심으로 진행됐다. 쇼르호퍼 박사는 이에 대한 깊은 통찰을 얻고 즉각 이를 달의 얼음 탐사에 반영하기 위한 조사를 시작했다고 밝혔다. 랄루카 루푸 공동 저자와 논문 작업을 협업한 쇼르호퍼는 지구와 달 사이의 거리 변화 모델을 바탕으로 달의 스핀 축 방향을 추정하고 PSR 지역을 정확하게 매핑했다. 11억년 '젊은' PSR 얼음 일반적으로는 달이 45억 년 전 초기에 혜성과 화산 활동으로 물이 생기거나 수증기를 내뿜었다고 믿어져 왔다. 그러나 이 연구에서는 PSR이 실제로는 약 34억 년 전에 형성되기 시작했다는 사실을 밝혀냈다. 쇼르호퍼는 "현재 극지방에서 발견되는 물은 달 초기의 물이 아니다. 데이터를 기반으로 PSR의 평균 연령은 최대 18억 년으로 추정된다. 따라서 달에는 실제로 '고대 얼음 저장소'가 없다"라고 강조했다. 또한 2009년에 달의 분화구 관측 및 감지 위성을 통해 발견된 물이 위치한 지점의 PSR은 10억 년보다 더 젊다. 쇼르호퍼는 이것이 긍정적인 발견이라고 지적하며, 젊은 PSR에도 얼음이 있을 가능성이 높다는 것을 시사했다. 한편, 이 연구는 얼음이 풍부하게 있는 것으로 보이는 수성의 극지방에 대한 관심을 증대시키고 있다. 쇼르호퍼는 "수성의 PSR이 오래되었을 것이며, 초기에 물을 포착했을 수 있다. 이것이 두 행성 간의 불일치를 설명할 수 있을 것"이라고 추측했다. 쇼르호퍼의 이번 연구는 NASA의 달 데이터 분석 프로그램 보조금과 태양계 탐사 연구 가상 연구소(SSERVI)의 GEODES 노드 지원을 받아 진행했다. 한국 달 탐사선 '다누리' 한편, 한국 달 탐사선 '다누리'도 달의 영구음영 지역 사진을 전송해 우리나라 달 탐사 위상을 높이고 있다. 다누리가 담은 달의 북극 지역 관측 사진은 지난 8월 7일 공개됐다. 달의 북극 지역에 있는 직경 약 20km의 분화구 에르미트-A는 내부에 영원히 태양빛이 닿지 않는 영구음영 지역을 포함하고 있다. 아울러 다량의 물이 얼음 형태로 존재할 것으로 예상되는 지역이기도 하다. 이외에도 다누리는 지구에서 관측하기 쉽지 않은 남극 지역 대형 분화구 드라이갈스키, 미국 아르테미스 III 계획의 착륙 후보지 중 하나인 아문센 분화구 영역 등의 고해상도 이미지를 담아 달의 민낯을 적극 탐사하고 있다. 이들 사진은 지난 8월 7일 대전 한국항공우주연구원에서 열린 '다누리 발사 1주년 기념식 및 우주탐사 심포지엄'에서 공개됐다. 다누리는 작년 8월 5일 오전 8시 8분 미국 플로리다주 케이프커내버럴 우주군 기지에서 발사된 후, 145일 간의 지구-달 항행을 통해 2022년 12월 27일 달 임무궤도에 진입했다. 이후 약 1개월의 시운전을 거쳐 2월 4일 정상 임무운영에 들어갔다. 다누리는 6개의 탑재체로 달 착륙후보지 탐색, 달 과학연구, 우주인터넷기술 검증 등 과학기술 임무를 수행 중이다. 지난 3월에는 우리나라 최초로 달 뒷면 촬영 사진을 전송하기도 했다. 지난 6월 다누리는 잔여 연료량과 본체 영향성 분석을 거쳐 임무운영기간을 2025년까지 연장했다.
-
- 포커스온
-
달, 고대 얼음 없다..."달 탐사 전략 수정"
-
-
[퓨처 Eyes(2)] 인도, 태양 탐사선 '아디트야-L1' 발사 성공
- 인도가 달 정복에 이어 태양의 비밀 벗기기에 도전하고 있다. 인도 달 탐사 우주선 찬드라얀 3호가 달 남극에 착륙한 지 불과 10일 만에 첫 태양 탐사선 아디트야-L1(Aditya-L1)이 태양을 향해 성공적으로 발사됐다. 무게가 약 1480kg(3264 파운드)로 초경량급 우주선인 '아디트야-L1'은 지난 9월 2일 오전 11시 50분(GMT 06시 20분)에 인도 남부 스리하리코타에 있는 사티시 다완 우주센터에서 44.4미터 높이의 극지 위성 발사체(PSLV-XL)를 이용해 태양을 향해 장대한 여행을 시작했다. 이 우주선은 '라그랑주 5'점 중 하나를 중심으로 후광 궤도를 돌며 지구에서 150만km를 비행할 예정이다. 이는 지구-태양 거리의 1%에 해당한다. 인도 우주국은 태양 탐사선이 이 거리를 여행하는 데 4개월(약 125일)이 걸릴 것이라고 밝혔다. 태양계에서 가장 큰 천체를 연구하기 위한 인도 최초의 우주 기반 태양 관측 임무는 '아디티야'라고도 알려진 힌두교의 태양신 수리아의 이름을 따서 명명됐다. BBC에 따르면 우주선 '아디티야-L1'에서 'L1'은 '라그랑주점 1'의 약자로, 인도 우주선이 향하고 있는 태양과 지구 사이의 정확한 지점을 의미한다. 유럽우주국에 따르면 라그랑주 지점은 태양과 지구와 같은 두 개의 큰 물체의 중력이 서로 상쇄되어 우주선이 '호버링(hovering, 정지 비행)'할 수 있는 지점을 말한다. 태양 활동·우주 날씨 실시간 관측 미국 기술 전문매체 테크 크런치에 따르면 인도의 우주 기관인 인도우주연구기구(ISRO)는 아디트야-L1 우주선에 원격 감지용 4개와 현장 실험용 3개 등 총 7개의 과학장비(페이로드, payload)를 설치했다. 탑재된 장비에는데이터를 수집하고 관측을 하기 위해 가시 방출선 코로나그래프, 태양 자외선 영상 망원경, X-선 분광기, 태양풍 입자 분석기, 플라즈마 분석기 패키지, 3축 고해상도 디지털 자력계 등이 장착되어 있다. ISRO는 이 우주선에 태양 코로나(가장 바깥층), 광권(태양 표면 또는 지구에서 보이는 부분), 염색권(광권과 코로나 사이에 있는 얇은 플라즈마 층)을 관찰하고 연구할 7가지 페이로드를 탑재했다고 밝혔다. 코드명 'PSLV-C57'인 이 우주선 임무의 전반적인 목적은 태양 활동과 그것이 우주 날씨에 미치는 영향을 실시간으로 관측하는 것이다. 이륙 한 시간여 만에 아디트야-L1 우주선은 146×12,117마일의 타원형 궤도에 진입시켰다. 인도가 발사체 상단이 두 번의 연소 과정을 거쳐 의도했던 궤도에 우주선을 진입시킨 것은 이번이 처음이다. ISRO의 S. 소마나스 회장은 우주국의 임무 통제 센터에서 참석자들에게 "이제 아디트야-L1은 몇 가지 지구 기동을 거친 후 여정을 시작할 것"이라면서 "아디트야 우주선이 긴 여정을 마치고 L1의 후광 궤도에 진입할 수 있도록 최선을 다하길 기원한다"라고 말했다. 아디트야-L1은 L1을 향해 발사되기 전에 지구를 여러 번 돌게 된다. 그리고 일식 동안 태양이 숨겨져 있더라도 지속적으로 태양을 관찰하고 과학적 연구를 수행할 수 있다. 이번 연구는 과학자들이 태양풍과 태양 플레어와 같은 태양 활동과 그것이 지구와 우주 날씨에 미치는 영향을 실시간으로 이해하는 데 도움이 될 것이다. 태양 탐사 비용 4600만달러 이번 태양 탐사선의 비용이 얼마인지 밝히지 않았지만, 인도 언론의 보도에 따르면 37억 8000만 루피(4600만 달러, 약 615억 원)가 소요될 것으로 예상된다. 아디트야-L1 미션의 프로젝트 책임자인 니가르 샤지는 "아디트야-L1 팀에게는 꿈이 실현된 것"이라고 말했다. 샤지는 "아디트 [임무]가 시운전되면 이 나라의 헬리오피직스는 물론 전 세계 과학계의 자산이 될 것"이라고 기대했다. 과거에는 미국, 유럽, 중국이 태양을 연구하기 위해 우주에서 태양 관측소 임무를 수행했다. 지금까지 지상 망원경을 이용한 태양 관측에 주력해 온 인도가 이 분야에 뛰어든 것은 이번이 처음이다. 아디트야-L1이 성공하면 인도는 이미 태양을 연구하고 있는 일부 극소수 국가 그룹에 합류하게 된다. 일본은 1981년 태양 플레어를 연구하기 위해 최초로 탐사선을 발사했다. 미국 우주국 나사(NASA)와 유럽우주국(ESA)은 1990년대부터 태양을 관찰해 왔다. 나사와 ESA는 2020년 2월, 공동으로 태양 궤도선을 발사해 가까운 거리에서 태양을 연구하고 있다. 과학자들은 태양의 역동적인 행동을 이해하는 데 도움이 될 데이터를 수집하고 있다고 밝혔다. 아울러 나사의 최신 우주선인 파커 태양 탐사선은 최초로 2021년 태양의 외기권인 코로나를 통과해 새로운 역사를 썼다. 유엔 우주국(UNOOSA)에 따르면 지구 궤도에는 약 1만290개의 위성이 남아 있으며, 그 중 약 7800개의 위성이 현재 작동 중이다. 한편, 인도의 태양 탐사선은 지난 8월 말 세계 최초로 달 남극 근처에 탐사선을 성공적으로 착륙시킨 것에 연이은 쾌거다. 이로써 인도는 미국, 구소련, 중국에 이어 세계에서 네 번째로 달에 연착륙한 국가가 되었다. 달 남극에는 인류 생존의 필수 자원인 물이 존재하고 있는 것으로 알려졌다. 나사에 따르면 달에서 물을 최초로 발견한 것은 인도 탐사선이다. 2008년 인도 탐사선 찬드라얀 1호가 달 표면에 퍼져 있고 극지방에 집중된 수산기 분자를 감지한 것이 물 발견에 결정적으로 기여했다. 현재 인도는 우주에 50개 이상의 위성을 보유하고 있으며 통신 링크, 날씨 데이터, 해충 침입, 가뭄 및 임박한 재난 예측 등 여러 가지 중요한 서비스를 제공한다. ISRO는 아디트야-L1과 함께 2025년으로 예정된 인간 우주 비행 임무인 가가냥(Gaganyaan) 발사를 오랫동안 준비해 오고 있다. 또 인도 우주국은 금성을 향한 무인 탐사선 발사도 계획하고 있다.
-
- 포커스온
-
[퓨처 Eyes(2)] 인도, 태양 탐사선 '아디트야-L1' 발사 성공
-
-
미국·중국·러시아 등 강대국이 달에서 채굴하려는 광물은?
- 최근 미국, 중국, 인도에 이어 러시아가 47년만에 달 탐사선을 궤도에 진입시켜 우주 전쟁이 본격화 되고 있다. 러시아 국립우주국 로스코스모스는 러시아의 달 탐사선인 루나 25호(Luna-25)가 지난 8월 16일 오전 11시 57분(GMT 08시57분)에 달 궤도에 진입했다고 밝혔다. 미국, 중국, 인도 등 주요 강대국들이 지구 유일의 자연 위성인 달 표면에 존재하는 다양한 물질을 탐사하기 위해 경쟁하는 가운데 러시아가 최근 47년 만에 처음으로 달 착륙 우주선을 발사한 것. 루나 25호는 지구의 유일무이한 위성인 달을 5일 정도 돌고난 뒤 8월 21일로 예정된 달 남극에 연착륙하기 위해 항로를 바꾼다. 소형차 정도의 크기인 루나 25호는 최근 몇 년 동안 마국 항공우주국(NASA)과 다른 나라 우주국의 과학자들이 분화구에서 얼어붙은 물의 흔적을 발견한 남극에서 1년 동안 작동하는 것을 목표로 한다. 러시아 달 탐사선, 47년만에 달 궤도 진입 최근 지오 뉴스(Geo News)에 따르면 러시아는 달 탐사선을 발사한 후 러시아와 중국의 공동 탐사선과 달 기지 건설 가능성도 검토할 것이라고 밝혔다. 러시아 우주 프로그램을 추적하는 러시아스페이스웹닷컴(RussianSpaceWeb.com)의 창시자이자 게시자인 아나톨리 작크(Anatoly Zak)에 따르면 소련은 1976년 달 탐사선인 루나 24(Luna-24) 이후 어떤 러시아 우주선도 달 궤도에 진입하지 못했다. 미국의 나사(NASA)는 '달의 골드러시'에 대해 이야기하고 달 채굴의 잠재력을 탐구했다. 인도의 달 탐사선 찬드라얀 3호는 8월 말로 예정된 달 남극 착륙을 위해 이달 초 달 궤도에 진입했다. 중국은 2030년 이전에 유인 달 탐사선 착륙을 목표로 하고 있다. 지난 5월 스페이스뉴스에 따르면 중국 유인 우주국(CMSA)의 린 시창 부국장은 지우취안 위성 발사 센터에서 열린 기자회견에서 "최근 중국의 유인 달 탐사 프로그램의 달 착륙 단계가 시작됐다. 주요 목표는 2030년까지 중국 우주 비행사를 처음으로 달에 착륙시키는 것"이라고 밝혔다. 이처럼 미국과 중국, 러시아 등 강대국들이 달 탐사에 열을 올리는 이유는 무엇일까. 지구에서 38만4400km 떨어져 있는 달은 지구의 자전축 흔들림을 완화하여 보다 안정적인 기후를 보장한다. 또한 달은 전 세계 바다에 조수(지구·태양·달 사이의 인력 작용으로 해수면이 하루에 2회 주기적으로 오르내리는 것)를 일으킨다. 현재 학설에 따르면 달은 약 45억 년 전에 거대한 물체가 지구와 충돌하면서 형성된 것으로 추정된다. 충돌로 인한 파편이 모여 달을 형성한 것으로 추정하고 있다. 인도 달 탐사선, 달 남극에 '물' 존재 확인 인도와 러시아 달 탐사선의 최종 목적지인 달 남극은 물이 존재하는 것으로 알려졌다. 달에 물이 존재한다는 것은 주요 우주 강대국에 큰 영향을 미친다. 인간 생명에 필수적인 물의 존재로 인해 인간이 행성에 더 오래 머물면서 달 자원을 채굴할 수 있게 할 것으로 보인다. 달에는 물을 비롯해 헬륨-3, 스칸듐, 이트륨 등 희토류 금속이 있다. △ 물 나사에 따르면 달에서 물을 최초로 발견한 것은 인도 탐사선이다. 2008년 인도 탐사선 찬드라얀 1호가 달 표면에 퍼져 있고 극지방에 집중된 수산기 분자를 감지한 것이 결정적이다. 물은 인간의 생명에 필수적이다. 또 수소와 산소의 원천이 될 수 있고 로켓 연료로 사용될 수 있다. △ 헬륨-3 헬륨-3은 지구에서는 희귀한 헬륨의 동위원소다. 나사에 따르면 달에는 헬륨-3이 100만 톤이 있는 것으로 추정된다. 유럽우주국에 따르면 이 동위원소는 핵융합로에서 핵에너지를 제공할 수 있지만 방사능이 아니기 때문에 위험한 폐기물을 생성하지 않는다고 한다. △ 희토류 금속 보잉의 연구에 따르면 스마트폰, 컴퓨터 및 첨단 기술에 사용되는 희토류 금속인 스칸듐, 이트륨 및 15란타나이드 등이 달에 존재한다. 그렇다면 달에서 희토류 등의 채굴은 어떻게 이루어질까. 이들 광물들을 채굴하려면 달에 일종의 인프라를 구축해야 한다. 지구가 아닌 달의 환경에서는 로봇이 대부분의 힘든 작업을 해야 한다는 것을 의미한다. 다만 달에 물이 있다는 것은 인간이 장기간 존재할 수 있는 조건이 될 수 있다. 특정 국가가 '달 주권' 주장할 수 있나? 지구의 법으로 어느 한 나라가 달 주권을 주장하기엔 아직 불명확하고 빈틈이 많다. 1966년 유엔의 우주 조약에 따르면 어떤 국가도 달이나 다른 천체에 대한 주권을 주장할 수 없으며 우주 탐사는 모든 국가의 이익을 위해 수행되어야 한다고 명시되어 있다. 그러나 법률가들은 민간 기업이 달의 일부에 대한 주권을 주장할 수 있는지 여부는 불분명하다고 지적했다. 랜드(RAND Corporation)는 작년에 블로그에서 "우주 채굴은 잠재적으로 높은 위험에도 불구하고 기존의 정책이나 거버넌스가 상대적으로 거의 적용되지 않는다"라고 언급했다. 1979년 달 협정은 달의 어떤 부분도 "국가, 국제 정부 간 또는 비정부 기구, 국가 조직 또는 비정부 단체 또는 자연인의 재산이 되어서는 안 된다"고 명시하고 있다. 문제는 주요 우주 강대국 중 어느 나라도 이 협정을 비준하지 않았다는 점이다. 미국은 2020년 나사의 아르테미스 달 탐사 프로그램의 이름을 딴 '아르테미스 협정 '을 발표해 달에 '안전 구역'을 설정함으로써 기존의 국제 우주법을 기반으로 법을 구축하기 위해 노력했다. 그러나 러시아와 중국은 이 협정에 가입하지 않아 향후 강대국간의 달 주권 다툼 문제가 제기될 가능성이 크다. 한편, 19일 러시아 국립우주국 로스코스모스는 러시아의 루나 25호가 착륙 전 궤도로의 이동을 준비하던 중 이날 "비정상적인 상황"이 발생했다고 밝혀 달 남극 탐사에 제동이 걸렸음을 시사했다.
-
- 산업
-
미국·중국·러시아 등 강대국이 달에서 채굴하려는 광물은?