검색
-
-
에어버스, 수소 항공기 A380 2026년 시험 비행
- 프랑스의 대표 항공업체인 에어버스는 수소 연료전지 시스템인 '아이언 패드'의 테스트에 성공해 제로탄소(ZEROe) 목표에 한 걸음 더 가까워졌다. 항공전문 매체 심플플라잉(simpleflying)은 에어버스가 오는 2026년부터 F-WWOW(테스트기체)로 등록된 에어버스 380의 제로탄소 테스트 베드에 연료전지 추진 시스템을 설치해 기내 테스트를 진행할 계획이라고 지난 22일(현지시간) 보도했다. 항공업계는 탄소제로 목표에 적극적으로 동참하고 있다. 이는 기업 활동에서 발생하는 이산화탄소 배출을 최소화하고, 절감이 어려운 부분은 탄소배출권 매입을 통해 결국 이산화탄소 발생량을 '0'으로 만드는 것을 의미한다. 에어버스 연구팀은 지난해 6월 1.2MW(메가와트)의 최대 전력을 달성하는 수소 연료전지 시스템 테스트에 성공했다. 이어 지난해 말에는 수소 연료전지 시스템과 전기 모터를 결합한 추진 시스템 프로토타입이 뮌헨의 전자 항공기 하우스(E-Aircraft House)에서 1.2MW의 전력으로 구동되는 성과를 보였다. 에어버스의 ZEROe 프로젝트에 대한 최신 업데이트에 따르면, 테스트 및 시연 책임자 마디아스 안드리아미사이나(Mathias Andriamisaina)는 프로토타입이 테스트 중에 1.2MW의 전력에 도달했다고 밝혔다. 이 전력 수준은 에어버스가 A380 기내 시연에서 실시하려는 테스트 전력과도 일치한다. 이러한 성과는 ZEROe 프로젝트 팀이 비행 조건에 적합한 추진 시스템의 크기, 질량 및 사양을 최적화하는 다음 단계로 나아가는 데 중요한 진전이다. 이를 통해 프로젝트의 기내 테스트는 한층 더 구체화되고 가까워졌다고 할 수 있다. ZEROe 프로젝트는 그 이름이 의미하듯이 배출가스 제로를 목표로 하며, 지속 가능한 항공 기술에 대한 수요에 대응하는 에어버스의 중요한 프로젝트이다. 이 프로젝트의 궁극적인 목표는 혁신적인 기술과 개념을 활용하여 2035년까지 수소 동력을 사용하는 상업용 비행기를 생산하는 것이다. 이러한 노력은 항공업계의 지속 가능한 미래로의 전환을 위한 중요한 발판이 될 것으로 기대된다. 에어버스의 첫 ZEROe 비행기에 대한 구체적인 디자인과 콘셉트는 아직 확정되지 않았다. 이는 에어버스가 수소 연소와 수소 연료전지 기술을 포함한 다양한 항공기 콘셉트를 탐구하고 있기 때문이다. 2020년에 제안된 4가지 콘셉트 중 하나인 수소 연료전지 기술은 완전 전기 항공기 유형에 사용될 예정이며, A380 실증기에서 테스트될 계획이다. 특별히 지정된 ZEROe 실증기는 에어버스가 생산한 최초의 A380이자, MSN001이라는 생산 일련번호를 가진다. 이 항공기는 2005년 4월 27일 첫 비행을 시작해, 세계에서 가장 큰 상업용 항공기로서의 역사적 비행을 시작했다. MSN001의 이력은 A380 프로그램만큼이나 매력적이다. 이 항공기는 프로토타입으로서 상용 운용을 위한 기술 테스트와 인증 획득 역할을 수행했다. 물 섭취, 극한의 기후 조건에서의 작동, 고속 이륙 거부 테스트 등이 이에 포함된다. 또한 MSN001은 전 세계를 여행하며 다양한 에어쇼에 참가했고, 때로는 에어버스를 대표하는 특별한 상징으로 등장하기도 했다. A380 프로그램이 시작된 이래, MSN001은 에어버스에 의해 보존되어 왔으며, 다른 많은 초기 프로토타입들과 달리 폐기되지 않았다. 이 항공기는 A350 프로그램의 '트렌트 XWB(Trent XWB)' 엔진 테스트에 있어 핵심적인 역할을 수행했으며, 특히 2번 엔진으로 날개 아래에 트렌트 XWB 엔진을 장착하는 중요한 작업을 담당했다. 트렌트 XWB(Trent XWB)는 영국 롤스로이스엔진이 개발한 대형 항공기용 터보 엔진이다. 영어 'Trent'는 롤스로이스의 항공기용 터보 엔진 브랜드명이며, 'XWB'는 '초대형 동체(Extra Wide Body)'의 약자로 넓은 동체(Wide Body) 항공기에 탑재되는 엔진을 의미한다. 처음에는 A350-900 모델을 위해 트렌트 XWB-84 엔진을 테스트했으며, 이어서 A350-1000 모델을 위한 트렌트 XWB-97 엔진의 테스트를 수행했다. 이러한 과정은 A350 프로그램의 성공적인 발전에 기여했다고 볼 수 있다. 최근에는 MSN001이 지속 가능한 항공 연료(Sustainable Aviation Fuel, SAF) 사용을 위한 여러 차례의 시험 비행에 참여했다. 롤스로이스, 프랫 앤 휘트니와의 협력 하에 진행된 첫 번째 시험 비행에서는 토탈 에너지가 제공한 혼합되지 않은 SAF 27톤을 사용해 3시간 동안의 임무를 수행했으며, 이어서 이착륙 시의 성능에 초점을 맞춘 여러 다른 시험 비행들이 진행됐다. 한편, 한국 항공업계는 친환경 항공유, 즉 지속 가능한 항공연료(SAF)의 도입에 박차를 가하고 있다. 최근 대한항공은 일본의 글로벌 물류 기업 유센로지스틱스와 SAF 사용 활성화를 위한 협약을 체결함으로써 이 분야의 선도적인 역할을 하고 있다. SAF는 동식물성 기름, 해조류, 도시 폐기물 가스 등 지속 가능한 원료를 기반으로 제조된 친환경 항공유로, 기존 화석 연료 기반 항공유에 비해 가격은 높지만, 탄소 배출량을 최대 80% 이상 줄일 수 있는 장점을 가지고 있다. 이러한 특성 때문에 SAF는 항공업계의 지속 가능한 미래를 위한 중요한 대안으로 간주되고 있다. 유럽연합에서는 오는 2025년부터 자국 공항을 이용하는 항공기를 대상으로 SAF 사용을 의무화할 예정이며, 미국에서는 세액 공제 혜택을 제공하는 등 전 세계적으로 도입을 늘리는 추세다. 유럽연합(EU)은 2025년부터 자국 공항을 이용하는 모든 항공기에 대해 SAF 사용을 의무화할 계획이며, 미국에서도 세액 공제 혜택을 통해 SAF 도입을 장려하고 있다. 이러한 국제적인 움직임은 전 세계적으로 친환경 항공연료의 사용 증가 추세를 보이고 있음을 나타낸다.
-
- 산업
-
에어버스, 수소 항공기 A380 2026년 시험 비행
-
-
탄수화물, 건강에 이로울까? 해로울까?
- 탄수화물은 건강에 이로운 측면과 단점을 모두 가지고 있다. 적절한 양의 탄수화물 섭취는 건강에 유익하나, 과도한 섭취는 당뇨병과 같은 인슐린 저항성을 기반으로 한 대사 증후군을 유발할 수 있다. 탄수화물은 포도당, 맥아당(엿당), 유당(젖당), 과당, 자당(설탕) 등의 당류 유도체를 포함하며, 화학적으로는 탄소, 수소, 산소가 결합해 이루어진 천연 고분자 화합물과 유기화합물이다. 일상에서 빵이나 밥을 통해 에너지원으로 섭취되는 탄수화물은, 과도하게 섭취될 경우 2형 당뇨병 등 대사 증후군의 원인이 될 수 있다. 미국 식품 전문 매체 '이팅웰(EatingWell)'은 탄수화물의 장단점과 건강한 식단에 탄수화물을 포함하는 방법에 대해 소개했다. 우리 몸의 주요 에너지원 탄수화물은 우리 몸에 필수적인 에너지원이며 중요한 연료 역할을 한다. 인디애나폴리스에 위치한 원 팟 웰리스(One Pot Wellness)의 완 나 천(Wan Na Chun) 박사는 탄수화물이 세포에 포도당을 공급하며, 이 포도당이 에너지로 변환되어 신체 기능과 신진대사를 지원한다고 설명했다. 탄수화물 섭취를 줄이면 집중력 저하가 나타날 수 있다. 실제로 2018년 '소아 위장병학 및 영양저널(Journal of Pediatric Gastroenterology and Nutrition)'의 리뷰에 따르면, 신체의 휴식 중 포도당 소비량의 약 20~25%가 두뇌에 에너지를 공급하는 데 사용된다고 한다. 특히 통곡물이나 섬유질이 많은 식품과 같은 복합 탄수화물은 뇌에 유익하다. 이러한 탄수화물은 안정적인 혈당 수준을 유지하며, 이는 지속적인 집중력과 정신력을 증진시킬 수 있다. 반면, 사탕과 같은 정제된 탄수화물에 지나치게 의존하면 혈당 수준이 급격히 변동할 수 있으며, 이러한 변화가 자주 발생하면 인지능력 저하가 심해지는 '브레인 포그(brain fog, 뇌 흐림)'와 같은 문제가 발생할 수 있다. 세로토닌 생성 촉진 탄수화물은 신체의 주요 에너지원으로, 특히 운동선수나 활동적인 사람들에게 중요하다. 다양한 연구에 따르면, 운동 후 탄수화물 섭취는 근육의 글리코겐 회복과 운동 성능 향상에 중요한 역할을 한다. 또한, 탄수화물이 세로토닌 생성을 촉진하여 기분을 좋게 만든다는 주장이 있다. 일부 연구에서는 저탄수화물 식단이 우울증, 불안, 분노 증가와 관련이 있다는 사실을 발견했다. 특정 종류의 탄수화물 섭취는 콜레스테롤 감소에도 도움이 된다. 연구에 따르면, 수용성 섬유질(귀리, 보리, 콩류 등에 풍부한 섬유질)을 하루에 5~10g 더 섭취하면 나쁜 LDL 콜레스테롤이 5% 감소할 수 있다고 한다. 보건복지부의 발표에 따르면 통곡물을 더 많이 섭취하는 사람들은 LDL 콜레스테롤이 낮고 좋은 HDL 콜레스테롤이 높은 경향이 있다. 오트밀, 퀴노아, 통밀빵, 옥수수, 채소, 과일, 콩 등과 같은 통곡물은 탄수화물뿐만 아니라, 소화에 중요한 섬유질의 좋은 공급원이다. 당뇨병 환자, 인슐린 능력 저하 그러나 당뇨병 전단계나 당뇨병 환자는 탄수화물 섭취에 특별한 주의를 기울여야 한다. 천 박사는 당뇨병 환자가 인슐린, 혈당 수치를 조절하는 주요 호르몬의 처리 및 활용 능력이 저하될 수 있다고 설명했다. 이러한 혈당 상승을 방지하기 위해서는 섬유질 섭취를 늘리고 탄수화물을 단백질 및 지방과 함께 섭취하는 것이 중요하다. 천 박사는 또한 다낭성 난소 증후군(PCOS)을 가진 사람들이 인슐린 저항성을 경험할 수 있기 때문에 탄수화물 섭취에 주의해야 한다고 말했다. 이는 잠재적인 건강 위험을 최소화하는 데 도움이 된다. 미국 질병통제예방센터(CDC)에 따르면 미국인을 위한 식생활 지침에서는 첨가당을 전체 칼로리 섭취량의 10% 이하로 제한하는 것이 권장된다. 과일, 채소, 콩류, 무가당 유제품 등 영양이 풍부한 식품을 섭취함으로써 복합 탄수화물을 섭취하고 정제된 탄수화물 및 첨가 설탕을 줄일 수 있다. 또한, 흰 빵을 통곡물 빵으로 대체하고 귀리를 선택하는 것도 좋은 방법이다. 첨가당을 과다 섭취하는 것은 건강에 좋지 않다. 주로 케이크, 쿠키, 사탕, 가당 음료, 가당 요구르트 등의 식품에 많이 포함되어 있다. 반면, 과일과 같은 식품에 자연적으로 존재하는 설탕은 첨가된 설탕과 달리 건강에 덜 해로울 수 있다. 탄수화물은 때때로 부정적인 평가를 받지만, 실제로는 건강에 다양한 이점을 제공한다. 당뇨병이나 다낭성 난소 증후군이 있는 경우에는 탄수화물 섭취에 주의를 기울여야 하지만, 이것이 탄수화물을 완전히 배제해야 한다는 의미는 아니다. 통곡물과 섬유질을 더 많이 섭취하는 것은 포만감, 소화 촉진, 심장 건강 개선 및 에너지 수준 유지에 도움이 된다.
-
- 생활경제
-
탄수화물, 건강에 이로울까? 해로울까?
-
-
우주에서 쏟아지는 다이아몬드 비⋯자기장 형성 열쇠?
- 다이아몬드는 지구에서 가장 귀중한 보석 중 하나이지만, 천왕성과 해왕성과 같은 거대 얼음 행성에서는 대기 중에서 비처럼 쏟아져 내릴 것으로 예상된다는 가설이 제기됐다. 과학기술 전문 매체 ifl사이언스와 엔디티비(NDTV)에 따르면 전통적으로 다이아몬드 형성에는 매우 높은 온도와 압력이 필요하다고 여겨져 왔지만, 최근의 연구는 다이아몬드가 지구보다 낮은 온도와 압력 조건에서도 형성될 수 있음을 시사한다. 최근 미국 SLAC 국립가속기연구소와 독일의 DESY 연구소, 헬름홀츠 센터 드레스덴-로젠도르프와 같은 국제 연구팀이 천왕성과 해왕성의 대기권과 유사한 조건을 실험실에서 재현하여 다이아몬드 생성 실험을 진행했다. 연구팀은 폴리스티렌 필름에 다이아몬드 모루를 사용하여 2200℃(화씨 3992도) 이상의 온도와 지구의 해수면 대기압의 약 100만 배에 해당하는 압력을 가했다. 이 실험 조건은 천왕성과 해왕성의 대기권 깊은 곳에서 발견될 수 있는 조건과 유사한 것으로, 과학자들은 이를 통해 다이아몬드가 형성되는 과정을 연구했다. 이후, 고에너지 X선을 사용하여 폴리스티렌 필름을 가열했다. 이 X선은 필름 내의 탄소 원자를 활성화시켜 다이아몬드로 변환하는 데 중요한 역할을 했다. 이 과정을 통해 연구팀은 폴리스티렌 필름에서 다이아몬드를 형성하는 데 성공했다. 이 다이아몬드는 천왕성과 해왕성의 대기권에서 형성되는 다이아몬드와 같은 구조와 특성을 가지고 있는 것으로 밝혀졌다. 이 연구 결과는 전통적인 다이아몬드 형성에 대한 이해를 바꾸는 중요한 발견이다. 기존에는 다이아몬드 형성에는 매우 높은 온도와 압력이 필요하다고 여겨졌었다. 그러나 이번 연구는 다이아몬드가 더 낮은 온도와 압력에서도 형성될 수 있음을 보여줬다. 이는 천왕성이나 해왕성과 같은 거대한 얼음 행성의 대기권에서 다이아몬드가 어떻게 형성되는지에 대한 새로운 통찰을 제공하며, 천문학과 우주 과학 분야에 중요한 영향을 미칠 것으로 기대된다. 다이아몬드 비가 형성되는 이유 천왕성과 해왕성의 대기권은 지구의 대기권보다 훨씬 깊고 뜨겁다. 이러한 조건에서는 수소, 헬륨, 메탄, 아르곤 등의 기체가 높은 압력과 온도에 의해 액체 상태로 변환된다. 이 액체 상태의 기체들은 천왕성과 해왕성의 내부에서 바깥쪽으로 이동하면서 점차 식게 된다. 이 과정에서 액체 상태의 기체들은 다시 고체 상태로 변하게 되는데, 이때 탄소 원자들이 모여 다이아몬드 결정을 형성한다. 이렇게 형성된 다이아몬드는 대기 중에서 무거운 물체처럼 가라앉게 되며, 이를 '다이아몬드 비'라고 부른다. 다이아몬드 비는 지구에서는 발생하지 않는다. 지구의 대기권은 천왕성이나 해왕성 대기권보다 훨씬 얇고 차가워 이러한 과정이 일어나지 않기 때문이다. 다이아몬드 비와 자기장 형성 연구팀의 수석 저자인 멍고 프로스트 박사는 "다이아몬드 비는 천왕성과 해왕성의 복잡한 자기장의 형성에 영향을 미쳤을 가능성이 있다"고 말했다. 프로스트 박사의 연구에 따르면, 천왕성과 해왕성의 대기권에는 다이아몬드가 풍부하게 존재할 것으로 추정된다. 다이아몬드는 전기를 잘 전달하는 성질을 가지고 있기 때문에, 이 물질이 대기권을 통해 이동하며 자기장 생성에 기여했을 가능성이 제기됐다. 프로스트 박사는 "이번 연구는 거대 얼음 행성에 대한 우리의 이해를 크게 확장시킬 것"이라고 말했다. 더 나아가, 다이아몬드 비와 자기장 형성에 대한 추가 연구는 이러한 거대 얼음 행성들의 신비를 더욱 깊게 탐구하는 데 도움이 될 것이다. 다이아몬드 비는 우주의 또 다른 매혹적인 현상으로, 향후 추가 연구를 통해 이 현상에 대한 더 많은 정보를 얻을 수 있을 것으로 기대된다.
-
- 산업
-
우주에서 쏟아지는 다이아몬드 비⋯자기장 형성 열쇠?
-
-
삼성SDI, 북미 전기차 배터리 소재 확보 나선다
- 삼성의 배터리 제조 부문인 삼성SDI가 캐나다에서 니켈 채굴에 나선다. IT 전문 매체 샘모바일(SamMobile)에 따르면, 삼성SDI가 이차 전지 제조에 필요한 핵심 소재 확보를 위해 캐나다니켈과 투자 계약을 체결했다고 잔했다. 지난 15일(현지시간) 캐나다 토론토 증권거래소 홈페이지에 게시된 캐나다니켈 발표에 따르면 삼성SDI는 1850만달러(약 245억원) 규모의 캐나다니켈 지분을 인수하는 계약을 최근 이 회사와 체결했다. 이에 따라 삼성SDI는 캐나다니켈 지분 8.7%(1560만주)를 보유하게 된다. 캐나다니켈은 캐나다 온타리오주에서 니켈 광산을 개발하는 '크로퍼드 프로젝트'를 진행하고 있다. 이차 전지, 또는 충전식 배터리는 에너지를 전기 형태로 저장하고 필요할 때 다시 사용할 수 있는 장치다. 이차 전지는 화학적 에너지를 전기 에너지로 변환하고, 이 과정을 반복할 수 있다. 이차 전지의 가장 큰 특성은 재충전이 가능하다는 점이다. 이는 일회용 배터리(일차전지)와는 다른 점으로 여러 번 충전하여 반복해서 사용할 수 있다. 이차 전지의 발전은 화석 연료 의존도를 줄이고, 재생 가능 에너지의 활용을 증가시키는 데 중요한 역할을 하고 있다. 이를 통해 에너지 효율성을 향상시키고, 탄소 배출을 줄이는 데 기여하고 있다. 이차 전지 기술의 지속적인 발전은 미래 에너지 시스템에 중대한 영향을 미칠 것으로 예상된다. 이전에는 니켈-카드뮴 배터리가 널리 사용되었지만, 중금속인 카드뮴의 독성으로 인해 사용이 줄어들고 있다. 최근에는 비교적 긴 수명과 환경 친화성으로 인해 니켈-수소 배터리가 하이브리드 자동차 등에서 사용되고 있다. 이차 전지는 휴대용 전자기기, 전기자동차(EV), 에너지 저장 시스템, 비상 전원 공급 장치 등 다양한 분애에서 활용된다. 북미 전기차 배터리 소재 확보 샘모바일에 따르면, 삼성SDI는 온타리오에 위치한 캐나다 니켈의 크로포드(Crawford) 프로젝트로부터 니켈-코발트 10% 생산량도 확보하게 된다. 또 15년 동안 생산량의 20%에 대한 권리를 갖게 되며, 이는 기업 간의 상호 합의를 통해 연장 가능하다고 삼성SDI는 설명했다. 삼성SDI는 그동안 배터리 생산공장을 북미로 이전하려고 노력해 왔으며, 이차 전지 생산에 필요한 소재 확보 움직임을 보이고 있다. 또한 삼성 SDI는 미국에 전기 자동차용 배터리 공장을 짓기 위해 스텔란티스(Stellantis)와 대규모 계약을 체결했으며, 양사는 미국에 두 번째 배터리 공장 건설을 시작했다. 김익현 삼성SDI 부사장은 "이번 기회를 통해 캐나다니켈과 협력을 시작하게 되어 기쁘다"며 "배터리 제조업계의 성장에 캐나다니켈과 함께 기여할 수 있기를 기대한다"고 밝혔다. 마크 셀비(Mark Selby) 캐나다니켈 최고경영자(CEO)는 삼성SDI 투자 이후 메이저 광산회사가 회사를 인수할 수도 있다고 말했다. 캐나다니켈은 온타리오 북동부 티민스-코크레인 지역에 위치한 광산 캠프에서 대규모 노천 니켈 및 코발트 광산 건설을 계획 중이다. 이 광산에서 생산되는 재료는 전기차용 배터리 제조에 사용될 예정이다. 이러한 협력은 전기차 배터리 공급망 강화에 중요한 역할을 할 것으로 보인다.
-
- 산업
-
삼성SDI, 북미 전기차 배터리 소재 확보 나선다
-
-
아마추어 천문학자, 초신성 폭발 후 블랙홀 형성 목격
- 최근 아마추어 천문학자가 초신성의 폭발 과정에서 블랙홀의 형성을 관측했다. '초신성(超新星, supernova)'은 일반적인 별의 폭발인 신성(nova)보다 훨씬 더 강력한 에너지를 방출하는 별의 폭발 현상이다. 이 폭발은 매우 밝게 빛나며, 폭발적인 방사선을 방출한다. 폭발의 밝기는 수 주에서 수 개월 동안 지속되며, 때로는 은하 전체의 밝기에 필적할 정도다. 미국의 과학 전문 매체 코스모스 매거진은 이스라엘 와이즈만 연구소(Weizmann Institute of Science)의 핑첸(Ping Chen) 연구원이 이 과정을 실시간으로 처음으로 관측했다고 보도했다. 네이처지에 발표된 이 연구에 따르면, 아마추어 천문학자의 발견과 연구팀의 적절한 타이밍, 그리고 별의 연구 협력이 결합하여, 초신성 폭발이 블랙홀이나 유사한 천체를 형성하는 직접적인 증거를 제시했다. 핑첸은 이 연구의 중요성을 강조하며, "우리의 연구는 가능한 모든 증거를 모아 퍼즐을 풀어나가는 것과 같다. 이 모든 조각들이 모여 진실을 이룬다"고 말했다. 이 발견의 시작점은 남아프리카의 아마추어 천문학자 베르토 모나드가 약 7600만 광년 떨어진 NGC 157 은하의 나선팔에서 새롭게 발견한 밝은 물체, SN 2022jli의 관측에서 비롯된다. 하늘에서 갑자기 나타난 새로운 밝은 물체는 종종 초신성의 출현을 나타낸다. 이러한 현상이 발견되면, 천문학자들은 추가 관측을 통해 물체의 정확한 위치와 다른 정보를 파악하고 빠르게 망원경을 해당 물체에 맞춘다. 초신성은 예측하기 어렵고 짧은 기간 동안만 관측할 수 있어 연구가 어렵다. 초신성은 별의 수명이 다할 때 강력하게 폭발하는 현상으로, 별의 자체 중력에 의해 붕괴되면서 발생한다. 이 폭발은 별이 다시 어두워질 때까지 은하계 전체만큼 밝아질 수 있다. 블랙홀과 중성자별은 별의 붕괴로 인해 형성되는 초밀도 물체다. 과학자들은 이들이 초신성 이후에 형성될 것으로 확신하지만, 초신성 폭발에서 이러한 소형 물체가 형성되는 전체 과정을 직접적으로 관측한 적은 없었다. 그러나 최근의 연구와 관측을 통해 이 단계가 직접 확인될 수 있게 됐다. SN 2022jli는 일반적인 우주 규칙을 따르는 것이 아닌 평범하지 않은 패턴을 보였다. 처음에는 밝게 빛났으나 점차 어두워졌고, 발견된 후 약 한 달이 지난 시점에서 다시 밝아지는 현상을 나타냈다. 이후 200일 동안 약 12일 간격으로 주기적인 밝기 변화를 경험했다. 벨파스트 퀸스 대학의 토마스 무어 교수는 이와 관련하여 "SN 2022jli의 데이터 분석 결과, 반복적으로 밝아지고 어두워지는 패턴이 명확하게 관찰되었다"고 말했다. 무어 교수는 "이러한 주기적인 변화가 초신성 광 곡선에서 감지된 것은 이번이 처음"이라고 설명했다. 이 연구는 2023년 천체물리학 저널인 '아스트로피지컬 저널(Astrophysical Journal)'에 실렸다. 연구팀은 이러한 특이한 패턴이 초신성 폭발을 겪은 후 살아남은 두 번째 별의 영향 때문일 것으로 추측하고 있다. 그들은 이 두 번째 별이 소형 물체의 존재를 간접적으로 드러내고 있다고 설명했다. 연구팀은 블랙홀이나 중성자별이 동반성 별의 풍부한 대기에서 수소를 흡수할 것이라는 가설을 세웠다. 이러한 흡수 현상, 즉 '강착'은 연구원들이 관찰한 주기적인 변화의 원인으로, 많은 에너지를 방출하는 파동 형태로 나타난다. 연구원들은 "SN 2022jli가 보여준 독특한 특성들은 이 시스템에서 일어나는 현상이 매우 드물다는 것을 시사하며, 이는 초신성 폭발을 겪고도 살아남는 결합된 이중 별계의 드문 존재로 설명될 수 있다"고 밝혔다. 또한, "SN 2022jli의 사례는 초신성 폭발과 그 이후 소형 천체 형성 사이의 직접적인 연결고리를 제시한다"고 네이처 저널에 기고했다. 한편, 2018년에는 중국, 미국, 독일의 연구진이 초신성 폭발 과정에 대한 중요한 정보를 얻기 위해 초신성 잔해물 간의 상대적 거리 측정에 성공했다. 이들은 잔해물 주변의 밝은 별들을 기준점으로 사용하여 측정의 정확도를 높였으며, 이러한 연구는 별의 진화와 소멸 과정을 이해하는 데 큰 도움이 되고 있다.
-
- 산업
-
아마추어 천문학자, 초신성 폭발 후 블랙홀 형성 목격
-
-
해왕성과 천왕성, 옅은 청록색의 진실
- 우리 태양계의 바깥쪽 가장자리에 있는 얼음 거성인 해왕성과 천왕성의 색깔이 이전에 생각했던 것보다 더 유사할 수 있다는 새로운 연구 결과가 나왔다. 미국 CNN에 따르면, 옥스퍼드 대학의 행성 물리학 교수 패트릭 어윈과 그의 팀은 허블 우주 망원경과 초대형 망원경의 데이터를 사용하여 보이저 2호가 찍은 해왕성과 천왕성의 이미지를 재구성한 결과, 두 행성 모두 옅은 청록색을 띠고 있음을 발견했다. 두 행성 모두 대기 안개가 있지만, 해왕성은 연무층이 더 얇기 때문에 약간 더 파랗게 보인다. 연구팀은 "우리의 모델을 원본 데이터에 적용하여, 우리는 해왕성과 천왕성의 색깔에 대한 가장 정확한 표현을 재구성할 수 있었다"고 말했다. 이 연구 결과는 왕립천문학회 월간지(Monthly Notices of the Royal Astronomical Society)에 발표되었다. 천왕성 색깔 변화, 연무층 두께 변화 때문 천왕성의 색깔은 태양 주위를 공전하는 동안 변화한다. 1950년대에는 옅은 청록색을 띠었지만, 2010년대에는 더 짙은 청색으로 변했다. 이 변화의 원인은 천왕성의 극지방에 있는 연무층의 두께 변화 때문으로 밝혀졌다. 천왕성의 1년은 지구의 84년과 같다. 지구는 하지와 동지에는 더 푸르게 보이지만 춘분에는 더 푸른 색조를 띤다. 천왕성은 옆으로 회전하기 때문에 동지 동안 행성의 극 중 하나가 지구와 태양을 가리킨다. 미국 애리조나주에 있는 로웰 천문대는 1950년부터 2016년까지 천왕성의 이미지를 촬영하고 밝기를 측정했다. 연구팀은 이 데이터를 사용하여 천왕성의 색깔 변화를 분석했다. 연구팀은 천왕성의 극지방과 적도 지역의 빛 데이터를 비교하는 모델을 개발했다. 이 모델은 극지방이 녹색과 적색 파장의 빛에서 더 잘 반사되는 것을 보여주었다. 또한, 연구팀은 천왕성의 동지 동안 극지방에 메탄 얼음으로 만들어진 연무층이 두꺼워지는 것을 관찰했다. 연구팀은 이러한 결과를 바탕으로 천왕성이 동지에 더 푸르게 보이는 이유에 대해 설했다. 얼음 거인, 미스터리 속으로 태양계의 바깥쪽 가장자리에 있는 두 얼음 거성, 해왕성과 천왕성은 아직 많은 미스터리를 품고 있다. 최근 제임스 웹 우주망원경(James Webb Space Telescope)은 천왕성의 새로운 초상화를 공개했다. 이 초상화는 천왕성의 종종 보이지 않는 고리와 대기의 숨겨진 특징을 보여준다. 초상화에서 가장 눈에 띄는 특징은 천왕성의 고리이다. 천왕성의 고리는 토성의 고리보다 훨씬 희미하고 얇다. 초상화는 천왕성의 고리가 총 13개임을 보여주며, 그 중 11개를 구분할 수 있다. 초상화는 또한 천왕성 대기의 다양한 색상을 보여준다. 천왕성의 대기는 주로 수소와 헬륨으로 이루어져 있지만, 메탄과 아산화질소도 함유하고 있다. 메탄은 천왕성의 대기에 푸른 색을 띠게 한다. 연구자들은 천왕성에서 오는 X선을 감지하기도 했다. X선은 천왕성의 대기 상층부에서 발생하는 것으로 보인다. 보이저 2호 데이터를 분석한 결과, 천왕성의 자기장이 거대한 플라스모이드를 형성하고 있다는 사실도 밝혀졌다. 이 플라스모이드는 행성 대기의 일부를 잘라내어 우주로 날려 보낼 수도 있다. 연구팀은 앞으로 수십 년 동안 천왕성 시스템을 탐사하는 것이 우주 기관의 최우선 과제라고 말했다. 지구 기반 연구는 이러한 미래 임무의 발견을 더 넓은 맥락에서 이해하는 데 도움이 될 것이다.
-
- 산업
-
해왕성과 천왕성, 옅은 청록색의 진실
-
-
미국 민간 우주 기업, 2024년 나사 대신 달 탐사 주도
- 인도와 중국을 비롯해 글로벌 달 탐사 경쟁이 치열해지는 가운데 미국 민간 우주기업들이 올해 미국 항공우주국(NASA·나사) 대신 탐사를 주도한다. 미국 우주 기업들은 올해 5차례 나사와 다른 고객들을 위해 달 착륙을 시도할 예정이라고 월스트리트저널(WSJ)과 CNN 등 다수 외신이 7일(이하 현지시간) 보도했다. WSJ에 따르면 올해는 미국 민간 우주기업들이 제작한 우주선 5대가 나사 장비를 탑재하고 달 착륙에 나설 예정이다. 가장 먼저 8일 오전 중 우주기업 아스트로보틱(Astrobotic)의 무인 우주선이, 2월에는 또 다른 기업 인튜이티브 머신(Intuitive Machines)의 우주선이 각각 발사될 예정이다. 이들 팀사선 중 어느 것 하나라도 성공한다면 미국으로서는 1972년 이후 50년 만에 처음으로 달 표면에 재착륙하게 된다. CNN은 "나사는 2023년부터 가열되기 시작한 새로운 국제 우주 경쟁에서 미국이 달에 존재감을 드러낼 수 있도록 이러한 민간 개발 달 착륙선의 소량 개발을 후원하고 있다"고 전했다. 아스트로보틱의 로봇 달 팀시 우주선 ‘페레그린((Peregrine))’은 8일 오전 2시 18분(동부 표준시)에 플로리다의 케이프 커내버럴 우주 기지에서 ULA 벌컨 센타우로켓에 실려 발사될 예정이다. 아스트로보틱의 CEO 존 손튼을 비롯한 우주 산업 전문가들은 우주선을 달에 성공적으로 착륙시킬 수 있는 확률이 반반이라며 동전 던지기에 비유했다. 손튼은 지난 1월 2일 CNN과의 전화 인터뷰에서 "이것은 50 대 50의 확률로 목표에 도달하는 것과 같은 접근 방식이며, 특정 임무가 아니라 업계 전체의 성공이 더 중요하다"라고 말했다. 그러면서 손튼은 "우리는 이 임무에 우리가 할 수 있는 모든 것을 쏟아 부었다"고 덧붙였다. 페레그린은 세계에서 가장 빨리 나는 새인 매의 이름을 딴 것으로, 2월 23일에 착륙을 시도하기 전에 달 궤도에서 일정 시간을 보내게 된다. 현재 우주탐사선의 달 착륙은 전 세계적인 경쟁을 부르고 있다. 인도는 지난해 8월, 달 탐사선 '찬드라얀-3호'를 달 남극에 성공적으로 착륙시켜 전 세계의 주목을 받았다. 이로써 인도는 중국, 구소련, 미국에 이어 달에 우주선을 착륙시킨 네 번째 국가가 됐다. 일본은 지난해 9월 우주 공간으로 발사한 자국 최초의 달 탐사선 '슬림'(SLIM)을 이달 하순에 착륙시킬 예정이다. 러시아는 지난해 달 탐사선을 쏘아 올렸으나 착륙에 실패했다. 러시아는 1976년 달 탐사선인 루나 24(Luna-24) 이후 47년 동안 어떤 러시아 우주선도 달 궤도에 재진입하지 못했다. 미국과 중국은 우주인들을 달 표면에 보내 궁극적으로는 영구 정착지를 개발하기 위해 노력하고 있다. 21세기 들어 지금까지 인도와 중국 만이 달에 연착륙했다. 특히 나사는 올해의 경우 민간업계가 미국 착륙선의 설계와 운영을 주도하도록 하고 있다. 이는 전통적으로 나사가 달 탐사 업무를 관리해오던 방식에서 벗어난 것이라는 게 WSJ의 설명이다. 나사는 1969년을 시작으로 우주비행사를 여러 차례 달에 보냈던 아폴로 프로그램 기간 수십만 명의 직원과 막대한 예산에 의존해 전체 과정을 주도했다. 하지만 이제 나사는 공급자보다는 고객으로서, 더 적은 자금을 투입하기를 희망하고 있다. 나사는 상업적으로 개발된 로봇 착륙선을 사용하여 빠르게 따라잡을 수 있기를 기대하고 있다는 것. 나사는 페레그린 외에도 텍사스에 본사를 둔 파이어플라이 에어로스페이스 및 인튜이티브 머신즈와 계약을 맺고 있다. 인튜이티브는 빠르면 2월 중순에 달 착륙선을 발사할 수 있다. 이러한 계약은 모두 NASA의 상업용 달 탑재체 서비스 프로그램의 일환으로, 특히 아폴로 시대의 착륙선을 만드는 데 수십억 달러가 소요된 것과 비교하여 달 착륙선 제작 비용을 대폭 낮추는 것을 목표로 한다고 CNN은 전했다. 페레그린과 다른 CLPS 착륙선은 훨씬 더 저렴하게 설계됐으며, 나사는 파트너 회사에 단 한 번의 고정 가격 계약만 체결하기로 합의했다. 예를 들어, 이 임무에 대한 아스트로보틱(Astrobotic)의 계약은 총 1억 8000만 달러로, 이는 나사가 처음에 약속한 것보다 더 많은 금액이다. 기관 관계자는 팬데믹으로 인해 계약이 재협상되었다고 말했다. 손튼은 CNN에 "이것은 새로운 가격대에 도달하기 위해, 패러다임을 깨기 위해 달 표면으로 보내질 많은 비교적 저렴한 임무 중 하나다"라고 말했다. 우주인들이 국제우주정거장(ISS)을 오가도록 하는 데 일론 머스크 테슬라 최고경영자(CEO)가 이끄는 스페이스X를 활용하는 등 나사는 일부 작업을 민간 기업들로 옮기고 있다. 나사로서는 민간기업 의존을 늘려나가면서 비용을 줄일 계획이지만, 이 같은 외부 의존이 이전의 '과학'에 따른 자체 접근법보다는 리스크는 더 있을 것으로 보고 있다. 또한 달 탐사 작업은 거리나 달 지형을 포함해 많은 어려움이 있다. 대표적인 예로는 지난해 일본 기업 아이스페이스(ispace)와 러시아의 달 착륙 시도가 모두 실패했다. 미국도 달 탐사선 발사 지연과 함께 기술적 문제에 직면해 있다. 8일 발사 예정인 페레그린은 록히드 마틴과 보잉의 합작사인 유나이티드 론치 얼라이언스(ULA)가 개발한 차세대 로켓 '벌컨'에 탑재돼 달을 향한 여정을 시작한다. 페레그린은 '끈적끈적한 만(Bay of Stickiness)'이라고도 불리는 달의 부비동(Sinus Viscositatis) 지역으로 향하고 있다. 페레그린호에는 독일, 멕시코, 영국 등 다른 국가의 과학 실험과 상업용 화물도 실릴 예정이다. 특히, 페레그린은 미국 최대 아메리카 원주민 집단인 나바호족의 반발을 불러일으킨 두 개의 상업용 우주 매장 업체인 엘리시움 스페이스와 셀레스티스를 대신해 인간의 유해를 운반할 예정이다. 이 단체는 유골이 달 표면에 착륙하는 것을 허용하는 것은 달을 신성하게 여기는 많은 원주민 문화에 대한 모독이라고 주장한다. 셀레스티스는 웹사이트를 통해 약 1만 3000달러부터 시작하는 가격으로 유골을 달로 운반하겠다고 제안했다. 이 우주선은 미래 우주 비행사를 위한 방사선 위험 측정 장치를 포함해 여러 나사 장비를 탑재하고 다음 달 23일 달 착륙을 시도할 예정이다. 아스트로보틱 측은 올해 말에 착륙선 그리핀(Griffin)을 추가로 발사할 예정이다. 여기에는 달의 얼음 퇴적물을 연구하는 나사의 로버(rover)가 실리게 된다. 이 탐사선은 달의 남극에서 21세기 우주 경쟁의 핵심인 '물 얼음(Water ice·수빙)'을 찾기 위해 탐사할 계획이다. 물 얼음은 미래 우주비행사의 식민지를 유지하는 데 사용되거나 더 깊은 우주로 향하는 임무를 위한 로켓 연료로 전환될 수 있다고 CNN은 설명했다. 이어 2월에는 휴스턴에 본사를 둔 인튜이티브 머신의 노바-C 우주선이 스페이스X의 팰컨9 로켓에 탑재돼 발사될 계획이다. 이 우주선에는 달 착륙 중에 솟아오르는 잔해 기둥을 연구하는 장치와 같은 나사 장비들이 실려있다. 인튜이티브 머신 측은 올해 말에 두 번째 노바-C 우주선을 보낼 예정이다. 이들 외에 텍사스주 오스틴 부근에 본사를 둔 파이어플라이 에어로스페이스(Firefly Aerospace)가 스페이스X 로켓을 이용해 블루 고스트(Blue Ghost) 우주선을 발사해 올해 달에 착륙하도록 할 계획이다. CNN은 나사의 달 탐사 노력의 초석은 아르테미스 프로그램을 통해 인간이 달 표면으로 돌아갈 수 있는 길을 닦는 것이라면서 나사는 빠르면 2024년 말부터 우주비행사를 달에 보내 달을 비행하는 임무를 수행한 후 10년 후 인간을 지표면으로 귀환시키는 것을 목표로 하고 있다고 덧붙였다. 한편, 일본의 첫 달 탐사선 '슬림'(SLIM)이 오는 20일 첫 달 착륙을 시도한다. 슬림은 지난 9월 발사돼 지난 달 25일 달 궤도에 진입했으며, 일본 현지시각으로 오는 20일 오전 0시 20분께 달 착륙을 시도한다. 만약 이때를 놓치면, 다음 달 16일 다시 착륙을 시도할 계획이라고 한다. 현재 나사 관계자들은 중국의 적극적인 달 탐사에 긴장하고 있다. 중국은 우주 탐사가 모든 국가와 인류에 이익이 돼야 한다고 주장하면서 최근 수년간 달 표면에 연구 장비들을 보내고 있다. 중국의 경우, 자국의 달 탐사 프로젝트의 일환인 '창어 6호'를 통한 달 착륙을 계획하고 있다. 창어 6호는 오는 5월, 달 뒷면으로 가서 암석과 먼지 샘플 등을 수집해 지구로 가져올 것으로 예상된다. 달 표면 채취는 세계적으로 모두 10차례 이뤄졌지만, 모두 달 앞면에서 진행됐다. 나사는 특히 중국이 달 남극 근처에 있는 수백만톤의 얼음과 수자원, 광물 등을 선점해 지속적으로 주둔할 수 있는 기반을 마련할 가능성에 대해 우려하고 있다. 렌슬리어 폴리테크닉 대학(RPI)의 샌딥 싱 조교수는 나사가 달 착륙 임무를 민간이 기업에 맡기면 민간 기업의 기술 개발을 촉진할 수 있을 것이라며 "더 일찍 했더라면 더 이른 시기에 달에 되돌아갈 수 있었을 것"이라고 WSJ에 말했다. 아스트로보틱의 CEO인 손튼은 CNN과의 인터뷰에서 이번 착륙 시도는 회사 직원들이 16년간의 노력의 정점을 찍는 초현실적인 순간이 될 것이라고 말했다.
-
- 산업
-
미국 민간 우주 기업, 2024년 나사 대신 달 탐사 주도
-
-
사우디, 지난해 전세계 국부펀드 투자 '압도적 1위'
- 지난해 사우디아라비아 국부펀드(PIF)가 여러 방면에서 활발한 투자를 벌이면서 전 세계 국부펀드 투자액의 약 4분의 1을 차지한 것으로 나타났다. 연합뉴스가 전한 로이터통신은 1일(현지시간) 전 세계 국부펀드 전문업체 글로벌 SWF의 예비 연례보고서를 인용, 2023년 사우디 국부펀드 투자액이 315억 달러(약 40조8200억원)로 전 세계 전체 국부펀드 투자액 1238억 달러(약 160조4400억원)의 4분의 1에 달했다고 보도했다. 지난해 글로벌 주식시장이 강세를 보이면서 전 세계 국부펀드가 관리하는 자산은 11조2000억 달러(약 1경4515조원)로 사상 최대치를 기록했다. 하지만 국부펀드 총지출은 2022년에 비해 21% 감소했다. 친환경 수소에서 리튬 채굴에 이르기까지 에너지 전환 분야 국부펀드 총투자가 259억 달러로 사상 최대치를 기록했지만 다른 분야 투자액이 적어 전체적인 지출은 줄었다. 글로벌 SWF의 디에고 로페즈 전무는 "국부펀드의 자본이 부족한 것은 아닌데 투자액이 줄었다는 것은 국부펀드들이 지나치게 신중한 접근을 하고 있다는 신호"라고 분석했다. 지난 6년 동안 펀드 자산 투자를 주도했던 싱가포르 국부펀드 GIC도 자산이 1440억 달러 늘었음에도 불구하고 전년 대비 48% 적은 금액을 투자했다. 사우디 국부펀드는 지난해 축구와 골프, 게임 분야에서 통 큰 투자를 단행했다.. 지난해 6월 모하메드 빈 살만 사우디 왕세자는 사우디의 4대 축구 클럽인 알 이티하드, 알 알리, 알 힐랄, 크리스티아누 호날두의 알 나스르를 PIF가 인수한다고 발표했다. 또 사우디는 미국프로골프(PGA)투어와 DP 월드투어, 그리고 이들의 라이벌인 LIV 골프를 합병하겠다고 발표해 골프계를 놀라게 했다. 이 합병 계획은 아직 확정되지 않았다. 사우디 국부펀드는 다른 분야 투자도 많이 했다. PIF의 투자확대는 사우디의 경제 다양화 정책과 관련 있다. 사우디는 석유 의존도를 낮추고 미래 성장 돌력을 확보하기 위해 국부펀드를 적극 활용하고 있다. PIF는 미국 게임업체 스코플리를 49억 달러에 인수했으며 스탠다드차타드의 항공기 리스 사업부 인수에 36억 달러, 철강업체 하디드 인수에 33억 달러를 투자했다. PIF는 항공사와 자체 브랜드의 전기자동차도 출시할 계획이다. PIF는 게임 회사 액티비전 블리자드와 일렉트로닉 아츠, 테이크-투 등에 81억 달러의 지분을 갖고 있다면서 이는 사우디를 게임 허브로 만들려는 계획의 일환이라고 글로벌 SWF 보고서는 밝혔다.
-
- 경제
-
사우디, 지난해 전세계 국부펀드 투자 '압도적 1위'
-
-
美 MIT, 미생물 비료 코팅 개발…재생농업 촉진
- 미국 매사추세츠 공과대학(MIT) 화학자들은 지속 가능한 대안으로 질소 고정 박테리아를 사용해 화학 비료의 탄소 배출량을 줄이고 있다. 과학 전문 매체 사이테크데일리(SciTechDaily)는 MIT 화학 엔지니어들이 박테리아 세포의 성장이나 기능을 방해하지 않으면서 세포를 손상으로부터 보호하는 금속-유기 코팅을 개발해 종자 발아율을 크게 향상시켰다고 보도했다. 이러한 혁신은 미생물 비료의 접근성을 높이고 재생 농업을 촉진할 수 있다. 이 코팅은 박테리아 세포의 표면에 금속과 폴리페놀로 구성된 삼각형 모양의 구조를 형성한다. 이러한 구조는 박테리아 세포를 둘러싸고 보호막을 형성하여 열이나 습도, 건조 등의 손상으로부터 박테리아 세포를 보호해주어 미생물 비료의 안정성을 향상시킬 수 있다. 화학 비료 생산은 전 세계 온실 가스 배출량의 약 1.5%를 차지한다. MIT 화학자들은 일부 화학 비료를 보다 지속 가능한 공급원인 박테리아로 대체하여 탄소 발자국을 줄이는 데 도움이 되기를 기대하고 있다. 질소 가스를 암모니아로 전환할 수 있는 박테리아는 식물에 필요한 영양분을 제공할 뿐만 아니라 토양을 재생하고 해충으로부터 식물을 보호하는 데 도움이 될 수 있다. 그러나 이러한 박테리아는 열과 습도에 민감하기 때문에 대량 생산해서 농장으로 배송하기가 어렵다. 박테리아 민감성 극복 이러한 장애물을 극복하기 위해 MIT 화학 엔지니어들은 박테리아 세포의 성장이나 기능을 방해하지 않으면서 손상으로부터 세포를 보호하는 금속-유기 코팅을 개발했다. 새로운 연구에서 MIT 연구진은 이러한 코팅 박테리아가 옥수수와 청경채와 같은 채소를 포함한 다양한 종자의 발아율을 향상시킨다는 사실을 발견했다. 코팅된 박테리아로 처리한 씨앗은 코팅되지 않은 신선한 미생물로 처리한 씨앗에 비해 발아율이 150% 증가했다. 연구를 주도한 MIT 화학 공학과 아리엘 퍼스트(Ariel Furst) 박사는 "이 코팅은 농부들이 미생물을 비료로 배치하는 것을 훨씬 쉽게 만들 수 있다. 건조 공정으로부터 박테리아를 보호하고, 액체가 아닌 건조 분말이기 때문에 훨씬 더 쉽고 더 적은 비용으로 유통할 수 있다. 또한 섭씨 55.55도(화씨 132도)까지 견딜 수 있으므로 이러한 미생물을 냉장 보관을 사용할 필요가 없다"라고 말했다. 연구진은 이 기술은 화학 비료 사용을 줄여 환경 오염을 감소시킬 수 있고 토양의 영양분을 보충하고 토양을 건강하게 유지하는 데 도움이 될 수 있어 농업의 지속 가능성을 높이기를 기대한다. 이번 연구는 최근 '미국 화학학회지 Au'에 게재됐다. 미생물 보호 코팅 화학 비료는 공기 중의 질소와 수소를 결합하여 암모니아를 만드는 데 매우 높은 압력을 사용하는 에너지 집약적인 하버-보쉬 공정을 통해 제조된다. 화학 비료의 또 다른 단점으로는 이 과정에서 상당한 탄소 발자국이 발생한다는 점 외에도 장기간 사용하면 결국 토양의 영양분이 고갈된다는 것이다. 토양을 복원하기 위해 일부 농부들은 작물 순환과 퇴비화 등 다양한 전략을 사용해 토양을 건강하게 유지하는 '재생 농업'으로 전환하고 있다. 질소 가스를 암모니아로 전환하는 질소 고정 박테리아가 이러한 접근 방식에 도움이 될 수 있다. 퍼스트 박사는 열과 동결 건조로부터 미생물을 보호하기 위해 이전에 소화관으로 전달되는 치료용 박테리아를 보호하는 등 다른 용도로 미생물을 캡슐화하기 위해 개발한 금속-페놀 네트워크(MPN)라는 코팅을 적용하기로 결정했다. 이 코팅에는 금속과 폴리페놀이라는 두 가지 유기 화합물 성분이 포함되어 있어 스스로 조립되어 보호막을 형성할 수 있다. 철, 망간, 알루미늄, 아연 등 코팅에 사용되는 금속은 식품첨가물로서 안전한 것으로 간주된다. 식물에서 흔히 발견되는 폴리페놀은 탄닌과 오트 등의 분자를 포함한다. 퍼스트 박사는 "우리는 그 자체로 효능이 있는 것으로 알려진 천연 식품 등급의 화합물을 사용하여 미생물을 보호하는 작은 갑옷을 만들고 있다라고 말했다. 이 연구를 위해 연구팀은 12가지 MPN을 만들어 유해한 곰팡이와 기타 해충으로부터 식물을 보호하는 질소 고정 박테리아인 슈도모나스 클로로라피스를 캡슐화하는 데 사용했다. 연구진은 모든 코팅이 최대 섭씨 50도(화씨 122도)의 온도와 최대 48%의 상대 습도로부터 박테리아를 보호한다는 사실을 발견했다. 또한 코팅은 동결 건조 과정에서도 미생물의 생존을 유지했다. 종자 발아 향상 연구팀은 망간과 에피갈로카테킨 갈레이트(EGCG)라는 폴리페놀의 조합인 가장 효과적인 MPN으로 코팅된 미생물을 사용하여 실험용 접시에서 종자 발아를 돕는 능력을 테스트했다. 또 연구팀은 코팅된 미생물을 접시에 넣기 전에 50°C로 가열한 후 코팅되지 않은 신선한 미생물과 동결 건조된 코팅되지 않은 미생물을 비교했다. 연구 결과 코팅된 미생물은 발아율을 150% 향상 시켰다. 퍼스트 박사는 "기술을 개발할 때는 의도적으로 저렴하고 접근하기 쉽도록 설계해야 하는데, 이 기술이 바로 그런 기술이다. 이 기술은 재생 농업의 대중화에 도움이 될 것이다라고 말했다. 퍼스트 박사는 이 기술을 상용화하기 위해 세이아 바이오(Seia Bio)라는 회사를 설립했다. 세이아 바이오는 현재 이 코팅을 적용한 미생물 비료를 농업 현장에 적용하는 데 대한 연구를 진행하고 있다.
-
- 산업
-
美 MIT, 미생물 비료 코팅 개발…재생농업 촉진
-
-
[퓨처 Eyes(17)] 세계 최대 화물기 '드론 라이너', 10년 내 취항 전망…온라인 쇼핑 혁신 기대
- 영국 항공 스타트업 '드론라이너'는 무한정 공중에 머물 수 있는 자율주행 화물기를 개발 중이라고 밝혔다. 드론라이너는 기존 화물기의 한계를 극복하고, 화물 운송의 혁신을 예고하고 있다. 물론 자동화된 항공기는 새로운 개념은 아니다. 지난 몇 년 동안 많은 기업들이 자율 비행을 실현하기 위해 노력해 왔다. 이러한 기업의 성장은 조종사 부족과 항공 산업의 지속가능성 개선에 대한 필요성과 밀접한 관련이 있다. 이에 따라 여러 기업이 안전하고 지속 가능한 자율주행 항공기를 개발하는 과정에 있다. 영국 일간지 더 선(The Sun)에 따르면 드론라이너는 최근 DL200과 DL350이라는 두 가지 자율주행 화물 항공기의 컨셉을 공개했다. 더 작은 DL200은 전기로 구동되는 단일 부스트 엔진으로 40개 이상의 화물 컨테이너를 실을 수 있다. 최대 화물 중량은 200톤, 최대 이륙 중량은 350톤이다. 반면에 더 큰 버전인 DL350은 세계에서 가장 무거운 항공기로, 두 개의 하이브리드 터보팬 엔진으로 구동된다. DL350은 최대 80개의 컨테이너를 적재할 수 있으며, 최대 화물 중량은 350톤이다. 또한 DL350의 최대 이륙 중량은 600톤이다. 지금까지 비행한 화물기 중 가장 큰 보잉 747-8의 적재 용량은 약 137톤이다. 드론라이너 DL200과 DL350은 모두 6500해리의 항속거리를 자랑한다. 작은 비행기인 DL200에는 터보팬 엔진이 하나, 큰 비행기인 DL350에는 두 개가 장착되지만 항속 거리는 대략 6500해리로 동일하다. 이는 베이징에서 로스앤젤레스까지의 거리보다 길고 지구 둘레의 3분의 1에 해당하는 거리다. 드론라이너의 디자인 디렉터인 마이크 데번스는 더 선과의 인터뷰에서 이 항공기를 "점보 제트기 이후 가장 흥미로운 새 비행기"라고 평가했다. 데번스는 "드론라이너의 취항을 위해서는 수십억 달러의 비용이 들겠지만, 10년 안에 이 항공기가 하늘을 날게 될 것이라고 믿는다. 드론라이너는 점보 제트기 한 대의 무게를 화물칸에 실을 수 있을 정도로 큰 크기와 강력한 엔진 덕분에 많은 양의 화물을 운송할 수 있다"고 덧붙였다. 기존 화물기의 한계 기존 화물기는 항공기의 크기와 연료 효율성의 한계로 인해 장거리 화물 운송에 적합하지 않았다. 먼저, 화물기는 여객기보다 크기가 크고 무거워 연료 소모가 많다. 이에 따라 장거리 화물 운송 시 비용이 많이 들고, 탄소 배출도 증가한다. 또한, 화물기는 탑재 중량이 제한되어 있어 대용량 화물 운송에 어려움이 있다. 현재, 취약한 공급망과 항만 혼잡은 배송을 지연시키는 주요 원인으로 지적되고 있다. 최근의 사건들은 공급망이 얼마나 쉽게 중단될 수 있는지를 보여 주었다. 코로나19 팬데믹과 감염, 또한 전쟁에 대한 우려로 인해 기존 항만과 운송 수단은 취약한 생태계를 형성하고 있다. 국제 교역의 주요 항로 중 파나마 운하와 수에즈 운하는 기후 변화와 전쟁의 영향으로 제 기능을 못하고 있으며, 이로 인해 선박들의 혼잡이 더욱 심각해지고 있다. 파나마 운하는 태평양과 대서양을 연결하며, 수에즈 운하는 지중해와 홍해를 이어준다. 전 세계 상품 교역량의 5%가 지나가는 파나마 운하가 올해 들어 전례 없는 가뭄에 따른 수위 하락으로 선박 통행량을 제한했다. 이에 미국 선박 퍼시픽 웨이하이호는 10일이 더 걸리지만 운하 통과 시 병목 현상이 없는 이집트 수에즈 운하를 이용하기로 결정했다. 수에즈 운하는 지중해와 홍해를 잇는 최단거리 바닷길로 전 세계 상품 교역량의 12%가 이곳을 통과한다. 그런데 예멘의 친이란 반군 세력인 후티가 이스라엘-하마스 전쟁 이후 '팔레스타인 지지'의 표시로 홍해에서 상선 공격을 확대하자 퍼시픽 웨이하이호의 수에즈 운하 통과 계획은 순식간에 무산됐다. 결국 이 배는 지난 18일 수에즈 해협에서 경로를 우회해 파나마 운하 이용보다 15일이나 더 걸리는 아프리카 희망봉 우회 경로를 선택했다. 지난 26일 발표된 스탠더드앤드푸어스(S&P) 글로벌 마켓 인텔리전스 보고서에 따르면, 이러한 우회 항로는 운송 비용을 15% 이상 증가시킨다. 드론항공기를 이용하면 이런 선박 혼잡도를 피할 수 있다. 드론 라이너의 특징 반면에 드론라이너는 이러한 기존 화물기의 한계를 극복하기 위해 다음과 같은 세 가지 특징을 갖추고 있다. 첫째, 드론라이너는 기존 화물기와 달리 직사각형 모양의 기체를 채택하고 있다. 이는 컨테이너를 효율적으로 실을 수 있도록 설계된 것으로, 화물 공간의 낭비를 줄일 수 있다. 둘째, 드론라이너는 하이브리드 전기 비행을 목표로 하고 있다. 이는 연료 효율성을 높이고, 탄소 배출을 줄이기 위한 것이다. 셋째, 드론라이너는 무한정 공중에 머물 수 있는 능력을 갖추고 있다. 이는 드론라이너가 승무원 없이도 자율적으로 운항할 수 있기 때문이다. 드론라이너의 미래형 기능과 전망 드론라이너는 택시 기능과 착륙, 이륙에 필요한 연료와 탑재하중을 지원하는 하이브리드 시스템을 갖춘, 연료 효율이 가장 높은 장거리 항공기로 설계됐다. 초저저항 기체는 항력을 줄이고 연료 효율적 운항이 가능하도록 설계되어 한 번의 비행으로 장거리를 이동할 수 있다. 또한 이 항공기는 지속 가능한 항공 연료(SAF)와 수소 연료로 구동되어 탄소 배출량을 95% 감축하고, 핸드링을 90% 이상 줄여 운영 비용을 절감할 수 있다. 또한 드론라이너는 완전 자율 비행이 가능하여 조종사 없이도 스스로 비행할 수 있다. 따라서 조종석이나 기내 가압장치가 필요하지 않으므로 더 빠른 적재와 하역이 가능하다. 게다가 비행기의 앞면과 뒷면을 열 수 있어 컨테이너를 더 빠르게 넣고 뺄 수 있다. 드론라이너의 상용화는 화물 운송 산업에 큰 변화를 가져올 것으로 기대된다. 드론라이너의 등장으로 화물 운송이 더욱 빠르고 저렴해지고, 온라인 쇼핑과 식료품 배송의 대중화가 촉진될 것으로 전망된다. 온라인 쇼핑과 식료품 배송 분야의 변화 특히 드론라이너는 온라인 쇼핑과 식료품 배송 분야에 큰 변화를 가져올 것으로 예상된다. 드론라이너는 화물 운송 시간을 크게 단축함으로써, 고객이 주문한 상품을 더 빠르게 받을 수 있게 해준다. 또한, 기존의 배송 방식에 비해 비용을 크게 절감할 수 있다. 이는 온라인 쇼핑업체들이 해외에서 상품을 빠르게 배송할 수 있는 기반을 마련해 주며, 고객들의 만족도를 높이는 데 기여할 것으로 보인다. 식료품 배송 업체들은 드론라이너를 활용해 신선한 식품을 빠르게 배송할 수 있게 되어, 고객들의 불만을 해소하고 경쟁력을 강화할 수 있을 것으로 전망된다. 예를 들어, 드론라이너가 상용화되면 고객이 온라인으로 주문한 상품을 당일 또는 익일 배송받을 수 있게 된다. 또한, 드론라이너를 이용하면 채소, 과일 등 신선식품이나 식료품과 같은 상품을 더욱 신속하고 안전하게 배송할 수 있을 것이다. 환경 문제 해결에 기여 드론라이너는 환경 문제 해결에도 기여할 것으로 기대된다. 드론라이너는 하이브리드 전기 비행을 통해 연료 효율성을 높이고, 탄소 배출을 줄일 수 있다. 이에 따라 화물 운송으로 인한 환경 오염이 감소할 것으로 예상된다. 드론라이너에 따르면 DL200과 DL350 두 기체 모두 하이브리드 전기 비행을 지향하며 지속 가능한 제트 연료를 사용한다. 안전성 확보가 관건 그러나 드론라이너의 상용화에는 안전성 문제가 해결되어야 할 과제로 남아 있다. 600톤에 달하는 대형 항공기가 승무원 없이 하늘을 날아다니는 것은 안전상의 우려가 있기 때문이다. 드론라이너 측은 안전성 확보를 위해 다양한 기술을 개발하고 있으며, 기존 공항을 사용하지 않고 폐쇄된 공항이나 사용하지 않는 공군 기지 등을 활용할 방침이라고 밝혔다. 이 회사는 10년 내 상용화를 목표로 하고 있다. 드론라이너의 상용화는 앞에서 살펴보았듯이 화물 운송 산업에 큰 변화를 가져올 것으로 전망된다. 화물 운송의 속도와 효율성이 크게 개선되면서, 식품 배송 산업 등의 성장을 촉진하고, 소비자들의 편익을 증진시킬 것으로 기대된다. 다만, 드론라이너 측은 안전 문제는 여러 번 강조했지만 소음 발생에 대해서는 별다른 언급이 없어서 이 또한 상용화에 앞서 선결 과제로 남았다.
-
- 포커스온
-
[퓨처 Eyes(17)] 세계 최대 화물기 '드론 라이너', 10년 내 취항 전망…온라인 쇼핑 혁신 기대
-
-
루테늄 나노 입자로 녹색 수소 생산 비용 절감
- 최근 전 세계적으로 탄소 중립을 위한 노력이 활발해지면서, 녹색 수소의 중요성이 더욱 커지고 있다. 녹색 수소는 태양광, 풍력 등 재생 가능 에너지를 이용해 물을 전기분해하여 생산한 수소로, 생산 과정에서 이산화탄소를 배출하지 않는 친환경 에너지원이다. 그러나 기존의 녹색 수소 생산 기술은 백금이나 이리듐과 같은 귀금속을 촉매로 사용하기 때문에 생산 비용이 높아, 대규모 생산과 활용에 어려움이 있었다. 이에 따라, 저렴한 촉매를 사용하여 녹색 수소 생산 비용을 낮추기 위한 연구가 활발히 진행되고 있다. 최근 에너지 전문매체 오일프라이스(OILPRICE)에 따르면 이탈리아의 이노바티브 테크놀로지 연구소(Istituto Italiano di Tecnologia, IIT)와 스핀오프 기업 비디멘션즈(BeDimensions)는 작은 루테늄 입자와 태양열 전해조를 이용한 녹색 수소 생산 기술을 개발했다고 발표했다. 기존의 녹색 수소 생산 방법은 백금이나 이리듐과 같은 귀금속을 촉매로 사용하기 때문에 생산 비용이 높다는 단점이 있다. 반면, 이번에 개발된 기술은 루테늄만을 사용하기 때문에 생산 비용이 크게 낮아질 것으로 기대된다. IIT와 비디멘션즈의 연구진은 루테늄 나노 입자를 전해조 음극의 활성상으로 사용해 전체 전해조의 효율성을 향상시켰다. 루테늄 나노 입자는 백금과 유사한 촉매 작용을 하지만 가격은 백금의 약 3분의 1로 저렴하다. 따라서 킬로와트당 40mg의 루테늄만을 사용하면 기존의 양이온 교환막(Proton Exchange Membrane,PEM) 전해조에 비해 생산 비용을 약 75% 절감할 것으로 예상된다. 녹색 수소 생산이 중요한 이유 녹색 수소는 태양광, 풍력 등 재생 가능 에너지를 이용해 물을 전기분해하여 생산한 수소를 말한다. 화석 연료를 이용해 생산한 수소(회색 수소, 파란 수소)와 달리 생산 과정에서 이산화탄소를 배출하지 않는다. 녹색 수소는 탄소 중립 사회로의 전환을 위한 핵심 에너지원으로 주목받고 있다. 수소는 연료전지, 연료 저장, 화학 공정 등 다양한 분야에서 활용될 수 있다. 이번에 개발된 기술은 녹색 수소 생산 비용을 낮추는 데 기여할 것으로 기대된다. 이는 녹색 수소의 대규모 생산과 활용을 앞당기는 데 도움이 될 것으로 보인다. 에너지 단위당 수소 생산량은? IIT와 비디멘션즈의 연구진은 이번 기술이 기존의 양이온 교환막 전해조에 비해 에너지 단위당 수소 생산량이 높다고 밝혔지만, 구체적인 수치는 언급하지 않았다. 에너지 단위당 수소 생산량은 녹색 수소 생산 비용의 중요한 요소 중 하나다. 따라서 이 기술이 상용화될 경우 에너지 단위당 수소 생산량이 얼마나 되는지 확인하는 것이 중요하다. 루테늄 공급량은 충분할까? 루테늄은 백금 추출의 부산물로 얻어지기 때문에 연간 생산량이 백금의 7분의 1 수준이다. 따라서 이번에 개발된 기술이 상용화될 경우 루테늄의 수요가 증가할 것으로 예상된다. 루테늄의 수요 증가에 따라 가격이 상승할 가능성도 있다. 따라서 루테늄의 공급과 수요를 고려해 기술의 경제성을 평가하는 것이 필요하다. 한국, 루테늄 개발 사업 추진 한국도 루테늄 개발을 위해 노력하고 있다. 과학기술정보통신부 산하 한국과학기술연구원(KIST)은 2021년부터 루테늄의 효율적인 추출 및 정제 기술 개발을 추진하고 있다. 이 기술이 개발되면 루테늄의 생산량과 품질을 크게 향상시킬 수 있을 것으로 기대된다. 또한, 한국수소산업진흥협회는 루테늄의 국내 자급률을 높이기 위한 연구개발(R&D) 사업을 추진하고 있다. 이 사업을 통해 루테늄의 국내 생산 기술을 개발하고, 루테늄의 수요를 창출하기 위한 노력을 기울이고 있다. 이러한 기술 개발을 통해 우리나라도 녹색 수소 생산 비용을 낮추고, 루테늄의 국산화를 추진할 수 있을 것으로 기대된다. 이번에 개발된 기술은 녹색 수소 생산 비용을 크게 낮추는 데 기여할 것으로 기대된다. 이는 녹색 수소의 대규모 생산과 활용을 앞당기는 데 도움이 될 것으로 보인다. 그러나 에너지 단위당 수소 생산량과 루테늄 공급 문제 등은 추가적인 연구와 개발이 필요하다.
-
- 산업
-
루테늄 나노 입자로 녹색 수소 생산 비용 절감
-
-
블루 오리진, 15개월 만에 뉴 셰퍼드 로켓 무인 임무 성공
- 미국의 민간 우주기업 블루 오리진의 24번째 미션이 성공했다고 엔가젯과 CNN 등 다수 외신이 20일(현지시간) 보도했다. 우주 관광 사업을 주력으로 하는 블루 오리진(Blue Origin)은 미국의 민간 우주기업으로, 2000년 아마존의 창업자 제프 베이조스가 설립했다. 블루 오리진은 15개월만인 19일(현지시간) 오전 10시 42분 미 텍사스주 밴 혼 발사장에서 뉴 셰퍼드(New Shepard) 로켓을 발사했다. 뉴 셰퍼드는 발사 후 우주의 경계로 여겨지는 약 107km(약 66.5마일) 고도에 도달한 뒤 부스터와 승무원 캡슐은 안전하게 분리되어 지구로 성공적으로 귀환했다. 로켓은 발사 후 7분 30초 만에 수직으로 착륙했고, 승무원 캡슐은 발사 후 10분 만에 낙하산을 펼치고 성공적으로 착륙했다. 이번 뉴 셰퍼드 로켓 발사는 2022년 9월 이후 15개월 만에 이루어졌다. 앞서 무인 캡슐을 장착한 23번째 뉴 셰퍼드는 텍사스에서 발사된 지 1분 만에 약 8㎞ 상공에서 부스터 엔진이 갑자기 불꽃을 내뿜으며 추락했다. 지난 3월 블루오리진은 해당 로켓 엔진 노즐의 '구조적 결함'이 원인이라고 발표했다. 한편, 이번 임무는 승무원 없이 진행되었지만 33개의 과학 탑재체를 저궤도로 운반했다. 그 중 절반 이상이 미국 항공우주국(NASA)에서 가져온 것이었다. 이번 발사를 통해 연구원들은 몇 분 동안 무중력 상태에서 이러한 탑재체(payload·페이로드)에 대한 원격 연구를 수행할 수 있었다. 예를 들어 허니비 로보틱스의 탑재체는 다양한 중력 조건에서 행성 토양의 강도를 연구했다. 또한 '미래를 위한 클럽' 이니셔티브의 학생 엽서 3만 만8000장도 발송 목록에 포함됐다. 이날 뉴 셰퍼드 로켓은 지상 시스템 문제로 원래 발사가 취소될 예정이었으나 결국 발사에 성공했다. 이날 비행과 관련하여 보고된 문제는 없었지만, 카운트다운이 몇 분간 지연됐다. 이번 임무는 사실상 뉴셰퍼드 부스터의 수소 기반 로켓 엔진의 오작동으로 인해 조기에 종료된 2022년 9월 비행을 재실행하는 것이었다. 이 이상 현상으로 인해 미국 연방항공청(FAA)의 조사가 완료될 때까지 블루 오리진 발사가 중단됐다. FAA의 조사는 지난 9월 종료됐다. 이에 블루 오리진은 기관에서 요구한 일련의 시정 조치를 처리한 후 발사를 재개할 수 있게 됐다. 여기에는 부스터 엔진과 노즐의 재설계, 일부 절차적 변경 등이 포함됐다. 이번 성공으로 블루 오리진은 우주 관광사업 재개에 속도를 낼 계획이다. 블루 오리진은 그동안 여러 차례 상업 비행에 성공했으며, 제프 베이조스도 2021년 7월 이 로켓을 타고 우주 관광을 다녀왔다. 블루 오리진은 향후 승무원 탑승 비행에 대한 공식적인 계획을 발표하지 않았지만 최근 발사 타워에 엘리베이터를 설치했다. 발사 해설자 에리카 와그너는 이날 라이브 스트리밍에서 이는 향후 발사에 "장애인과 더 많은 사람들이 더 쉽게 접근할 수 있도록 하기 위한 것"이라고 말했다. 이를 위해 블루 오리진은 승무원 탑승 항공편의 고객 유치를 위한 프로모션을 강화하기 시작했다. 향후 발사에 페이로드 추가를 신청할 수도 있다. 블루 오리진 뉴 셰퍼드 프로그램 수석부사장인 필 조이스는 "내년에 로켓 발사 횟수를 늘릴 것"이라며 "뉴 셰퍼드에 대한 수요가 지속적으로 증가함에 따라 더 자주 비행할 수 있기를 기대하고 있다"고 말했다. 블루 오리진의 수석 이사인 에리카 와그너도 "우리는 곧 다음 승무원들이 탑승하는 모습을 볼수 있기를 기대하고 있다"고 말했다.
-
- 산업
-
블루 오리진, 15개월 만에 뉴 셰퍼드 로켓 무인 임무 성공
-
-
뮌헨공대, 태양광 수소 생산 세계 최고…경제성 확보 과제
- 독일 뮌헨대학교 연구팀이 태양광 수소 생산 분야에서 세계 기록을 경신했다. 이들은 햇빛을 활용하여 포름산으로부터 수소를 생산하는 플라즈몬 나노구조를 개발하여 녹색 수소 개발에 획기적인 발전을 이루어냈다. 산업 전문매체 '오일프라이스(Oil Price)'는 뮌헨대학교 연구팀의 이 발견이 획기적이라면서도 고가의 원자재를 사용하는 한계로 인해 경제적인 측면에서 더 효과적인 대안을 모색해야 한다고 지적했다. 뮌헨대학교 연구팀은 녹색 수소 생산 분야에서 세계적인 기록을 경신했으며, 이러한 성과를 이루어낸 고성능 나노구조를 개발했다. 뮌헨대학교 실험물리학 및 에너지 변환 교수인 에밀리아노 코르테스(Emiliano Cortés)는 나노우주로의 도약을 이루어냈다. 코르테스 교수는 "태양광의 고에너지 입자가 원자 구조와 상호 작용하는 지점에서 연구가 시작되었다"라며 "태양에너지를 더 효율적으로 활용하기 위한 소재 솔루션을 연구 중"이라고 설명했다. 이러한 발견은 새로운 태양전지와 광촉매의 가능성을 열어두고 있다. 그러나 코르테스 교수는 "햇빛이 희석돼 지구에 도달하기 때문에 면적당 에너지가 상대적으로 낮다"는 문제에 직면하고 있다고 말했다. 헤란 박사는 "먼저, 우리는 플라즈몬 금속(우리 경우에는 금)에서 10~200나노미터 범위의 입자를 생성했다"라며 "이 크기에서 가시광선은 금 전자와 매우 강하게 상호작용하여 공명 진동을 유발한다"라고 설명했다. 이러한 현상을 통해 나노입자는 더 많은 햇빛을 포착하고, 매우 높은 에너지의 전자로 변환할 수 있다는 것을 밝혔다. 헤란 박사는 "이러한 과정에서 매우 국지적이고 강한 전기장이 핫스팟에서 발생한다"고 말했다. 이러한 핫스팟은 금 입자 사이에서 형성되며, 따라서 두 사람은 백금 나노입자를 이러한 핫스팟 사이 공간에 직접 배치하는 아이디어를 얻었다. 오늘날 수소는 주로 화석 연료, 주로 천연가스에서 생산된다. 그러나 두 사람은 "플라즈몬 금속과 촉매 금속의 결합을 통해 이산화탄소를 유용한 물질로 변환하는 등 다양한 산업 응용 분야를 위한 강력한 광촉매를 개발 중이다"라고 밝혔다. 이들은 이미 이러한 물질 개발에 대한 특허를 취득했다. 또한, 이전에 매사추세츠 공과대학(MIT)의 엔지니어들이 태양열을 활용하여 온실가스 배출 없이 수소를 효율적으로 생산하는 '태양열화학수소' 시스템을 개발했다. MIT, 태양열 최대 40% 활용 기존의 태양열 열화학 수소 생산 시스템은 효율성이 낮았지만, MIT의 설계는 태양열을 최대 40%까지 효율적으로 활용할 수 있다. 이 시스템은 태양열을 활용하여 물을 분해하고, 이 과정에서 생성된 수소를 청정 연료로 사용할 수 있게 한다. 이렇게 생산된 수소는 장거리 트럭, 선박, 항공기의 연료로 사용될 수 있으며, 온실가스가 전혀 배출되지 않는다. MIT의 새로운 시스템은 집중형 태양열 발전소(CSP) 방식을 사용하며, 다수의 거울을 활용하여 태양광을 집중시켜 열을 발생시킨다. 이렇게 집중된 열은 수소 생산에 활용된다. 한국의 DGIST(대구경북과학기술원)와 단국대학교 연구팀은 친환경적인 양자점을 활용하여 세계 최고 수준의 태양광 수소 생산 기술을 개발했다. 이 기술은 양자점의 물성을 조절하여 광전기화학 소자에 적용, 태양광을 효과적으로 수소 생산에 활용하는 방법을 제공한다. 게다가 한국의 DGIST(대구경북과학기술원)와 단국대학교 연구팀은 친환경적인 양자점을 활용하여 세계 최고 수준의 태양광 수소 생산 기술을 개발했다. 이 기술은 양자점의 물성을 조절하여 광전기화학 소자에 적용함으로써, 태양광을 효과적으로 수소 생산에 활용할 수 있는 방법을 제시한다.
-
- 산업
-
뮌헨공대, 태양광 수소 생산 세계 최고…경제성 확보 과제
-
-
SK에코플랜트·한국남동발전, UAE·오만서 그린수소 사업 본격화
- SK에코플랜트가 한국남동발전과 협력해 중동 지역에서의 그린수소 사업 확장할 계획이다. SK에코플랜트는 15일 서울 종로구 본사에서 한국남동발전과 '그린수소-그린암모니아 사업개발 공동협력을 위한 업무협약(MOU)'을 체결했다고 발표했다. 이 협약에 따라 두 회사는 아랍에미리트(UAE)와 오만에서 그린수소와 그린암모니아 사업 개발을 공동으로 추진할 예정이다. SK에코플랜트는 그린수소 프로젝트 사업개발 예비타당성조사를 총괄하고 주도하며, 한국남동발전은 사업개발을 지원한다. 한국남동발전은 향후 그린수소, 그린암모니아를 국내로 들여와 혼소 발전용으로 활용하는 방안도 검토할 계획이다. 두 회사는 이를 위해 UAE 수도 아부다비에 위치한 경제자유구역 산업단지에서 그린수소 및 그린암모니아 생산을 위한 인프라 구축에 대한 예비타당성조사를 시작한다. SK에코플랜트는 경제자유구역 산단 내 부지에서 태양광 발전으로 생산한 전기로 물을 분해해 연간 그린수소 5만t(톤), 그린암모니아 25만t을 생산하는 것을 목표로 하고 있다. 이번 예비타당성조사를 통해 사업의 세부적인 규모와 그린수소 등의 생산 가능 용량 등도 종합적으로 검증할 계획이다. 앞서 SK에코플랜트는 지난 7월 현지 기업과 재생에너지 기반 그린수소 및 그린암모니아 사업에 대한 예비타당성조사 사전 협의를 진행했다. 또한 경제자유구역 산업단지와 함께 항만시설 및 터미널을 운영 중인 현지 기업과도 업무협약(MOU)을 체결했다. UAE와 오만 등 중동 지역은 풍부한 일조량 덕분에 태양광을 통한 전력 생산이 용이하며, 이미 구축된 항만시설과 터미널은 생산된 그린수소 및 그린암모니아 운송이나 유통에도 유리한 조건을 제공한다. 두 회사는 오만에서도 추가적인 사업 기회를 모색할 예정이다. 배성준 SK에코플랜트 에너지전략 담당임원은 "에너지 다소비 산업을 중심으로 증가하는 그린수소 수요에 적극 대응해 나갈 것"이고 밝혔다. 한편, SK에코플랜트는 2020년 폐기물처리업체인 '환경시설관리'(EMC)를 인수하면서 환경업에 본격 진출했다. 3년 새 SK에코플랜트의 환경 자회사 숫자는 24개로 늘었고, 사업 구조도 소각·매립·수처리 등의 전통적인 사업부터 폐플라스틱, 전자전기폐기물, 폐배터리 등의 재활용 사업까지 환경업 전 영역을 포괄하게 됐다. 위탁운영을 포함한 국내 수(水)처리장 운영 숫자는 1295개에 달하며, 1년간 정화하는 하수 및 폐수의 양은 서울시민의 연간 수돗물 사용량을 초과하는 약 11억 700만 톤에 이른다. 일반 소각 부문에서도 연간 약 35만 1495톤의 폐기물을 처리하며, 점유율 1위를 차지하고 있다. 의료 소각 용량을 포함할 경우 연간 전체 소각 처리량은 40만 톤을 넘어선다.
-
- 산업
-
SK에코플랜트·한국남동발전, UAE·오만서 그린수소 사업 본격화
-
-
전기화학 기술, 가축 분뇨에서 친환경 자원 생산
- 환경 오염을 주범으로 여겨지는 가축 분뇨에서 친환경적으로 전기를 생산하는 기술이 개발됐다. 매년 전 세계 축산농가에서 30억톤 이상의 동물 배설물이 발생하고 있다. 이는 미국 엠파이어 스테이트 빌딩 9000개 이상에 해당하는 양이다. 모든 분뇨는 수질을 악화시키며 유독한 연기와 온실가스를 방출한다. 그러나 저렴한 전기를 이용해 동물 배설물을 재활용하고 귀중한 화학물질을 회수할 수 있는 기술이 개발돼 환경 오염을 크게 줄일 수 있을 것으로 기대된다. 학술지 '사이언스 어드밴스(Science Advances)'에서는 '네이처 서스테이너빌리티(Nature Sustainability)'에 발표된 연구를 소개했다. 이 연구는 전기를 이용하여 동물 배설물에서 유기 영양소를 분해하고, 동시에 가치 있는 화학물질을 회수하는 새로운 방법을 제시한다. 초기 예측에 따르면, 이 방법으로 얻어지는 화학물질의 경제적 가치가 기술 구현 비용을 상회할 것으로 예상된다. 이는 농부들에게 수익성이 높은 선택지가 될 수 있음을 시사한다. 클락슨 대학의 김태영 화학자는 이번 연구에는 참여하지 않았지만 "풍력, 태양열 발전소에서 발생하는 값싸고 재생가능한 전기를 결합하면 거름이 풍부한 시골 농업 지역에서도 찬환경 전기가 생산될 수 있다"고 말했다. 많은 축산업자들은 이미 동물 배설물을 재활용하기 위해 노력하고 있다. 이들은 배설물을 분뇨 라군(연못)에 저장하여, 바닥에 침전된 암모니아가 풍부한 고형물을 준설하여 비료로 재사용한다. 또한, 남은 유기 화합물을 미생물이 메탄으로 분해하게 하여 이를 수집, 태워 전기를 생산할 수 있다. 이러한 방식은 지속 가능한 에너지와 농업 사이의 상호 작용을 보여주는 예이다. 그럼에도 불구하고, 엄청난 양의 암모니아와 기타 화합물이 자연환경으로 방출되어 해조류가 번성하고 물고기가 죽게 되는 환경오염이 발생한다. 이에 최근 몇 년 동안 몇몇 연구팀에서는 분뇨 라군에서 암모니아와 기타 귀중한 화학물질을 포착하기 위한 전기화학적 방법을 탐색하기 시작했다. 예를 들어, 2021년 실험실 연구에서 김태영 교수와 그의 동료들은 전류를 사용해 막을 통해 양으로 하전된 암모늄 이온을 유도하여 비료 전구체를 농축하고 쉽게 복구할 수 있는 배터리 유형 설정을 보고했다. 그러나 멤브레인(두께가 얇은 막) 설정은 운영하기 어렵고 확장하는 데 비용이 많이 들 수 있다. 위스콘신 매디슨 대학교 환경 엔지니어인 모한 킨(Mohan Qin)과 동료 송진이 이끄는 연구팀은 2단계 접근 방식을 채택해 멤브레인을 없앨 수 있는 가능성을 확인했다. 두 단계 모두 KNiHCF(칼륨·니켈·헥사시아노철산염)라는 배터리 전극 재료를 사용한다. KNiHCF는 이온이 들어오고 나갈 수 있는 간격이 있는 층 구조를 가지고 있다. 연구원들은 KNiHCF의 층 간격이 나트륨이나 칼슘과 같이 분뇨에서 일반적이지만 가치는 떨어지는 이온 대신 암모늄 및 칼륨 이온을 끌어들이는 데 이상적이라는 것을 발견했다. 연구진은 이후 이온으로 채워진 KNiHCF 전극을 폐수 용액에서 제거하고, 이를 이온 전도성 전해질을 첨가한 깨끗한 물이 담긴 두 번째 용기에 두 번째 전극과 함께 배치했다. 전압을 가하면 전자가 두 번째 전극으로 흘러 들어갔고, 이로 인해 KNiHCF 전극에서 양전하를 띤 암모늄 및 칼륨 이온을 용액으로 끌어당겨 농축하고 쉽게 복구할 수 있는 음전하가 생성됐다. 이 설정에는 보너스가 있다. 두 번째 전극의 음전하는 용액의 물과 산소를 유발하여 수소 가스나 과산화수소로 반응했는데, 두 가지 모두 회수된 암모니아 및 칼륨과 함께 판매될 수 있는 귀중한 화학물질이다. 연구팀은 KNiHCF 전극은 반복적으로 사용하면 성능이 저하되는데, 이 문제는 이미 해결 방안을 찾았다고 밝혔다. 연구원들은 또한 1000마리의 젖소가 있는 낙농장의 폐기물을 확장하고 관리하기 위한 설정의 잠재력을 평가하기 위한 분석을 수행했다. 그들은 전기 가격이 미국 평균인 킬로와트시(kWh)당 약 0.08달러(약 100원)로 책정될 경우 해당 운영에서 연간 최대 20만달러(약 2억6320만원)의 이익을 창출할 수 있을 만큼 귀중한 화학 물질을 생성할 수 있다는 사실을 발견했다. 송진 연구원은 재생 가능 전력이 일부 농촌 지역의 전기 비용을 2030년까지 kWh당 약 0.03달러(약 39원)로 낮출 수 있을 것으로 예상했다. 풍력이나 태양열 발전소는 종종 전력망이 처리할 수 있는 것보다 더 많은 전기를 생산하므로 엔지니어는 전력을 버리거나 터빈을 꺼야 했다. 이에 송진은 "풍력, 태양광과 결합할 수 있다면, 가격이 저렴할 때만 전기를 사용하도록 설계할 수 있다"고 말했다. 모한 킨은 "전체 공정이 얼마나 효율적인지 고려할 때, 전기화학적 처리는 거름에 있는 암모니아의 거의 70%를 포착하고 비슷한 양만큼 농장에서 배출되는 암모니아를 줄일 수 있다"며 "이것은 오래된 (가축 분뇨)문제를 처리하는 매우 간단하고 효율적인 방법"이라고 주장했다.
-
- 산업
-
전기화학 기술, 가축 분뇨에서 친환경 자원 생산
-
-
ASML-삼성, 한국에 7억 유로 규모 반도체 연구소 설립
- 윤석열 대통령의 네덜란드 국빈 방문을 계기로 네덜란드의 거대 기술 기업인 ASML과 삼성이 한국에 반도체 연구 공장을 건설하기 위해 약 7억 유로 규모의 계약을 체결했다고 테크 익스플로어가 12일(이하 현지시간) 보도했다. 보도에 따르면, 윤 대통령은 글로벌 반도체 강국인 네덜란드와의 '칩 동맹'을 강화하기 위해 이번 방문을 진행했으며, 외국 정상으로서는 최초로 보안이 철저한 ASML의 '클린룸'을 방문한 것으로 알려졌다.. 윤 대통령은 ASML의 대규모 시설을 둘러보며 스마트폰부터 자동차에 이르는 다양한 기기에 쓰이는 반도체 칩을 제조하는 최첨단 기계를 살펴봤다. 이번 방문을 계기로 ASML과 삼성전자는 향후 공동 투자를 통해 차세대 EUV(극자외선) 장비를 활용한 첨단 반도체 공정 기술 개발에 협력하기로 합의했다. 한편, 한국무역협회는 13일 네덜란드 암스테르담에서 네덜란드 경제인연합회(VNO-NCW)와 함께 '한-네덜란드 CEO 라운드 테이블'을 개최했다고 발표했다. 이번 행사에는 한국 측에서 구자열 한국무역협회 회장(LS그룹 이사회 의장)과 안덕근 통상교섭본부장, 그리고 삼성전자, SK하이닉스, 현대자동차, 주성엔지니어링 등 주요 기업의 경영진들이 참석했다. 네덜란드 측에서는 잉그리드 테이슨 VNO-NCW 회장과 미키 아드리안센스 경제에너지기후부 장관을 비롯해 세계 1위 반도체 장비 기업인 ASML, 차량용 반도체 시장 점유율 2위인 NXP, 네덜란드 응용과학연구소(TNO) 등의 관계자 10여명이 참석했다. 이날 회의에 참석한 인사들은 반도체, 신재생 에너지, 모빌리티 등의 첨단 산업 분야에서의 협력 방안에 대해 진솔한 대화를 나누었다. 삼성전자의 경계현 DS부문장 사장은 전날 ASML과 체결한 극자외선(EUV) 기술 공동개발을 위한 연구소 설립 협약을 언급하며, "삼성은 지난 30년 동안 ASML과의 협력을 통해 큰 발전을 이루었다. 양국 기업 간의 협력 강화는 유럽 반도체 산업의 가치 사슬을 강화하고 글로벌 공급망의 안정성에도 중요한 역할을 할 것"이라고 강조했다. SK하이닉스의 곽노정 대표이사 사장은 ASML과 함께 EUV 공정에서 전력 사용량과 탄소 배출을 줄이는 기술을 공동으로 개발하기로 했다며 "이 협력은 반도체 산업이 온실가스 감축에 기여하는 중요한 첫 걸음이 될 것"이라고 말했다. 현대자동차의 김동욱 부사장은 "현대차그룹은 전기차는 물론 수소 상용차, 도심항공교통(UAM), 배달용 특화 로봇 개발 등 다양한 분야에서 혁신을 추구하고 있으며, 이러한 다각적인 노력이 네덜란드 기업들과의 협력을 통해 더욱 확대될 것으로 기대한다"고 밝혔다. 네덜란드 기업들은 반도체와 모빌리티 분야의 한국 정부 정책에 큰 관심을 나타냈다. 피터 베닝크 ASML 회장은 "한국 시장의 성장 가능성을 고려하여 올해 초 화성에 위치한 신규 캠퍼스 건설을 시작했다"고 밝혔으며, 이어서 "ASML은 앞으로도 삼성전자, SK하이닉스 등 한국의 주요 파트너들과의 협력을 더욱 강화해 나갈 계획"이라고 말했다. 한편, 네덜란드 정부의 발표에 따르면, 한국은 아시아 지역에서 네덜란드의 세 번째로 큰 교역 파트너이며, 반대로 네덜란드는 유럽연합 내에서 한국의 두 번째로 큰 교역국으로 자리매김하고 있다. 양국은 지난해 11월 윤 대통령과 마르크 뤼터 네덜란드 총리의 정상회담을 통해 반도체 협력 강화를 약속하는 등 '전략적 동반자 관계'를 맺은 바 있다. 윤 대통령의 이번 방문은 빌렘-알렉산더 네덜란드 국왕의 환영식을 시작으로 네덜란드 남부 벨트호벤에 위치한 ASML 본사 방문으로 이어졌다. 윤 대통령은 13일 헤이그로 이동해 뤼테 총리와 회담을 가진 후 두 정상은 기자회견을 가질 예정이다.
-
- IT/바이오
-
ASML-삼성, 한국에 7억 유로 규모 반도체 연구소 설립
-
-
플라스틱 폐기물, 새우 등 해양 소형생물 번식에 악영향
- 플라스틱 폐기물이 해양으로 유입되면서 해양 생물의 번식에 악영향을 미치고 있는 것으로 나타났다. 가벼운 쓰레기의 경우 조류를 따라 전 세계 해안에 도착하면서 또 다른 해양 환경오염까지 유발하는 등 악순환이 이어지고 있는 상황이다. 해외 매체 인콰이어러(inquirer)는 최근 영국 포츠머스 대학의 연구팀이 플라스틱 폐기물이 새우 등 작은 해양생물의 번식을 방해한다는 사실을 발견했다고 보도했다. 생태 독성학자인 알렉스 포드(Alex Ford)와 그의 동료들은 특정 종에 대해 몇 가지 화학 첨가물을 테스트했는데, 플라스틱 폐기물에 포함된 화학 첨가물이 갑각류의 행동을 변화시켜 교미 성공률을 감소시키고 있다는 것을 발견했다. 인콰이어러는 인정하지 않을 수도 있지만 인류의 부주의가 환경 오염과 자연의 경로 왜곡을 야기하고 있다고 지적했다. 이 매체는 적극적인 조치가 취해지지 않으면, 우리 생태계의 상당 부분이 심각한 위험에 처할 수 있다고 경고했다. 플라스틱 폐기물, 갑각류 정자수 감소시켜 플라스틱 폐기물이 해양 생태계에 미치는 영향에 대한 연구에서, 작은 갑각류의 정자 수 감소가 관찰됐다. 대부분은 상어와 같은 대형 동물이 해양 생태계에 가장 큰 영향을 미친다고 생각하는데, 새우 등 소형 갑각류는 해양 먹이사슬에서 중요한 역할을 하며, 그들의 손상은 전체 먹이사슬에 영향을 미칠 수 있다. 알렉스 포드는 “이 생물들은 유럽 해안에서 흔히 발견되며, 물고기와 새 등의 먹이의 상당 부분을 차지한다”며 “예를 들어, 고래는 보통 크릴을 주식으로 하는데 만약 이들이 손상되면 전체 먹이사슬에 영향을 미칠 것”이라고 강조했다. 바로 이 점이 환경 독성학자인 비데미 그린-오조(Bidemi Green-Ojo)와 그의 동료들이 '에치노가마루스마리누스(Echinogammarus marinus)라고 불리는 작은 갑각류 종을 플라스틱에서 발견되는 4가지 화학 첨가물에 노출시킨 이유다. 그린 오조는 “이 네 가지 첨가제가 인체 건강에 미치는 위험에 대해 잘 알고 있기 때문에 이를 선택했다”며 "우리가 조사한 두 가지 화학물질(DBP와 DEHP)은 규제를 받고 있으며 유럽에서는 제품에 사용이 허용되지 않는다“고 말했다. 이어 "다른 두 화학물질은 현재 제한이 없으며 많은 가정용품에서 발견된다"며 "우리는 이러한 화학물질이 수중 짝짓기 행동에 미치는 영향을 테스트하고 싶었다"고 연구 배경을 설명했다. 테스트된 화학물질 중 3개는 영국의 지표수와 지하수에서 검출된 상위 30개 화학물질에 포함되어 있다. 이 물질들은 바다 생물의 행동에 영향을 미치며, 특히 짝짓기 성공률 감소에 기여할 수 있는 것으로 밝혀졌다. 샘플 화학 물질 중 두 가지인 디부틸 프탈레이트(DBP)와 트리페닐 인산염(TPHP)은 갑각류의 정자 수를 감소시켰다. 알렉스 포드는 연구팀이 실험한 동물들이 환경에서 일반적으로 발견되는 것보다 높은 농도의 화학물질에 노출되었다고 말했다. 그는 이러한 화학물질들이 정자 수에 영향을 미칠 수 있음을 지적했다. 오랜 기간 동안 또는 생활사의 중요한 단계에서 노출된 새우에 대한 추가 실험을 통해 이러한 영향이 더 명확해질 수 있음을 나타냈다. 독도 괭이갈매기 미세플라스틱 오염 한편, 한국의 독도 괭이갈매기 깃털도 미세플라스틱에 오염된 것으로 밝혀져 충격을 안겨줬다. 국제학술지 해양오염학회지 11월호에 실린 '한국 괭이갈매기 깃털에서 미세플라스틱 검출 첫 보고' 논문에 따르면 5㎜ 미만의 미세플라스틱 170g, 73개가 검출됐다. 경희대 한국조류연구소 연구진은 작년 6월 독도와 울릉도에서 괭이갈매기 17마리를 포획한 후 가슴깃을 떼어내 과산화수소수로 처리한 뒤 적외선분광기로 검사했다. 포획한 괭이갈매기의 몸무게는 평균 490g으로, 몸무게의 2%를 미세플라스틱이 차지하고 있었다. 종류별로는 폴리에틸렌(PE)과 폴리프로필렌(PP)이 각각 26개와 21개로 가장 많이 나왔다. 폴리스타이렌(PS)도 10개, 폴리에틸렌테레프탈레이트(PET) 등도 16개 발견됐다. 체내에 축적된 미세플라스틱이 소화기관에 악영향을 주며, 깃털에 붙은 미세플라스틱은 유기오염물질이나 독성화학물질과 흡착해 건강을 해칠 수 있다. 미세플라스틱이 깃털을 둘러싼 기름막을 흡수하면 방수성과 보온성을 저해해 생존력을 떨어트릴 수 있다.
-
- 생활경제
-
플라스틱 폐기물, 새우 등 해양 소형생물 번식에 악영향
-
-
GH파워, 그린 수소 생산 원자로 개발
- 캐나다 기업이 재활용 알루미늄 캔을 활용해 그린 수소를 생산하는 원자로를 선보였다. 수소는 지구 전체 에너지 구성의 90%를 차지하는 중요한 자원이지만, 현재 대부분 화석 연료에서 추출되어 환경에 큰 부담을 주고 있다. 전 세계적으로 재생 가능 에너지를 활용하여 생산한 그린 수소에 대한 관심이 증가하고 있다. 그린 수소는 탄소 배출이 없는 친환경 에너지원으로서 미래의 에너지원으로 각광받고 있다. 그러나 기존의 그린 수소 생산 방식은 높은 비용과 낮은 효율성이라는 문제를 안고 있었다. 이에 대한 해결책으로, 캐나다에서 새로운 원자로 설계가 개발되어 이 분야에서 큰 주목을 받고 있다. 최근 에너지 전문 매체 오일프라이스(OILPRICE)의 보도에 따르면, 캐나다 기업 지에이치 파워(GH Power)가 개발한 원자로는 재활용 알루미늄과 물만을 사용하여 수소, 알루미나, 열을 생산하는 방식해 주목받고 있다. GH파워의 원자로는 기존의 그린 수소 생산 방식보다 비용이 60% 저렴하고 효율성이 85% 높다는 장점이 있다. 이 혁신적인 원자로 설계는 모듈식으로 제작되어, 소규모 설비에서부터 대규모 발전소까지 확장 가능하다. 이는 그린 수소 시장의 확장에 중요한 기여를 할 것으로 기대된다. GH 파워는 현재 온타리오주 해밀턴에 2MW 규모의 실증 상업용 원자로를 건설 중이며, 이는 내년 2분기부터 수익을 창출할 것으로 예상된다. 또한, 회사는 북미와 유럽에서 대규모 수소 발전소 건설하기 위해 우량 전략 파트너와 협력 관계를 구축하고 있다. GH 파워는 캐나다와 독일 정부가 후원하는 독일의 RWTH 아헨 대학교(RWTH Aachen University)와의 협력을 통해 이 기술을 개발했고, 녹색 기술 보조금을 받는 등 세계적으로 기술력을 인정받았다. GH 파워의 기술은 재활용 알루미늄을 원자로에서 열을 발생시키는 연료로 사용하며, 물은 알루미늄과 반응하여 수소와 산화알루미늄을 생성한다. 이렇게 생성된 수소는 연료로 사용되거나 다른 화합물의 제조에 활용될 수 있다. 또한, 산화알루미늄은 재활용되어 다시 원자로에서 연료로 사용될 수 있어, 자원 순환을 통한 지속 가능한 생산 체계를 구축하는 데 중요한 역할을 한다. 저비용 수소 GH 파워의 원자로 기술은 기존 화석 연료와의 가격 경쟁력을 갖춘 점에서 혁신적이다. 현재 전기 분해를 통해 생산되는 녹색 수소는 천연 가스에서 추출된 수소보다 약 3배 비싼 반면, GH 파워의 기술은 기존 전기 분해 방법으로 생산하는 것보다 이미 60% 저렴한 비용으로 수소를 생산할 수 있다. 이 원자로는 두 가지 중요한 녹색 출력물을 생산한다. 첫 번째는 발열이며, 이 열은 수소 생산뿐만 아니라 지역난방이나 산업용 열원으로도 활용될 수 있다. 두 번째는 녹색 알루미나로, 기존의 알루미나 생산 공정이 염산을 사용하여 알루미늄을 추출하는 방식에서 발생하는 염산 누출과 대기 오염 문제를 해결한다. GH 파워의 기술은 물과 재활용 알루미늄을 주요 원료로 하여, kg당 약 1.50달러(약 1960원)의 저렴한 비용으로 수소를 생산한다. 이는 기존의 염산 침출 및 가수분해 공정에 비해 약 85% 저렴한 비용으로, 수소 생산의 경제성을 크게 높인다. 27MW 규모의 발전소는 연간 약 120만 톤의 탄소 상쇄를 생산할 수 있는데, 이는 탄소 상쇄 비용이 톤당 40달러(약 5만2300원)에서 80달러(약 10만4600원) 사이인 것을 고려할 때, 상당한 탄소 상쇄 수익 잠재력을 의미한다. 수소 산업은 아직 초기 단계에 있지만, 급속한 성장세를 보이고 있다. 글로벌 시장조사기관 리서치앤마켓(Research and Markets)의 보고에 따르면, 수소 산업의 시장 규모는 2022년 1230억달러(약 160조 7610억원)에서 2030년에는 5580억달러(729조 3060억원)로 성장할 것으로 예측되며, 이는 연평균 11.4%의 성장률을 의미한다. 수소 산업의 주목받는 기업들 수소 산업은 다양한 분야의 기업들이 진출하고 있다. 그 중에서도 주목할 만한 기업으로는 다음과 같은 기업들이 있다. 에어 프로덕츠 앤 케미칼스(Air Products and Chemicals, Inc.)는 산업용 가스 부문에서 확고한 입지를 구축한 기업으로, 현재 수소 시장에서 상당한 발전을 이루고 있다. 발라드 파워 시스템즈(Ballard Power Systems Inc.)는 연료 전지 산업의 선구자로, 첨단 양성자 교환막(PEM) 기술로 잘 알려져 있다. 쉘(Shell)은 전통적인 석유 메이저에서 다각화된 에너지 회사로 전환한 기업으로, 수소 이니셔티브에 대한 그들의 진출은 지속 가능성과 혁신을 향한 광범위한 변화를 반영하는 중요한 부분이다. BP는 과거 회사명을 '브리티시 페트롤리움(British Petroleum)'에서 '비욘드 페트롤리움(Beyond Petroleum)'으로 리브랜딩을 통해 변화를 상징한다. 이러한 기업들은 모두 그린 수소 생산 분야에서 혁신적인 기술과 비즈니스 모델을 개발하고 있으며, 향후 이 시장의 성장을 주도할 것으로 기대된다. 한국의 수소 기업들 한국원자력연구원(KAERI)은 한국 최초의 원자로를 개발한 연구기관으로, 다양한 원자력 기술을 연구하고 개발하고 있다. 한국원자력연구원은 재활용 알루미늄과 물을 사용하여 수소를 생산하는 원자로 개발을 추진하고 있다. 이 원자로는 지에이치 파워의 원자로와 마찬가지로 두 가지 녹색 출력물인 발열과 녹색 알루미나를 생산한다. 한국원자력연구원의 원자로는 현재 개발 초기 단계에 있으며, 2025년경 실증 상업용 원자로를 건설할 계획이다. 이외에도 한국에는 수소 생산을 위한 다양한 기술을 개발하고 있는 기업들이 있다. 대표적으로 현대자동차, SK그룹, 포스코 등이 있다. 현대자동차는 수소연료전지 자동차를 생산하는 기업으로, 수소 생산 기술 개발에도 적극적으로 투자하고 있다. SK그룹은 수소 생산, 저장, 운송, 활용 등 수소 산업의 전 분야에 진출하고 있으며 포스코는 풍력, 태양광 등 재생 에너지를 활용한 수소 생산 기술을 개발하고 있다. 수소 산업, 투자의 기회 될까 수소 산업은 빠른 성장이 기대되는 산업인 만큼, 투자의 기회가 될 수 있다는 분석도 나온다. 실제로, 수소 산업 관련 기업의 주가는 최근 들어 상승세를 보이고 있다. 그러나, 수소 산업은 아직 초기 단계인 만큼, 투자 시에는 신중한 접근이 필요하다는 지적도 있다. 수소 생산, 저장, 운송, 활용 등 다양한 분야에서 기술 개발이 진행 중이며, 시장이 성숙하기까지는 시간이 걸릴 것으로 예상된다. 또한, 수소 산업은 정부의 정책에 영향을 받는 산업이기도 하다. 정부의 정책 변화에 따라 시장의 성장 속도나 방향이 달라질 수 있기 때문에, 투자 시에는 정부 정책을 면밀히 살펴볼 필요가 있다. 수소 산업은 미래 에너지원으로서 주목받고 있으며, 그 성장 잠재력이 높은 산업이다. 그러나 수소 산업은 아직 초기 단계에 있기 때문에, 이 분야에 대한 투자는 신중한 접근이 필요하다.
-
- 산업
-
GH파워, 그린 수소 생산 원자로 개발
-
-
핵융합에너지 시대는 누가 주도할 것인가?
- 신냉전 시대에 접어든 현재, 미국과 중국, 러시아, 이란 등은 핵무기를 탑재한 극초음속 미사일을 개발해 실전에 배치하면서 긴장감을 증폭시키고 있다. 그러나 중요한 것은 핵 기술은 전쟁용 무기로만 사용되는 것뿐만 아니라, 청정에너지원으로서도 중요한 역할을 하고 있다는 점이다. 전세계적으로 증가하는 에너지 수요를 충족시킬 수 있는 핵에너지는 경제적 가치가 높으며, 핵 에너지 기술 선점을 두고 국가간의 관심이 집중되고 있다. 미국 경제매체 포브스에 따르면, 1920년 영국의 천체물리학자 아서 에딩턴(Arthur Eddington)은 별이 수소 원자를 헬륨으로 융합시키며 에너지를 발생시킨다고 주장했다. 이후 1939년 핵물리학의 선구자인 한스 베테(Hans Bethe)는 에딩턴의 이론을 뒷받침하는 과정을 확인했다. 마침내 2022년 12월 5일, 로렌스 리버모어 국립 연구소의 미국 에너지부 국립 점화 시설(NIF) 과학자들은 실험실에서 처음으로 이 이론을 증명했다. 그들은 태양의 에너지 생산 과정을 재현하여, 태양이 생성하는 것보다 더 많은 에너지를 발생시키는 핵융합 반응인 '융합 점화'를 달성하는 데 성공했다. 이들은 지난 7월에도 핵융합 점화에 성공하며 이 분야에 중요한 진전을 이루었다. 핵융합 기술은 기존 전력망을 통해 모든 지역에 저렴하고 무한한 청정 에너지를 공급할 수 있는 엄청난 잠재력을 가지고 있다. 이 기술은 수조 달러 규모의 시장을 창출할 수 있으며, 2050년까지 거의 50% 증가할 것으로 예상되는 전세계 에너지 수요를 충족시킬 수 있을 것으로 보인다. 핵융합 에너지 경쟁의 시작 영국과 독일, 프랑스, 한국, 일본에서는 핵융합 에너지 프로그램이 진행 중이다. 중국은 21세기 세계 패권을 놓고 미국과 경쟁하는 과정에서 핵융합이 막대한 영향을 미칠 것으로 보고 내다보고 있다. 이미 중국은 지난 10년 동안 다른 어떤 나라보다 더 많은 핵융합 기술 특허를 출원한 것으로 알려졌다. 현재 전 세계적으로 알려진 융합 기업은 43개이며, 융합 산업 협회(Fusion Industry Association)에 따르면 융합 산업은 60억 달러(약 7조7940억원) 이상의 자금을 유치했다. 이들 중 미국은 경주에서 가장 많은 주자를 보유하고 있음에도 현재 직면한 수많은 문제를 해결하기에는 규모가 너무 작다. 최근 미국 에너지부는 핵융합 파일럿 플랜트 건설을 위한 과학 및 기술 문제를 해결하기 위한 응용 R&D 자금을 지원하기 위해 마일스톤 기반 핵융합 개발 프로그램에 따라 이들 미국 기업 중 8곳에 4,300만 달러(약 558억 5700만원)를 지원한다고 발표했다. 이 회사는 1년 6개월 이내에 사전 개념 설계와 핵융합 파일럿 플랜트 실현을 위한 로드맵을 제공하는 것을 목표로 하고 있다. 이는 미국을 핵융합 기술의 리더로 만드는 중요한 단계다. 미국, 핵융합 기술 리더로 나설 때 역사적으로 에너지 기술의 상용화 경로는 30~50년이 걸렸다. 현재 핵융합 에너지는 중요한 전환점에 도달했다. 이를 그리드에 적용하기 위한 예상 기간은 10년에서 20년 이상이다. 백악관과 많은 기업은 2030년대 초반을 목표로 하고 있으며, 몇몇 핵융합 스타트업은 훨씬 더 공격적인 일정을 가지고 있다. 포브스는 미 연방정부의 지원을 통해 여러 분야에서 동시에 진전을 이루고 10~15년 이내에 개념 증명에서 확장까지의 일정을 단축하기 위해 전국적인 노력으로 전환하고 높은 속도로 전환해야 할 때라고 강조했다. 케네디 대통령은 1961년 인류 역사상 가장 야심찬 공학적 업적 중 하나로 사람을 달에 보내고 안전하게 지구로 귀환시키는 일에 도전했다. 그 목표를 달성하기 위해 2만 개의 산업체와 대학이 동원됐다. 최근 비용 분석에 따르면 아폴로 프로그램을 완료하는 데 거의 260억 달러가 지출된 것으로 나타났다. 이를 2020년 미국 달러로 환산하면 무려 2570억 달러(약 333조8430억원)가 소요됐다. 이러한 엄청난 노력은 우주 시대에 미국이 리더십을 발휘하고 글로벌 항공우주 시장에서 우위를 점할 수 있는 기반을 마련하는 데 도움이 됐다는 평가다. 미국은 항공기 및 우주선 제조 분야에서 전 세계 부가가치의 55%를 차지하고 있으며, 중국은 8%의 점유율로 그 뒤를 이었다. 포브스는 상업적인 융합을 달성하려면 극복해야 할 어려운 과학 및 공학적 과제가 있으며 어떤 개념이 승자가 될지는 불확실하다고 지적했다. 다만, 오클라호마 대학교 연구 및 파트너십 담당 부사장인 토마스 디아즈 드 라 루비아(Tomás Díaz de la Rubia)는 "핵융합 에너지의 상업적 개발의 성공은 역사상 가장 심오한 변화 중 하나가 될 것이며, 퓨젼은 깨끗하고 지속 가능한 기저부하와 안전한 에너지원을 제공할 것”이라며 “이를 통해 지구를 정복하면 에너지 부족에서 풍요로의 변화를 가져올 것이다"라고 말했다. 포브스는 핵융합 혁명을 주도하는 국가는 엄청난 경제 호황과 에너지 안보를 누릴 뿐만 아니라, 에너지가 오랫동안 동맹과 경쟁, 갈등을 형성해 왔기 때문에 엄청난 지정학적 힘을 얻게 될 것이라고 설명했다.
-
- 산업
-
핵융합에너지 시대는 누가 주도할 것인가?
-
-
구리 화학 발견으로 값싼 약품 개발 길 열렸다
- 최근 구리 화학의 발견이 값싼 약품 개발의 새로운 가능성을 열었다. 이제 단 3달러의 비용으로 항암제에 사용될 수 있는 화학 물질을 제조할 수 있게 됐다. 구리는 이미 의학 분야에서 감염과 싸우는 나노 입자 및 임플란트의 형태로 사용되고 있다. 미국의 과학 전문 매체 뉴아틀라스는 미국 캘리포니아대학교 로스앤젤레스(UCLA)의 과학자들이 개발한 새로운 방법으로 간단하고 저렴한 약품 생산이 가능하다고 보도했다. 이 방법은 산소의 한 형태인 오존을 시약으로 사용하고 금속을 촉매로 활용한다. 과학자들은 이를 통해 유기 분자의 탄소-탄소 결합을 끊는데 성공했다. 오존은 이 결합을 알켄, 즉 탄화수소로 분해하고, 구리 촉매는 깨진 결합을 질소와 결합시켜 탄소-질소 결합을 형성한다. 이 결합은 아민이라고 알려진 분자를 형성하게 되는데, 이것이 바로 항암제와 같은 값싼 약품 생산에 필수적인 요소다. 아미노탈알케닐화로 알려진 이 공정은 전통적으로 아민을 생성하는 데 사용되는 다른 유사한 촉매와는 달리 풍부하고 저렴한 금속을 잘 활용하면 된다. 아미노탈알케닐화라고 알려진 이 새로운 공정은 기존의 아민 생성 방법과는 다르다. 이 공정은 전통적으로 사용되는 비싼 금속 촉매 대신에 저렴하고 풍부한 금속을 효과적으로 활용한다. 권오현 유기화학 교수는 이 공정에 대해 설명하면서 "이전에는 이런 방법이 없었다"고 강조했다. 그는 "전통적인 금속 촉매 반응에서는 백금, 은, 금, 팔라듐과 같은 고가의 금속이나 로듐, 루테늄, 이리듐과 같은 귀금속을 사용했지만, 우리는 세계에서 가장 풍부한 비금속 중 하나인 산소와 구리를 사용하고 있다"고 밝혔다. 이러한 접근 방식은 아민을 생성하는 데 필요한 자원과 비용을 크게 줄일 수 있는 가능성을 보여준다. 아민은 의약품과 비료, 농약 생산에 널리 사용되는 중요한 화학물질이다. 이는 식물과 동물에서 발견되는 분자와 강력한 상호 작용을 하며, 암페타민과 도파민과 같은 약물에서도 발견되는 구성 요소다. 이번 연구를 통해 연구팀은 호르몬, 제약 시약, 펩타이드, 뉴클레오시드 등을 아민으로 변형하는 데 성공했다. 이것은 이 새로운 방법이 다양한 분야에 활용될 수 있음을 보여준다. 하지만 권 교수에게 있어서 가장 큰 장점은 훨씬 저렴한 의약품 생산 가능성일 것이다. 일부 항암제에 사용되는 화학물질은 제조 비용이 그램당 약 3200달러(약 412만원)에 달하지만, 연구팀은 그램당 약 3달러(약 3860원)의 비용으로 동일한 약물 분자를 생산할 수 있었다. 기존 12단계 공정 대신 3단계만 사용 연구팀은 항암 c-Jun N-말단 키나제 억제제를 생산하기 위해 기존의 12단계 공정 대신 단 3단계의 화학 과정만을 사용했다. 또한, 이들은 또 다른 실험에서 아데노신이라는 신경 전달 물질과 DNA 구성 요소를 N6-메틸아데노신 아민으로 전환하는 과정을 한 단계만 거쳐서 수행했다. 이 아민은 세포의 유전자 발현, 질병 과정 및 발달에 중요한 역할을 하며, 현재 생산 비용은 그램당 약 103달러(약 13만2,600원)다. 구리는 현재 파운드당 4달러(약 5150원) 미만으로 풍부하게 구할 수 있기 때문에, 과학자들은 은 이 새로운 방법이 아민 기반 의약품과 다른 유기 물질의 생산 비용을 대폭 절감할 수 있기를 기대한다. 한편, 한국원자력연구원(원장 주한규)의 양성자과학연구단은 지난 7월 치료용 방사성동위원소 구리-67(Cu-67)을 고품질로 대량생산할 수 있는 분석법을 개발해 주목을 받았다. 방사성의약품은 방사성동위원소를 포함하여 질병의 진단과 치료에 사용된다. 구리-67은 진단용 감마선과 암세포를 사멸시키는 치료용 베타선을 방출하는 동위원소로, 동시에 진단과 치료가 가능하며, 기존 동위원소보다 반감기가 짧아(2.5일) 체내 피폭 위험도 적다. 이러한 특성으로 인해 구리-67은 높은 활용 가능성을 가지고 있다고 평가된다. 방사성의약품은 암세포에서 발현하는 특정한 단백질을 표적으로 하여 정상세포에는 영향을 주지 않고 암세포만 선택적으로 제거할 수 있다. 이로 인해 강력한 치료 효과와 함께 높은 안전성을 제공한다. 다만, 구리-67은 다른 핵종과 달리 방출하는 감마선 스펙트럼이 불순물인 갈륨-67(이하 Ga-67)과 정확히 겹쳐 물리적인 측정법으로는 이 두 핵종을 구분할 수 없었다. 이에 양성자과학연구단 입자빔이용연구부 박준규 박사 연구팀은 두 핵종의 감마선 방출강도 뿐만 아니라 반감기 차이(Cu-67은 2.5일, Ga-67은 3.2일)까지 고려한 새로운 해석적 분리방법을 제시했다. 연구팀은 구리-67과 Ga-67 각각의 감마선 세기 합이 전체 감마선 세기와 같다는 점과 감마선 방출 강도 비율, 반감기 차이를 이용했다. 이를 통해 화학적 분리 과정 없이도 구리-67의 정확한 핵자료를 얻을 수 있었다. 한국원자력의학원의 김희진, 김정영 연구원은 "구리-67은 방사능 강도가 낮고 담체가 없는(carrier-free) 방사성동위원소로, 이로 인해 효과적인 암 치료가 가능하다"고 말했다. 이 연구팀은 2025년 경주 양성자가속기를 활용해 고품질 구리-67을 본격적으로 대량 생산할 예정이다.
-
- IT/바이오
-
구리 화학 발견으로 값싼 약품 개발 길 열렸다