검색
-
-
[퓨처 Eyes(37)] 양자 컴퓨팅, 초순수 실리콘 개발로 큰 도약
- 과학자들이 실리콘 동위원소 제거를 통해 정제된 초순수 실리콘을 만들어 양자 컴퓨팅 구현에 한 발 더 다가섰다. 최근 영국과 호주의 과학자들이 고성능 큐비트 장치를 구성할 수 있는 초순수 실리콘을 생산해 양자 컴퓨팅 발전에 새로운 가능성을 열었다고 어스닷컴과 인디펜던스 등 다수의 외신이 보도했다. 이번 연구는 호주 멜버른 대학교와 영국 맨체스터 대학교의 첨단 전자 재료 그룹이 주도했다. 실리콘은 전자 제품과 컴퓨팅에서 매우 중요한 소재로, 반도체 기술의 동의어처럼 사용된다. '실리콘 밸리'라는 지명도 실리콘의 중요성을 반영한다. 실리콘은 다양한 조건에서 전기를 전도하도록 만들 수 있으며, 지각에서 두 번째로 풍부한 원소로 쉽게 구할 수 있는 장점이 있다. 지난 수십 년 동안 실리콘은 컴퓨터의 엄청난 확장을 촉진했지만, 실리콘의 순도 문제는 슈퍼컴퓨터 등 고급 시스템에서 제한 요소로 작용했다. 실리콘은 자연 상태에서 실리콘-28(Si-28), 실리콘-29(Si-29), 실리콘-30(Si-30) 등 세 가지 안정적인 동위원소로 존재한다. Si-28은 전체 실리콘의 약 92.23%를 차지하며, Si-29는 약 4.67%, 희귀한 Si-30은 약 3.10%를 차지한다. 이번 연구의 공동 감독자인 데이비드 제이미슨 교수는 "자연적으로 발생하는 실리콘은 대부분 Si-28이지만, 약 4.5% 존재하는 동위원소 Si-29가 문제를 일으킨다"고 지적했다. 그는 "실리콘-29는 각 원자의 핵에 여분의 중성자가 있어 작은 불량 자석처럼 작용해 양자 일관성을 파괴하고 컴퓨팅 오류를 일으킨다"고 설명했다. 연구팀은 이온 주입기를 사용해 컴퓨터 칩에 Si-28 빔을 발사해 Si-29의 불순물을 제거했다. 그 결과 Si-29 함량이 4.5%에서 0.0002%로 감소했다. 제이미슨 교수는 "이온 주입기를 조정해 실리콘을 이 수준으로 순수하게 정제할 수 있다"고 밝혔다. 이번 연구를 주도한 리처드 커리 교수는 "이 획기적인 발전으로 양자 컴퓨팅을 구축하는 작업이 상당히 가속화될 것"이라고 말했다. 커리 교수는 "우리는 실리콘 기반 양자 컴퓨터를 구성하는 데 필요한 중요한 ‘벽돌’을 효과적으로 만들었다"라고 비유하면서, "이 기술은 인류를 변화시킬 잠재력을 가진 기술(양자 컴퓨팅)을 실현 가능하게 만드는 중요한 단계"라고 덧붙였다. 이번 발견은 과학 학술지 커뮤니케이션 머티리얼스-네이처에 게재됐다. 양자 컴퓨터는 큐비트 수가 많을수록 더 강력하지만, 오류에 더 취약하다. 양자 컴퓨팅의 구성 요소인 큐비트는 매우 민감하여 안정적인 환경이 필요하기 때문이다. 온도 변화 등 환경의 아주 미세한 변화도 컴퓨터 오류를 일으킬 수 있다. 다시 말하면, 양자 컴퓨터는 양자 물리학의 무한한 영역을 활용해 일반 컴퓨터가 할 수 없는 일을 수행할 수 있다. 그러나 정보를 처리하고 저장하는 양자 비트(큐비트)는 미세한 온도 변동이나 실리콘 불순물과 같은 사소한 간섭으로 인해 '일관성'을 잃을 수 있다. 그로 인해 오늘날 과학자들이 사용하는 양자 컴퓨터는 절대 온도(-273도)에 가까운 냉장고에 넣어 두는 경우에만 오류 없이 작동할 수 있다. 큐비트는 중첩과 얽힘 같은 고유한 특성을 가지며, 이를 통해 많은 계산을 병렬로 수행할 수 있다. 하지만 큐비트는 환경에 매우 민감하여 쉽게 양자 상태를 잃을 수 있다. 이를 디코히어런스라고 한다. 이러한 취약성 때문에 양자 오류 수정 기술이 필요하다. 실리콘은 기존 컴퓨팅의 기반이 되는 물질로, 연구자들은 실리콘이 확장 가능한 양자 컴퓨터의 해답이 될 것으로 기대하고 있다. 천연 실리콘의 동위원소 문제를 해결한 멜버른 대학교의 과학자들은 Si-29와 Si-30의 원자를 제거하여 양자 컴퓨터에 적합한 고품질의 초순수 실리콘을 만들어냈다. 슈퍼 컴퓨터를 능가하는 양자 컴퓨터는 단 30개의 큐비트로 작동된다. 이 프로젝트에서 실험을 수행한 라비 아차리아 박사는 "고품질 실리콘 큐비트를 생성하는 능력은 지금까지 사용된 실리콘의 순도에 의해 제한되었다. 우리가 보여준 획기적인 순도는 이 문제를 해결한다"고 설명했다. 제이미슨 교수는 "우리의 기술은 인공지능, 보안 데이터, 통신, 백신 및 의약품 설계, 에너지 사용, 물류 및 제조 등 사회 전반에 걸쳐 획기적인 변화를 약속하는 안정적인 양자 컴퓨터로 가는 길을 열어준다"고 밝혔다. 그는 "이제 우리는 매우 순수한 실리콘-28을 생산할 수 있게 됐다. 다음 단계는 많은 큐비트에 대해 동시에 양자 일관성을 유지할 수 있음을 입증하는 것이다. 큐비트가 30개에 불과한 양자 컴퓨터는 일부 응용 분야에서 오늘날의 슈퍼컴퓨터 성능을 능가할 것"이라고 덧붙였다. 새로운 의약품 설계나 정확한 일기 예보는 오늘날의 슈퍼 컴퓨터로는 계산이 너무 어려운 영역이다. 커리 교수는 "대규모 데이터를 처리할 수 있는 능력을 재고할 수 있는 기술을 통해 우리는 기후 변화의 영향을 해결하고, 보안 통신과 백신 설계 등 의료 문제를 해결하는 등 복잡한 현실 문제에 대한 솔루션을 찾을 수 있을 것"이라고 말했다. 이번 연구 성과는 1917년 어니스트 러더퍼드의 '원자 쪼개기' 발견, 1948년 '더 베이비'의 전자 저장 프로그램 컴퓨팅 최초 시연 등 맨체스터 대학교의 과학 혁신 역사와 맞물려 중요한 이정표가 될 것으로 보인다. 연구팀은 이번에 발견한 초순수 실리콘이 큐비트가 많은 양자 컴퓨터가 더 오랫동안 안정적으로 작동하는 데 도움이 될 것이며, 다음 단계는 이를 테스트하는 것이라고 말했다.
-
- 포커스온
-
[퓨처 Eyes(37)] 양자 컴퓨팅, 초순수 실리콘 개발로 큰 도약
-
-
[먹을까? 말까?(14)] 사과사이다 식초, 체중 조절 효과…치아 애나멜 침식·식도 손상 등 부작용
- 사과 사이다 식초가 체중 조절 효과가 있지만 과도하게 섭취할 경우 치아 에나멜(법랑질)을 침식하고 목을 상하게 하는 것으로 밝혀졌다고 씨넷이 전했다. 식초는 기원전 5000년 이상 전부터 사용되어 온 오랜 역사를 가진 식품으로 보존료, 향미제, 피클이나 장아찌 등의 절임 재료, 약으로 사용됐다. 특히 이집트, 중국, 그리스 등에서 건강 유지 보조제로 활용됐다. 사과 사이다 식초란? 사과 사이다 식초(Apple Cider Vinegar)는 사과 주스를 발효시켜 만든 식초의 한 종류다. 사과사이다 식초는 사과와 설탕, 효모를 혼합하여 발효시켜 만든다. 먼저 사과를 갈아 주스를 만들고, 이 주스를 효모와 함께 발효시켜 알코올로 변환한다. 그 후, 박테리아를 이용해 이 알코올을 초산으로 변환시키면 사과 사이다 식초가 완성된다. 발효 과정에서 효모가 설탕을 분해하여 알코올을 생성하고, 그 후 박테리아가 알코올을 아세트산으로 변환시켜 사과 사이다 식초 특유의 독특한 냄새와 맛이 형성된다. 이 아세트 산은 건강에 도움이 되는 다양한 성분을 함유하고 있다. 사과 사이다 식초는 특유의 신맛과 강한 향을 가지고 있으며, 여러 용도로 사용된다. 일반적으로 요리에 사용되며, 샐러드 드레싱이나 소스를 만들때 자주 들어간다. 또한, 건강 보조제로도 인기가 많아, 일부 사람들은 체중 감량, 혈당 조절, 소화 개선 등을 위해 소량을 물에 희석해 마시기도 한다. 뿐만 아니라, 피부 관리나 머리카락 세정 등 미용 목적으로도 사용된다. 사과 사이다 식초는 여과해서 저온 살균처리한 투명한 제품과 미생물 덩어리가 남아있는 탁한 제품의 생 사과 사이다 식초 두 가지 종류가 있다. 식초 병 바닥에 모이는 흐린 침전물은 박테리아와 효모의 조합인 '모체'다. 일부에서는 모체에 미량의 건강한 박테리아와 프로바이오틱스가 함유되어 있어 건강상의 이점을 제공하는 것으로 추정하고 있다. 사과사이다 식초는 항균 및 항산화 특성을 가지고 있으며, 일부 연구에서는 미생물 덩어리가 건강에 도움이 되는 프로바이오틱스를 함유하고 있다고 추측한다. 사과 사이다 식초의 잠재적 이점 아직 더 많은 연구가 필요하지만, 일부 연구 결과에 따르면 사과 사이다 식초는 특정 건강 문제 개선과 체중 조절에 도움이 될 수 있다. 사과 사이다 식초는 체중 감량, 제2형 당뇨병, 혈당 및 콜레스테롤 조절에 도움이 될 수 있으며 음식에서 유해한 박테리아의 번식을 예방할 수 있다. ◇혈당 조절 및 당뇨 관리 미국 질병통제예방센터에 따르면 당뇨병 환자의 최대 95%가 제2형 당뇨병을 앓고 있다고 한다. 제2형 당뇨병은 인슐린 저항성 또는 인슐린 생성 부족으로 인해 발생한다. 연구에 따르면 사과 사이다 식초는 인슐린 반응을 개선하고 식후 혈당 수치를 낮출 수 있다고 한다. 잠들기 전에 사과 사이다 식초를 섭취하면 기상 후 공복 혈당도 감소하는 것으로 나타났다. 그러나 당뇨병, 특히 당뇨병 치료제를 복용하고 있는 경우 사과 사이다 식초를 섭취하기 전에 반드시 의사와 상담하는 것이 좋다. ◇ 유해균 제거 효과 식초는 천연 살균제로 알려져 있으며 스태피로코쿠스균, 칸디다균과 같은 미생물을 제거하는 데 효과적이다. 사과 사이다 식초의 아세트산은 대장균, 노로바이러스 등의 번식을 억제하여 식중독을 예방하는 데 도움이 된다. 식초는 대장균과 노로바이러스가 음식에서 자라는 것을 방지할 수 있기 때문에 한국에서 인기 있는 보존제로 사용된다. 대장균은 섭취 시 식중독을 일으킬 수 있지만 사과 사이다 식초의 아세트산 살균 효과로 식중독을 예방할 수 있다. ◇ 체중 감소 사과사이다 식초는 식전 또는 식사 중 섭취 시 포만감을 증가시켜 체중 조절에 도움이 된다는 연구 결과가 있다. 연구에 따르면 식사와 함께 사과사이다 식초를 섭취한 사람들은 하루 200~275kcal 정도 더 적게 섭취한 것으로 나타났다. 3개월 동안 하루 1~2큰술의 사과사이다 식초를 섭취한 사람들은 최대 3.7파운드(약 1.7kg)의 체중 감소와 체지방 감소 효과를 보였다. ◇ 콜레스테롤 수치 개선 높은 콜레스터롤과 중성지방(트리글리세리드) 수치는 심장질환의 위험을 증가시킬 수 있다. 하루 최대 30ml의 사과사이다 식초를 저칼로리 식단과 함께 섭취하면 총 콜레스테롤과 중성지방 수치를 낮추는 동시에 HDL '좋은' 콜레스터롤 수치를 높이는 데 도움이 될 수 있다. 제2형 당뇨병 환자도 식단에 14.17g(0.5온스)의 사과 사이다 식초를 추가하면 총 콜레스테롤과 중성지방 수치에 긍정적인 결과를 볼 수 있다. 사과 사이다 식초 부작용 사과 사이다 식초는 이점이 있지만 메스꺼움이나 구토를 유발하는 등 잠재적인 부작용도 있다. 게다가 식초의 높은 산성도는 치아 에나멜을 침식할 수 있다. 한번 벗겨진 치아 에나멜은 복구되지 않는다. 또한 식초를 희석하지 않고 마시는 경우 식도 또는 인후에 손상을 입힐 수 있다. 또한 저칼륨혈증(칼륨 수치 저하)을 유발할 수 있다. 이뇨제, 인슐린 및 기타 약물과 상호작용할 수 있다. 사과 사이다 식초를 물이나 주스에 타서 마시면 목과 치아 손상 위험도 줄일 수 있다. 1~2스푼을 물이나 주스에 섞어 마시면 배탈을 완화시킬 수도 있다. 사과 사이다 식초 복용량 사과 사이다 식초의 복용량은 사용 목적에 따라 다르다. 권장량은 일반적으로 2티스푼에서 2테이블스푼이다. 사과 사이다 식초를 마시고 싶다면 물이나 좋아하는 주스나 차에 희석하여 마시면 된다. 드레싱이나 마요네즈를 직접 만들 때 섞어 먹을 수도 있다. 피부 트러블을 위해 목욕에 한두 컵을 넣을 수도 있다. 사과사이다 식초 한 스푼과 물 한 컵을 섞은 다음 거즈나 면을 용액에 적셔 습포를 만들에서 사용할 수 있다. 사과 사이다 식초를 헤어 린스로 사용하려면 물 한 컵에 최대 2큰술을 섞은 다음 샴푸 후 모발에 부어준 뒤. 5분 정도 기다렸다가 헹구어 준다. 사과 사이다 식초는 두피를 자극할 수 있으므로 약하게 희석해서 사용하는 것이 좋다. 일부 연구에서 사과 사이다 식초의 효능이 밝혀졌지만, 사과 사이다 식초의 효능이 얼마나 유익한지 확실히 증명하려면 더 많은 연구가 필요하다. 다른 자연 요법과 마찬가지로 사과 사이다 식초를 복용하기 전에 의사와 상담하고 피부에 사용하기 전에 피부 테스트를 해야 한다. 여기서 있는 사과 식초 사이다에 대한 내용은 교육 및 정보 제공 목적으로만 제공되며 건강 또는 의학적 조언이 아니다. 건강 상태나 건강 목표에 대해 궁금한 점이 있으면 반드시 의사나 기타 자격을 갖춘 의료 전문가와 상담해야 한다.
-
- 생활경제
-
[먹을까? 말까?(14)] 사과사이다 식초, 체중 조절 효과…치아 애나멜 침식·식도 손상 등 부작용
-
-
[퓨처 Eyes(36)] 세계 최대 탄소 제거 공장, 아이슬란드에서 가동 시작
- 세계 최대 탄소 포집 공장 '매머드'가 아이슬란드에서 가동을 시작했다. 아이슬란드 헬리셰이디에 위치한 세계 최대 규모의 이산화탄소 제거 시설 '매머드(Mammoth)'가 가동을 시작했다고 더 버지, CNN, 패스트컴퍼니 등 다수 외신들이 보도했다. 매머드는 스위스 기후 기술 기업 클라임웍스(Climeworks)가 아이슬란드에 설립한 두 번째 상업용 '직접 공기 포집(DAC, Direct Air Capture)' 플랜트로, 2021년 가동을 시작한 이전 모델인 오르카(Orca)보다 10배 향상된 처리 능력을 갖추고 있다. 직접 공기 포집은 대기 중에서 직접적으로 이산화탄소를 포집하는 기술로, 화학 물질을 사용하여 공기로부터 탄소를 제거한 후 땅속 깊은 곳에 안전하게 저장하거나 재활용 또는 고체 제품으로 전환하는 방식으로 운영된다. 매머드는 클라임웍스가 운영하며, JP모건 체이스, 마이크로소프트, 스트라이프(Stripe), 쇼피파이(Shopify) 등 글로벌 기업들이 탄소 중립 실현을 위해 투자와 운영에 참여하고 있다. 아이슬란드에서 클라임웍스의 DAC 시설은 공기를 빨아들이는 팬이 달린 모듈식 '수집기 컨테이너'로 구성되어 있다. 이 발전소의 컨테이너 크기의 상자 안에는 팬이 이산화탄소(CO₂)를 직접 포집(DAC)하는 필터를 통해 외부 공기를 끌어들인다. 전체 작업은 아이슬란드의 풍부하고 깨끗한 지열 에너지로 구동된다. 외부에서 팬으로 끌어들인 이 공기는 이산화탄소를 흡수하는 특수 필터를 통과한다. 필터가 완전히 포화 상태가 되면 섭씨 약 100도(화씨 212도)까지 가열하여 이산화탄소를 방출한다. 클라임웍스는 포집된 탄소를 지하로 운반해 자연적으로 돌로 변형시켜 탄소를 영구적으로 가둘 계획이다. 이러한 CO₂ 격리 과정을 위해 클라임웍스는 아이슬란드 기업인 카브픽스(Carbfix)와 파트너십을 체결했다. CO₂를 포집한 후 카브픽스가 이를 물에 녹여 지하 깊은 곳으로 펌핑하면 현무암 암석과 자연적으로 반응해 대기 중으로 다시 유출되는 것을 방지한다. 이들은 CO₂를 물과 혼합한 다음 그 슬러리(고체와 액체의 혼합물 또는 미세한 고체입자가 물 속에 현탁된 현탁액)를 지하 깊은 곳으로 펌핑하여 결국 단단한 암석이 되게 한다. 화석 연료를 계속 사용함에 따라 DAC와 같은 차세대 기후 솔루션은 정부와 민간 기업에게 더 많은 관심을 받고 있다. CNN에 따르면 지구를 온난화시키는 대기 중 이산화탄소 농도는 2023년 사상 최고치를 기록했다 DAC 기술은 대기 중에 축적된 온실가스 배출을 제거해 기후 변화에 대응할 수 있는 방법 중 하나로 여겨지지만, 실질적인 영향을 미칠 만큼 규모를 확대할 수 있는지 여전히 검증 과정에 있다. DAC와 같은 탄소 제거 기술은 비용이 많이 들고, 에너지를 많이 소비한다는 비판을 받아왔다 국제환경법센터의 화석 경제 프로그램 디렉터인 릴리 푸어(Lili Fuhr)는 탄소 포집 기술에 대해 "불확실성과 생태학적 위험으로 가득 차 있다"고 말했다. 최근 가동된 매머드는 현재 가동 중인 DAC 공장 중 가장 큰 규모다. 하지만 큰 틀에서 보면 현재 진행 중인 다른 프로젝트에 비하면 상대적으로 작은 규모다. 아이슬란드에서의 클라임웍스의 운영은 이 기술이 작동할 수 있다는 것을 전 세계에 보여주기 위한 것이었다. 이제 미국 시장 성장에 발맞춰 이 초기 성공 사례를 재현할 수 있을지가 관건이라고 더 버지는 지적했다. 2017년 클라임웍스는 공기 중에서 이산화탄소를 빨아들여 탄산음료와 온실에서 사용하는 제품으로 판매한 최초의 기업이 되었다. 클라임웍스는 4년 후인 2021년에는 아이슬란드에 이산화탄소 포집 공장 오르카(Orca)를 설립해 마이크로소프트를 비롯한 고객을 위해 이산화탄소를 포집하고 지하에 영구적으로 격리하기 시작했다. 오르카는 지금까지 운영 중인 DAC 플랜트 중 가장 큰 규모였다. 매머드가 완전히 가동되면 오르카의 10배에 가까운 연간 약 3만6000톤의 이산화탄소를 포집할 수 있게 된다. 그러나 2022년 마이크로소프트에서만 약 1300만 톤의 이산화탄소를 배출한 것을 고려하면 클라임웍스의 탄소 제거량은 여전히 많은 양은 아니다. 클라임웍스는 2022년 6월부터 매머드 건설을 시작했으며, 세계 최대 규모의 플랜트라고 밝혔다. 공기에서 탄소를 포집하는 기계의 진공 부품인 72개의 '컬렉터 컨테이너'를 위한 공간이 있는 모듈식 설계로, 서로 쌓아 올려 쉽게 이동할 수 있다. 현재 12개가 설치되어 있으며 앞으로 몇 달 동안 더 추가될 예정이다. 앞서 ㅅ밝혔듯이 매머드는 최대 용량으로 연간 3만6000톤의 탄소를 대기에서 끌어낼 수 있을 것으로 클라임웍스는 예상했다. 이는 약 7800대의 가스 구동 자동차를 1년 동안 도로에서 퇴출시키는 것과 같은 효과다. 클라임웍스는 제거된 탄소 1톤당 정확한 비용은 밝히지 않았지만, 톤당 1000달러에 가까운 것으로 시사했다. 이는 이 기술을 저렴하고 실용적으로 만드는 데 중요한 임계값으로 널리 알려져 있다. 클라임웍스의 공동 설립자이자 공동 CEO인 얀 뷔르츠바허는 공장 규모를 확대하고 비용을 낮추면서 2030년까지 톤당 300~350달러에 이르고 2050년경에는 톤당 100달러를 달성하는 것이 목표라고 CNN에 말했다. 에든버러 대학교의 탄소 포집 및 저장 교수인 스튜어트 하젤딘은 "이 새로운 공장은 기후 변화와의 싸움에서 중요한 단계"라고 말했다. 탄소 오염을 포집하는 장비의 규모가 커질 것이라는 설명이다. 하젤딘은 그러나 이는 여전히 필요한 것의 극히 일부에 불과하다고 경고했다. 국제에너지기구에 따르면 전 세계의 모든 탄소 제거 장비는 연간 약 0.01만 미터톤의 탄소만 제거할 수 있다. 이는 2030년까지 세계 기후 목표를 달성하기 위해 필요한 연간 7000만 톤 제거와는 거리가 멀다. 한편, 매머드는 아직 진행 중인 프로젝트다. 현재 매머드에는 12개의 모듈형 컨테이너만 설치되어 있으며, 클라임웍스는 올해 안에 60개를 더 설치해 공사를 완료할 계획이라고 밝혔다. 클라임웍스 외에 다른 기업들도 대기 중 이산화탄소를 제거하기 위해 다양한 기술적 접근 방식을 취하고 있다. 2020년에 설립된 미국 기후 기술 스타트업인 헤어룸(Heirloom)은 암석 가루를 사용해 탄소를 빨아들인다. 헤어룸은 이산화탄소를 석회암과 같은 자연 광물에 결합시켜 영구적으로 저장하는 탄소 광화 기술을 사용한다. 헤어룸의 기술은 다른 '직접 공기 포집' 기술보다 저렴하도록 설계됐다. 이는 탄소 제거 기술을 더 저렴하고 확장 가능하게 만들 수 있음을 의미한다. 일부 연구자들은 많은 양의 에너지를 사용하지 않고도 CO₂를 포집해 저장할 수 있는 패시브 시스템을 연구하고 있다.
-
- 포커스온
-
[퓨처 Eyes(36)] 세계 최대 탄소 제거 공장, 아이슬란드에서 가동 시작
-
-
세계 최초 돼지 신장 이식 환자 사망
- 세계 최초로 유전자 변형 돼지 신장을 이식한 미국 남성 리처드 릭 슬레이먼이 7주만에 향년 62세로 사망했다. 과학 전문매체 뉴아틀라스는 13일(현지시간) 유전자 변형 돼지 신장을 최초로 이식받은 인간 수혜자가 안타깝게도 세상을 떠났음에도 불구하고 여전히 의학적 이정표이자 성공으로 간주되고 있다며 이같이 보도했다. 슬레이먼 씨가 획기적인 수술을 받았던 매사추세츠 종합병원(MGH)의 수술팀은 성명을 통해 그의 사망이 신부전의 결과로 간주되지 않는다고 밝혔다. 병원 측은 지난 11일 성명을 통해 "매사츄세츠 종합병원 이식팀은 릭 슬레이먼 씨의 갑작스러운 사망에 깊은 슬픔을 느낀다"고 말했다. 그러면서 "우리는 그것이 그의 최근 이식의 결과라는 징후를 발견하지 못했다. 슬레이먼 씨는 전 세계 수많은 이식 환자들에게 희망의 등불로 영원히 기억될 것이며, 우리는 이종 이식 분야를 발전시키기 위한 그의 신뢰와 의지에 깊이 감사드린다"고 표했다. 슬레이먼 씨는 지난 3월 16일 유전자 변형 돼지 신장 이식 수술을 받았다. 그는 새 신장을 이식받은 지 며칠 만에 걸어 다닐 수 있었고, 약 2년 동안 신장의 기능을 유지할 수 있을 것으로 예상됐다. 슬레이먼은 7년 간의 투석 끝에 2018년 같은 병원에서 인간 신장 이식 수술을 받았으나 5년만에 신장이 망가져 투석 치료를 재개했다. 그는 2018년 인간 신장 이식의 합병증으로 인해 지난해 신장을 제거한 후 지난 3월 돼지 신장을 이식한 뒤 일주일에 세 번씩 받던 투석 치료도 중단할 수 있었다. 슬레이먼은 말기 신장 질환을 앓고 있었으며 울혈성 심부전증도 앓고 있었다. 병원 측에 따르면, 신장은 매사추세츠 주 케임브리지의 이제네시스(eGenesis)가 인간 수혜자에게 해로운 유전자를 제거하고 특정 인간 유전자를 추가하여 호환성을 향상시키기 위해 유전자 편집된 돼지로부터 제공되었다고 한다. 회사는 또한 인간을 감염시킬 가능성이 있는 돼지 고유의 레트로바이러스를 비활성화했다. 사인은 아직 발표되지 않았지만, 그의 가족은 성명을 통해 이 획기적인 수술이 이종 이식의 발전에 긍정적인 결과를 가져왔다고 말했다. 미국에서는 약 9만 명이 신장 이식 대기자 명단에 올라 있으며, 이 중 상당수는 이식을 받기 전에 사망한다. 슬레이먼의 가족은 성명에서 "릭은 이식 후 이식을 받은 이유 중 하나가 생존을 위해 이식이 필요한 수천 명의 사람들에게 희망을 주기 위해서였다고 말했다"면서 "릭은 그 목표를 달성했으며 그의 희망과 낙관주의는 영원히 지속될 것이다. 그는 모든 환자, 연구자, 의료 전문가에게 영감을 주는 유산이 될 것"이라고 밝혔다. 이제네시스도 5월 11일 소셜 미디어에 "슬레이먼 씨는 진정한 선구자였다"며 "그의 용기는 신부전으로 고통받는 현재와 미래의 환자들을 위한 길을 개척하는 데 도움이 되었다"는 글을 게재했다. 슬레이먼의 가족은 이 획기적인 '생명 연장' 수술이 사랑하는 가족과 발전하는 이종 이식 분야 모두를 위한 선물이라고 주장했다. 그의 가족은 "우리 가족은 사랑하는 릭이 갑자기 세상을 떠난 것에 대해 깊은 슬픔을 느끼지만, 그가 많은 사람들에게 영감을 주었다는 사실에 큰 위안을 삼고 있다"면서 "전 세계 수백만 명의 사람들이 릭의 이야기를 알게 되었다. 우리는 그가 보여준 낙관주의에 위로를 받았으며 지금도 여전히 위로를 받고 있다"고 전했다. 또한 수술을 집도한 전담팀에 "이종 이식을 이끈 그들의 엄청난 노력 덕분에 우리 가족은 릭과 함께 7주를 더 보낼 수 있었고, 그 기간 동안의 추억은 우리의 마음과 정신에 남을 것"이라며 감사를 표했다. MGH 팀도 이에 공감하며 "슬레이먼 씨의 가족과 사랑하는 사람들이 그를 아는 모든 이들에게 관대함과 친절함으로 감동을 주었던 특별한 사람을 기억하며 진심으로 애도를 표한다"라고 전했다. 슬레이먼 씨의 신장 이식 수술은 세 번째로 진행된 이종 이식(Xenotransplant)이며, 돼지 장기를 살아있는 인간에게 이식하는 시술이었다. 이에 앞서 2021년 미국에서 최초의 돼지 심장 이식 환자(57·남성)가 2개월 만에 사망했다. 이듬해인 2022년 미국에서 두 번째 돼지 심장 이식 환자(58·남성)가 이식 후 6주 만에 사망했다. 현재까지 돼지 심장 이식의 장기적인 생존 기록은 없다. 현재 54세의 여성 리사 피사노 씨가 지난 4월 유전자 변형 돼지 신장 이식 수술을 받고 치료 중에 있다. 유전자 변형 기술은 돼지의 DNA를 정확하게 수정해 인체가 동물 기관을 이물질로 인식하고 거부하는 것을 방지한다. 지난 4월 12일, 심부전과 신부전을 동시에 앓고 있는 뉴저지 여성 리사 피사노 씨가 유전자 변형 돼지 신장을 이식받은 두 번째 수혜자가 되었다. 피사노 씨는 그에 앞서 지난 4월 4일 뉴욕대 랭곤 헬스(NYU Langone) 센터에서 심장 보조장치를 이식받았고, 8일 뒤인 4월 12일 유전자 변형된 돼지 신장과 함께 흉선(thymus gland) 이식 수술도 받았다. 뉴욕대 랭곤 헬스 센터는 지난 4월 24일 피사노 씨에게 세계 최초로 기계 심장 보조 장치와 유전자 편집 돼지 신장을 동시에 이식하는 혁신적인 수술을 성공적으로 완료했다고 발표했다.
-
- 생활경제
-
세계 최초 돼지 신장 이식 환자 사망
-
-
[신소재 신기술(46)] 머리카락만큼 얇고 소리 75% 차단하는 '방음 커튼'
- 아파트 등 공동주택이 늘어나면서 한밤중에 들려오는 소리에 잠을 못 이루는 사람이 많다. 반대로 너무 예민해서 자신이 내는 소리에 옆방이나 옆집 사람이 잠 못 이루는 것을 걱정하는 경우도 있다. 머리카락만큼 얇지만 소리를 75% 차단하는 방음 커튼이 미국에서 개발돼 층간 소음 등 소음 문제 해결에 희소식을 전하고 있다. 미국 매사추세츠공과대학교(MIT) 요엘 핀크(Joel Fink) 등 연구팀은 머리카락처럼 가는 직물에 스피커 기술을 접목해 조용한 공간을 만들 수 있는 방음 커튼을 개발했다고 발표했다. 방음 실크, 노이즈 캔슬링 기능 과학 전문 매체 기가진(Gigazine)에 따르면 MIT가 개발한 '방음 실크(soundproof silk)'는 두 가지 방식으로 조용한 공간을 조성하고 소음을 억제한다. 첫 번째는 소리에 반응해 음파를 발생시켜 소음을 상쇄하는 노이즈 캔슬링(noise-canceling) 기능이다. 직물에 노이즈 캔슬링 기능을 부여하는 기술은 직물을 마이크로 만드는 데 사용되는 기술을 응용한 것이다. 이전 연구에서는 진동을 받으면 전기 신호를 방출하는 압전 섬유를 직물에 꿰매어 직물 마이크를 제작했다. 반면 방음 실크는 압전 섬유에 전기 신호를 통과시켜 소리를 생성했다. 연구팀은 심지어 방음 실크를 원형 프레임에 부착해 바흐 음악을 재생하는 스피커로 사용하는 데도 성공했다. 이 직물은 소음과 반대 위상의 음파를 방출해 소리를 상쇄시켜 소음 제거 방음 실크를 구현했다. MIT의 그레이스 양(Grace Yang) 연구원은 이번 연구에 대해 "직물을 이용해 소리를 낼 수도 있지만 우리가 사는 세상은 이미 소음으로 가득 차 있기 때문에 소리를 내는 것보다 침묵을 만드는 것이 더 가치 있다고 생각했다"고 설명했다. 그러나 이 소음 제거 기능은 헤드폰과 귀 사이의 공간과 같은 좁은 공간에서만 작동하며 큰 방과 같은 넓은 공간에서는 작동하지 않는다. 직물에 진동 제어 기능 삽입 따라서 연구팀은 방음 실크에 두 번째 기능을 삽입했다. 섬유의 진동을 제어하고 직물이 움직이지 않도록 해 소리가 직물을 통과하지 못하게 한 것이다. 예를 들어, 아파트에서 이웃이 한밤중에 소음을 낼 경우 소음으로 인해 벽이 진동해 방 안에 소리가 발생하기 때문에 소리가 다음 아파트로 전달된다. 연구팀은 직물을 가만히 잡고 있을 때 방음 실크가 거울처럼 작동해 소리를 반사하고, 소리가 직물을 통해 청취자에게 전달되는 것을 막는다는 것을 발견했다. 이러한 방음 효과는 방과 같은 넓은 공간에서도 작동한다. 실제로 연구팀은 위의 그림 왼쪽 하단의 '직접 억제 모드'와 함께 소음 제거 기능을 테스트했을 때 최대 65데시벨, 즉 사람이 큰 소리로 말하는 것과 같은 음량의 소리를 줄일 수 있다는 것을 발견했다. 또한 직물의 진동을 억제하는 '진동 억제 모드'(오른쪽 하단)는 최대 75%까지 소음 전달을 줄일 수 있었다. 연구팀은 앞으로 다중 주파수를 차단할 수 있는 직물을 연구하고 압전 섬유 개수, 봉제 방법 및 인가 전압을 변경하여 방음 성능을 더욱 향상시킬 계획이다. 연구팀은 "이 특수 커튼을 통해 '역위상을 통한 소리의 상쇄와 '직물의 진동을 억제해 소리를 반사하는 것'이 가능하다"고 밝혔다. 이번 연구 내용은 2024년 4월 1일자 과학저널 '언드밴스드 머티리얼스(Advanced Materials)'에 게재됐다.
-
- 포커스온
-
[신소재 신기술(46)] 머리카락만큼 얇고 소리 75% 차단하는 '방음 커튼'
-
-
마이크로소프트, 나무 태워 탄소 포집⋯스웨덴 파트너와 330만 톤 탄소 제거 계약 체결
- 마이크로소프트(MS)가 나무를 연료로 하는 발전소에서 이산화탄소를 포집하는 방식의 기후 변화 대응 전략을 두 배 이상 크게 강화하고 있다. 마이크로소프트가 스웨덴의 에너지 회사인 스톡홀름 엑서지(Stockholm Exergi)와 스톡홀름에 위치한 바이오매스 발전소에서 333만 톤의 탄소를 포집한다는 계약을 체결했다고 ICT 전문 매체 더버지가 전했다. 이는 현재까지 발표된 이 부문 최대 규모의 거래다. 포집하는 양은 휘발유 자동차 79만 대가 1년 동안 운행해 방출하는 탄소의 양과 맞먹는다. 이는 마이크로소프트가 2030년까지 회사가 생산할 것으로 예상되는 것보다 더 많은 탄소를 포집한다는 의미다. 마이크로소프트는 2050년까지 창립 이래 지금까지 배출한 만큼의 탄소를 대기에서 없애겠다는 기후 경영 목표를 수립한 바 있다. 이번 계약은 회사의 장기 목표 달성에도 크게 기여할 것이라는 기대다. 그러나 이에 대한 비판 여론도 만만치 않다. 나무 연료 발전소가 실제로 기후 변화 대응에 적절한 것인지, 아니면 상황을 오히려 악화시킬 것인지에 대해서는 아직 판단을 내리기 어렵다는 것이다. 생물다양성센터(Centre for Biological Diversity)와 세계 3대 환경보호단체 중 하나인 ‘지구의 벗(Friends of the Earth International)’ 등 저명한 환경 단체들은 이에 대해 ‘잘못된 해결책’이라고 비판했다. 지난 2018년에는 약 800명의 과학자들이 유럽의회에 바이오에너지를 위한 목재 사용 지원을 중단하라는 서한에 서명하기도 했다. 엑서지는 스톡홀름에서 산림 바이오매스라고도 알려진 산림 폐기물의 목재 펠릿과 잔여물을 사용해 발전소를 운영하고 있다. 지지자들은 이론적으로 발전소가 나무를 태워 방출하는 탄소를 포집하고, 나무는 탄소를 흡수하며 다시 자라나므로 탄소 중립 에너지원이라고 주장한다. 유럽연합 집행위원회도 바이오매스 연소가 유럽과 미국 전역의 산림 벌채와 관련되어 있음에도 불구하고 가장 큰 재생에너지원이라고 간주하고 있다. 마이크로소프트와 엑서지는 발전소에 장비를 추가, 탄소가 대기 중으로 배출되기 전에 대부분을 포집한다는 계획이다. 그렇게 하면 오히려 탄소의 마이너스 배출까지도 가능하다는 주장이다. 즉, 방출하는 총량보다 더 많은 탄소를 대기에서 제거한다는 것이다. 탄소 마이너스 배출 기술은 최근 여러 기업들이 연구와 채택을 진행하고 있다. 그러나 많은 연구 결과에 따르면 ‘탄소 포집 바이오에너지(BECCS)’에 대한 수학적인 계산은 정확하게 이루어지지 않는 것으로 나타났다. 굴뚝에서 탄소를 제거하는 장치는 탄소를 100% 포집할 수 없다. 또 숲을 개간하고 연료로 사용하기 위해 목재를 운반하는 과정에서 추가 배출이 발생한다. BECCS는 결국 탄소 중립이 아니며 실제로는 대기에 온실가스의 주범인 탄소 오염을 더한다는 사실이 밝혀졌다. 마이크로스프트는 이에 대해 공식적인 반응은 보이지 않고 있다. 회사는 작년 덴마크 에너지 회사인 오스테드(Ørsted)와 덴마크의 나무 연료 발전소에서 276만 톤의 탄소를 포집하는 또 다른 계약을 체결했다. 스톡홀름에서 이 발전소의 탄소 포집 장치의 건설은 엑서지가 다른 계약과 함께 정부 지원으로 충분한 추가 자금을 확보한다면, 내년에 시작될 예정이다. 그러면 계약에서 합의된 333만 톤의 탄소를 모두 제거하는 데 10년이 걸릴 것이다. 엑서지는 마이크로소프트와의 계약을 자사의 탄소 포집 기술에 대한 인증이라고 의미 부여했다. 회사는 “이번 계약은 우리 프로젝트의 중요성은 물론 품질 및 지속 가능성을 강하게 시사하고 있다”라고 말했다.
-
- 경제
-
마이크로소프트, 나무 태워 탄소 포집⋯스웨덴 파트너와 330만 톤 탄소 제거 계약 체결
-
-
일론 머스크의 바이오 스타트업 뉴럴링크, 뇌 임플란트 첫 오작동
- 일론 머스크(Elon Musk)의 스타트업인 뉴럴링크(Neuralink)가 최근 인간에게 임플란트(이식)한 바이오 칩 일부가 오작동, 뇌에서 캡처할 수 있는 데이터의 양이 줄어들었다는 사실을 밝혔다고 CNBC 등 외신이 보도했다. 뉴럴링크는 신체 마비 환자가 자신의 생각만으로 외부 장치, 즉 컴퓨터 커서를 제어할 수 있는 뇌-컴퓨터 인터페이스(BCI)를 구축했다. 뉴럴링크의 웹사이트에 따르면 링크(Link)라고 불리는 이 회사의 시스템은 인간의 머리카락보다 가는 64개의 ‘실’에 1024개의 전극을 사용하여 신경 신호를 기록한다. 임플란트는 두개골에서 잘라낸 비슷한 크기의 구멍에 심어진 4분의 1 크기의 작은 퍽(puck) 같은 용기 안에 프로세싱 칩, 배터리, 통신 기능 등을 삽입한다. 퍽은 64개의 실을 가지고 있는데, 각각은 16개의 전극을 갖는다. 마지막 몇 mm의 실을 뇌의 운동 피질에 삽입하는데, 여기서 전극은 사람의 의도를 추론하기 위해 해독될 수 있는 신경 신호를 읽고 중계한다. 지난 1월, 뉴럴링크는 안전성을 테스트하기 위한 연구의 일환으로 29세 환자 놀랜드 아르보(Noland Arbaugh)에게 이 장치를 이식했다. 회사는 아르보가 3월에 BCI를 사용하는 동안 라이브 비디오를 스트리밍했으며, 뉴럴링크는 4월 블로그 게시물에서 “수술이 매우 잘 진행됐다"고 밝힌 바 있다. 그러나 뉴럴링크는 최근 블로그 게시물에서 ”이후 몇 주 동안 아르보의 뇌에서 수많은 실이 오작동해 명령을 수행하지 못했다“고 적었다. 이는 유효 전극 수가 크게 줄어들어 링크가 커서를 움직이는 속도와 정확성 측정 능력이 떨어졌음을 의미한다. 뉴럴링크는 뇌 조직에서 얼마나 많은 양의 실이 용도 폐기되었는지 공개하지 않았다. 다만 임플란트의 성능이 저하되었음에도 불구하고 뉴럴링크는 아르보가 체스를 두는 모습을 실시간으로 시연할 수 있었으며, 이는 BCI 기술의 도약을 의미하는 것으로 해석됐다. 회사 측은 환자를 대상으로 한 첫 번째 테스트였기 때문에 어려움은 예상됐던 일이었다고 밝히고, 이 문제는 해결될 것이며 향후 임플란트가 더 많은 데이터를 가져오고 환자에게 더 큰 기능과 혜택을 제공할 수 있을 것이라고 자신했다. 블로그 게시물에서는 또 오작동에 대한 해결 방법으로, 회사가 녹음 알고리즘을 수정하고 사용자 인터페이스를 향상했으며 신호를 커서 움직임으로 변환하는 기술을 개선하는 데 주력했다고 소개했다. 뉴럴링크는 한때 임플란트한 시스템의 제거까지도 고려한 것으로 알려졌으나, 월스트리트저널에 따르면 발생한 문제가 아르보의 안전에 직접적인 위험을 초래하지 않았기 때문에 실행되지는 않았다. 뉴럴링크도 이 부분을 블로그 게시물에 언급했다. 뉴럴링크는 아르보가 뇌 조직에서 일부 실이 제거됐지만 주중에는 하루 약 8시간 동안 회사의 BCI 시스템을 사용하고 있으며 주말에는 하루 최대 10시간까지 사용하고 있다고 말했다. 아르보도 블로그에서 링크가 "명품 과부하"와 같으며, 링크가 "세계와 다시 연결하는 데 도움이 되었다”고 말했다. 한편 BCI 시스템을 구축하는 경쟁사는 뉴럴링크 외에도 여럿 존재하는 것으로 알려졌다. 이 기술은 사실 수십 년 전부터 학문적으로 탐구되어 왔다. 뉴럴링크의 경우 미국 식품의약국(FDA)의 기술 상용화 승인을 받기 전에 안전성과 효능 테스트를 거쳐야 한다. 회사는 FDA에 발생한 오작동 문제를 해결하고, 두 명의 환자에 대한 추가 이식을 희망했다고 부연했다. 올해 말까지 10명에게 시스템을 이식한다는 계획이다.
-
- IT/바이오
-
일론 머스크의 바이오 스타트업 뉴럴링크, 뇌 임플란트 첫 오작동
-
-
일론 머스크 "잔인한 AI 막고 인류에게 유익하게 개발해야"
- 일론 머스크 테슬라와 스페이스X 최고경영자(CEO)가 인공지능(AI)의 미래 위험성을 경고하며 인류에게 유익한 방식으로 AI 개발할 필요성을 강조했다. 머스크는 6일(현지시간) 미국 로스앤젤레스(LA)에서 열린 제27회 밀컨 글로벌 콘퍼런스에서 마이클 밀컨 회장과 대담을 통해 이 주제에 대해 발언하며 "생물학적 지능의 비중이 점차 줄어들고, 거의 모든 지능이 디지털 형태로 전환될 것"이라고 전망했다. AI, 인류에게 유익한 방식으로 구축해야 이날 머스크는 AI가 잔인해지지 않도록 하는 것이 중요하다고 거듭 강조했다. 그는 "(인간의) 생물학적(biological) 지능의 비중은 갈수록 점점 작아지고 있다"며 "결국은 생물학적인 지능의 비율은 1% 미만이 되고, 거의 모든 지능은 디지털이 될 것"이라고 내다봤다. 머스크는 "그렇다면 AI가 우리에게 어떤 역할을 할 수 있을까? 모르겠다"며 우려했다. 다만 그는 "우리는 AI가 잔인하기를 원하지는 않는다"며 "그래서 나는 우리가 AI를 인류에게 유익한 방식으로 구축하는 것이 매우 중요하다고 생각한다"고 말했다. 이어 "AI는 가장 진실을 추구해야 하며 사실이 아닌 것을 말하도록 가르쳐서는 안 된다고 덧붙였다. 그는 정치적으로 올바르지 않더라도 진실이라고 믿는 것을 말해야 한다"고 밝혔다. 머스크는 영화 '2001 스페이스 오디세이'(1968)에서 인공지능 컴퓨터 할(HAL)이 우주비행사들을 죽인 이유를 거론하며, "HAL이 거짓말을 강요당했기 때문"이라고 설명했다. 그는 "우리는 AI에게 거짓말을 하게 만들어서는 안 된다"고 거듭 강조했다. AI가 우주 탐사에 얼마나 도움이 될 수 있는지에 대한 질문에 머스크는 "우주 탐사는 AI가 거의 활용되지 않는 분야 중 하나"라며, "스페이스X는 기본적으로 AI를 사용하지 않고 있으며, AI 사용에 반대하는 것이 아니라 아직 적절한 사용처를 찾지 못했다"고 답했다. 머스크는 스페이스X를 통해 화성 탐사용 우주선 개발을 진행 중이다. 그는 인류가 지구 외 다른 행성에서 거주하는 다중 행성(multiplanetary) 문명을 형성해야 한다고 주장했다. 머스크는 "우리 은하계의 어떤 문명이 백만 년 동안 지속될 수 있다면, 광속보다 훨씬 낮은 속도로도 은하 전체를 탐험하고 식민지화할 수 있을 것"이라고 설명하며, "지금까지 외계인의 증거가 없다는 사실은 모든 문명이 위태롭고 희귀하다는 것을 의미할 수 있다"고 말했다. 이어 그는 "인류 문명을 광활한 어둠 속의 작은 촛불로 보고, 다중 행성 문명을 이루지 못하면 결국 공룡처럼 자멸하거나 운석 등 대규모 재난에 의해 멸망할 위험이 있다"고 경고했다. 정부 규제 비판과 출산 장려 머스크는 이날 정부 규제에 대한 비판의 목소리를 높였다. 그는 "사람은 죽지만, 법규는 영원히 지속될 수 있다"며 "시간이 지남에 따라 법과 규정이 점점 더 많아지고 규제 기관이 늘어나 결국 모든 것이 불법이 될 수 있다"고 지적했다. 그는 더 나아가 "역사적으로 규제를 제거하는 주된 방법은 전쟁이었지만, 이제는 전쟁을 원하지 않기 때문에 법과 규제를 적극적으로 청산하는 프로세스가 필요하다"고 주장했다. 머스크는 또한 문명의 지속 가능성에 대한 걱정을 표현하며, 특히 저출산 문제를 지적했다. 그는 "저출산은 문명의 지속 가능성에 큰 위협이 될 수 있으며, 이 추세가 계속된다면 문명은 폭발적으로 멸망하기보다는 점차 쇠퇴해 갈 것"이라고 경고했다. 밀컨 연구소의 회장은 머스크의 주장에 동의하며, 한국의 출산율이 과거 6명에서 현재는 0.72명으로 급격히 감소한 사례를 언급하며 이 문제의 심각성을 강조했다. 미국의 이민 정책에 대해서는 강경한 입장을 표명했다. 그는 "합법적 이민 절차가 길고 복잡하며, 친구 중에는 아직 영주권을 받지 못한 사람들도 있다"고 언급했다. 그러면서 "미국 남쪽 국경을 넘는 것은 상대적으로 쉬워, 직접 국경을 방문해 그 상황을 목격했다"고 말했다.
-
- IT/바이오
-
일론 머스크 "잔인한 AI 막고 인류에게 유익하게 개발해야"
-
-
[신소재 신기술(42)] 플라스틱 폐기물 90% 분해하는 혁신 기술
- 과학자들은 우리 시대 가장 심각한 환경 문제 중 하나인 플라스틱 오염을 해결하기 위한 독창적인 방법을 제시했다. 미국 캘리포니아 대학교 연구팀이 플라스틱을 먹는 매우 강한 포자가 함유된 플라스틱이 매립지에서 스스로 분해되는 기술을 개발했다고 네이처닷컴과 BBC, 뉴아틀라스 등 다수 외신이 집중 조명했다. 이 연구에서는 고온 용융 압출을 사용해 폴리머 분해 박테리아의 포자를 열가소성 폴리우레탄에 통합하는 바이오 복합재 제작을 시연했다. 플라스틱의 한 종류인 폴리우레탄은 강도와 탄성이 뛰어나 휴대폰 케이스부터 운동화까지 모든 제품에 사용되지만 재활용이 까다로워 주로 매립된다. 플라스틱에 첨가되는 박테리아의 종류는 식품 첨가물 및 프로바이오틱스로 널리 사용되는 고초균(枯草菌)으로 영문으로는 바실러스 서브틸리스(Bacillus subtilis)로 불린다. 고초균은 토양과 발효식품 등 다양한 환경에서 발견되는 세균이다. 또한 바실러스 서브틸리스 포자로 채워진 열가소성 폴리우레탄의 전반적인 인장 특성이 크게 개선되어 인성이 매우 향상됐다. 캘리포니아대학교 샌디에이고 라호야 캠퍼스의 김한솔 연구원은 "자연에서 플라스틱 오염을 완화할 수 있다는 희망이 있다"고 말했다. 공동 연구원 존 포코르스키는 "우리의 공정은 소재를 더욱 견고하게 만들어 플라스틱의 수명을 연장한다"고 말했다. 그는 "그리고 이 공정이 완료되면 폐기 방법에 관계없이 환경으로부터 플라스틱을 제거할 수 있다"고 설명했다. 포코르스키 연구원은 "이 플라스틱은 현재 실험실에서 연구 중이지만 제조업체의 도움을 받으면 몇 년 안에 실제 환경에 적용될 수 있을 것"이라고 덧붙였다. 플라스틱은 강하고 다양한 용도로 사용되는 소재지만, 이러한 장점은 폐기 처리를 어렵게 만드는 요인이기도 하다. 플라스틱은 분해되는 데 수십 년 또는 수백 년이 걸리기 때문에 엄청난 양의 플라스틱 쓰레기가 매립지와 바다를 오염시키고 있는 실정이다. 연구팀은 플라스틱에 플라스틱 분해 박테리아 포자를 넣어 매립지에 폐기될 때 활성화되도록 만들었다. 이를 통해 5개월 만에 플라스틱 물질의 90%가 생분해되는 것이 확인됐다. 게다가 '플라스틱 분해 박테리아 포자'를 넣은 플라스틱은 실제로 사용하는 동안 일반 플라스틱보다 더욱 견고하고 강했다. 최근 몇 년 동안 과학자들은 플라스틱을 분해하는 능력을 갖춘 박테리아를 발견하고, 이 과정을 담당하는 효소를 분리하여 효율성을 높였다. 이를 통해 효소와 박테리아로 플라스틱을 처리하는 더 효율적인 재활용 시설이 구축될 수 있다. 하지만 재활용 시설로 옮겨지지 않는 플라스틱은 어떻게 될까. 앞서 지적했듯이 열가소성 폴리우레탄(TPU)은 신발, 스포츠 용품, 휴대폰 케이스, 자동차 부품 등을 만드는데 일반적으로 사용되는 견고한 플라스틱 유형이지만 현재 재활용이 불가능하다. 연구팀은 TPU 폐기 처리를 위해 플라스틱 분해 박테리아 바실러스 서브틸리스의 포자를 플라스틱 자체에 직접 넣는 새로운 방법을 연구했다. 또한 연구팀은 포자를 넣은 플라스틱 제품이 너무 일찍 분해되지 않고, 정상적인 기간 동안 사용한 뒤 매립지나 자연 환경에서 폐기될 때만 생분해가 시작되도록 설계했다. 내열성 미생물로 온도 한계 극복 먼저 극복해야 할 문제는 플라스틱 제조에 사용되는 높은 온도였다. 플라스틱 가공시 사용되는 고온으로 인해 대부분의 박테리아 포자가 죽는다. 연구팀은 이를 극복하기 위해 내열성 미생물을 유전공학적으로 제작했으며, 플라스틱 가공 온도인 135°C(275°F)에서 변형된 박테리아의 96~100%가 생존하는 것을 확인했다. 변형되지 않은 박테리아의 경우 생존율은 겨우 20%에 불과했다. 다음으로 연구팀은 박테리아가 플라스틱을 얼마나 잘 분해하는지 테스트했다. 이 과정은 토양의 영양분과 수분에 의해 시작된다. 플라스틱 무게의 최대 1% 농도에서 박테리아는 퇴비에 묻힌 후 5개월 이내에 플라스틱 물질의 90% 이상을 분해했다. 이 새로운 플라스틱은 사용 중 강도가 약화될 것으로 추정했지만, 실제로는 그 반대 효과가 나타났다. 포자를 넣어 만든 플라스틱은 일반 폴리우레탄(TPU)보다 최대 37% 더 강하고 인장 강도가 최대 30% 더 높은 것으로 나타났다. 연구팀은 포자가 강화 충전재 역할을 하는 것으로 추정했다. 연구팀은 이 기술은 확장 가능성이 높으며, 사용 중 더욱 견고하고 강하면서 재활용이 불가능한 TPU를 폐기 처리하는 새로운 방법을 열 수 있다고 말했다. 이를 다른 몇 가지 방법과 함께 사용한다면 플라스틱 오염 문제 해결에 진전을 이룰 수 있을 것으로 보인다. 플라스틱의 약 80%가 재활용되지 않고 매립지나 자연 환경에 축적되고 있는 실정다. 또한 폴리우레탄(PU)은 세계에서 6번째로 많이 생산되는 플라스틱이지만 재활용을 위한 거버넌스는 없다. PU 폐기물은 수지 식별 코드의 카테고리 7(PETE, HDPE, PVC, LDPE, PP, PS 이외의 기타 플라스틱)에 따라 잠재적으로 수거될 수 있지만, 미국에서는 일반적으로 이 카테고리의 플라스틱 중 0.3%만이 재활용되고 있다. 플라스틱 분해 과정에 박테리아 포자를 결합시킨 것은 산업 공정에서 재생 가능한 폴리머 충전재로서 살아있는 세포를 도입할 수 있는 흥미로운 기회를 제공했다는 평가를 받고 있다. 연구진은 잠재적으로 확장 가능한 이 기술이 재활용할 수 없는 TPU를 폐기하는 새로운 방법을 제시하는 동시에 사용 중에 더 튼튼하고 강하게 만들 수 있다고 말했다. 이 기술을 다른 몇 가지 방법과 결합하면 플라스틱 오염 문제를 해결하는 데 어느 정도 진전을 이룰 수 있을 것으로 기대된다. 이 연구는 '네이처 커뮤니케이션스(Nature Communications)' 저널에 발표됐다.
-
- 포커스온
-
[신소재 신기술(42)] 플라스틱 폐기물 90% 분해하는 혁신 기술
-
-
미국 최초의 나트륨 이온 배터리 공장, 미시간주 홀랜드에 건설
- 미국 최초의 나트륨 이온 배터리 공장이 미시간주 홀랜드에 건설됐다고 클린테크니카가 최근 보도했다. 리튬 이온 배터리는 2000년대 초반부터 재생 에너지 전환의 주력원이 되어왔지만 현재 에너지 저장 시징은 나트륨 이온 배터리를 주목하고 있다. 연구원들은 공급망 문제를 야기할 수 있는 기존 리튬 이온 배터리와 달리 높은 성능을 제공하는 새로운 나트륨 이온 배터리를 연구해왔다. 미국 스타트업 나트론 에너지(Natron Energy)는 지난 4월 29일 미시간 주 홀랜드에 위치한 공장 가동을 시작하면서 미국 최초의 상업용 규모 나트륨 이온 배터리 생산을 시작했다. 이 새로운 공장은 리튬 이온 배터리 공장을 개조했다. Natron은 이 공장을 통해 연간 600메가와트 규모의 나트륨 이온 배터리를 생산할 예정이다. 600메가와트는 1시간 동안 테슬라 모델 3과 같은 전기차를 약 1만800대를 충전할 수 있는 규모다. 이는 각 차량의 배터리 용량이 50kw이고 충전 효율이 90% 일 때의 계산 결과다. 다만, 이 공장은 초기에 급격히 증가하는 데이터 센터의 에너지 저장 요구를 충족시킬 예정이다. 나트론은 특히 인공지능 기술의 폭발적인 성장이 미국 데이터 센터에서 24시간 전력 공급 및 에너지 저장에 대한 더 큰 수요를 유발할 것으로 예상한다. 나트론은 홀랜드 공장이 향후 기가와트 규모 공장의 모델이 될 것으로 예상하며, 오프로드 산업용 차량, EV 고속 충전소 및 통신 분야 등 추가 시장을 목표로 하고 있다. 미 정부, 나트륨 이온 배터리 개발 지원 미국 에너지부(DOE)가 나트론의 새로운 나트륨 이온 배터리 공장 건설에 기여했다. 2020년 9월, 나트은 고위험 고수익 프로젝트 지원을 위한 에너지부 ARPA-E 사무소로부터 1990만 달러(약 274억원)의 지원금을 받았다. 이 지원금은 새로운 공장 건설을 목표로 하며, 6개월 동안 지속적인 생산 및 판매를 통해 공급망 및 제품의 완전한 위험 제거를 목표로 한다. ARPA-E는 회사의 8킬로와트 50볼트 배터리 트레이가 주로 데이터 센터의 최대 부하량 관리 및 비상 백업 전력 공급을 위해 설계되었지만, EV 고속 충전소 및 그리드 규모 저장과 같은 신흥 시장도 타겟으로 하고 있다고 말했다. ARPA-E는 또한 "나트론의 트레이는 기존 제품에 비해 데이터 센터 운영자에게 최대 2배 높은 출력 밀도와 10배 긴 수명주기를 제공하며 우수한 안전 성능을 보유하고 있다"고 덧붙였다. 은백색 금속 원소인 나트륨(라틴어 natrium에서 유래된 화학 기호 Na)의 지속 가능성 요인은 나트륨 이온 배터리에 대한 관심을 끌고 있다. 하지만 미래의 배터리로 주목받아온 나트륨 이온 배터리는 최근 몇 년 전까지도 쉽게 구현되지 못했다. 나트륨은 리튬보다 훨씬 풍부하지만 무게도 훨씬 무겁다. 전기차용 에너지 저장 측면에서 리튬은 주행 거리 면에서 나트륨보다 유리하다. 반면 나트륨과 리튬 간의 화학적 친밀감은 배터리 연구에 도움이 된다. '피직스 매거진(Physics Magazine)'은 지난 주 "나트륨은 주기율표에서 리튬 바로 아래에 위치하여 화학적 특성이 매우 유사하다"고 설명했다. 나트륨 이온 배터리의 과제 나트륨 이온 배터리는 아직 초기 개발 단계이지만, 리튬 이온 배터리의 단점을 보완할 수 있는 차세대 배터리 기술로 주목받고 있다. 특히 대규모 에너지 저장 시스템(ESS), 저가형 전기 자동차, 항공 우주 분야 등에 활용될 가능성이 높다. 리튬 이온 배터리는 충전과 방전 과정에서 리튬 이온이 양극과 음극 사이를 이동하지만 나트륨 이온 배터리는 나트륨 이온이 음극과 양극 사이를 이동하는 것이 차이점이다. 나트륨 이온 배터리를 리튬보다 풍부하고 저렴하다. 또한 우수한 저온 성능(영하 20°C에서도 90% 이상의 용량 유지)을 제공하고 안전성이 높다. 반면 리튬 이온 배터리는 에너지 밀도가 높아 휴대폰, 노트북 등 소형 전자 기기에 적합하다. 단, 고온에서 성능 저하 및 안전 문제가 발생할 수 있다. 나트륨 이온 배터리는 에너지 말도가 낮으며 아직 초기 개발 단계라서 상용화에 시간이 걸릴 수 있다. 게다가 나트륨 이온을 전달하는데 적합한 전해질과 음극 재료 개발이 필요하다. 향후 지속적인 연구개발을 통해 나트륨 이온 배터리의 에너지 밀도를 높이고 상용화에 필요한 기술을 개발한다면 리튬 이온 배터리의 강력한 경쟁자가 될 것으로 예상된다.
-
- 산업
-
미국 최초의 나트륨 이온 배터리 공장, 미시간주 홀랜드에 건설
-
-
[퓨처 Eyes(34)] 펭귄처럼 헤엄치는 수중 로봇, 쿼드로인 2세대 출시
- 인간 형태를 닮은 휴머노이드 로봇, 하늘을 나는 드론이 농업에 활용되며 속속 출시되는 가운데, 펭귄의 유영 방식을 모방한 수중 로봇이 공개됐다. 독일 수중 기술 기업 에보로직스(EvoLogics)는 최근 펭귄의 유영 방식을 모방한 개선된 수중 자율 운항체(AUV) 쿼드로인(Quadroin) 2세대를 출시했다고 뉴아틀라스가 보도했다. 에보로직스는 독일 베를린에 본사를 둔 수중 로봇 공학 기업으로, 혁신적이고 고성능의 수중 로봇, 데이터 네트워크, 센서 기술 개발에 주력하고 있다. 2005년 설립된 이 회사는 해양 연구, 오프쇼어 산업, 국방 분야에서 활용되는 다양한 제품과 솔루션을 제공하며 전 세계적인 명성을 얻었다. 쿼드로인은 2020년 에볼로지스가 헬름홀츠 센터 헤레온(Helmholtz-Zentrum Hereon) 연구소의 부르카르트 바셰크(Burkard Baschek) 교수와 협력하여 개발한 핑귄(PingGuin) 실험 AUV의 후속 제품이다. 핑귄의 디자인은 이 회사의 창업자인 루돌프 바나쉬(Rudolf Bannasch) 박사의 아델리(Adelie) 펭귄 운동 연구를 기반으로 구현됐다. 저항을 최소화하도록 설계된 쿼드로인은 최대 10노트(Knot)의 속도를 달성해 에너지 효율성을 극대화하고 다양한 현장 배치를 가능하게 한다. 노트는 해양에서 배의 속도를 나타내는 단위로, 1시간에 1해리(1.85km)를 가는 속도를 의미한다. 따라서 10노트는 1시간에 18.5km의 거리를 이동하는 속도에 해당한다. 일반적으로 선박의 느린 속도는 5노트 미만이며, 보통 속도는 5~10노트, 빠른 속도는 10노트 이상으로 분류된다. 물론 선박의 종류, 엔진 성능, 해양 환경 등에 따라 10노트의 속도는 느리거나 빠르게 느껴질 수 있다. 예를 들어 소형 요트의 경우 10노트는 상당히 빠른 속도이지만, 대형 컨테이너 선의 경우 10노트는 비교적 느린 속도에 해당한다. 펭귄 모방 수중 로봇 퀘드로인 사실 펭귄 모방 수중 로봇의 개념은 2009년까지 거슬러 올라간다. 당시 에보로직스는 독일 전기 자동화 기업 페스토(Festo)와 협력하여 펭귄과 유사한 아쿠아펭귄(AquaPenguin) 시연용 모델을 개발했다. 실제 쿼드로인은 2021년 5월 처음 공개되었는데, 펭귄의 유영 방식을 모방하여 제작되었으며, 헬름홀츠 센터 헤레온 연구소의 MUM(Modifiable Underwater Mothership) 프로젝트에 활용되고 있다. 이 프로젝트에서 쿼드로인은 다양한 센서를 탑재하고 무리를 지어 해류 데이터를 수집했다. 탑재된 센서는 수심별 온도, 압력, 용존 산소량, 전기 전도도, 형광 등을 정밀하게 측정할 수 있다. 다른 AUV와 마찬가지로 쿼드로인은 선박이나 해안에서 투입된 후 사전 프로그래밍된 수중 경로를 따라 자율적으로 이동하며 데이터를 수집한다. 수집된 데이터는 쿼드로인이 수면으로 올라갈 때 무선 전송되거나 기지로 돌아와 직접 다운로드받을 수 있다. 쿼드로인은 데이터를 와이파이(Wi-Fi) 또는 옵션인 이리듐 위성 모듈을 통해 전송한다. 이 두 시스템과 탑재된 글로벌 네비게이션 위성 시스템(GNSS)은 쿼드로인이 수면에 올라올 때 자동으로 뒤집히는 아치형 다기능 안테나를 사용한다. 추가적인 장점으로 안테나에는 빨간색과 초록색 LED 점멸등이 장착되어 사용자가 로봇을 회수할 때 쉽게 찾을 수 있도록 한다. 에보로직스 대표는 "새로운 쿼드로인이 올해 4분기에 양산에 돌입할 예정이며, 상업 고객들에게는 요청 시 가격 정보를 제공한다"고 밝혔다. 쿼드로인 활용 방안 쿼드로인은 다양한 해양 생물의 행동과 서식지를 관찰하고 데이터를 수집하는 데 활용될 수 있다. 이를 통해 해양 생태계에 대한 이해를 높이고 효과적인 보호 전략을 수립하는 데 기여할 수 있다. 또한, 해양 환경을 효과적으로 모니터링하는 데에도 활용될 수 있다. 쿼드로인은 수온, 염도, 용존 산소량 등 해양 환경 변수를 정밀하게 측정하고 실시간으로 데이터를 전송할 수 있다. 이를 통해 해양 오염, 기후 변화 등 해양 환경 문제를 파악하고 해결책을 모색하는 데 도움이 될 수 있다. 쿼드로인은 해저 지형을 정밀하게 측량하고 3D 모델을 구축하는 데 활용될 수 있다. 그로 인해 해양 자원 탐사, 해저 케이블 및 파이프라인 설치, 해양 구조 작업 등에 크게 활용될 수 있다. 또한, 쿼드로인은 해저 석유 및 가스 매장지를 효율적으로 탐색하고 개발 계획을 수립하는 데 활용될 수 있으며, 이를 통해 오프쇼어 에너지 개발의 효율성을 높이고 환경 영향을 최소화하는 데 도움이 될 수 있다. 뿐만 아니라, 쿼드로인은 해저 사고 현장을 탐사하고 생존자를 구조하는 데 활용될 수 있으며, 해저 침몰선 및 잔해물을 탐색하고 인양하는 데에도 활용될 수 있다. 해양 국방 분야에도 활용 쿼드로인은 적군 함정 및 해양 활동을 정밀하게 정찰하고 정보를 수집하는 데 활용될 수 있으며, 이는 해상 작전의 효율성을 획기적으로 높이고 적의 위협을 사전에 예측하는 데 크게 기여할 수 있다. 또한, 쿼드로인은 해저 지뢰를 효과적으로 탐지하고 제거하는 데 활용될 수 있으며, 이를 통해 해상 통로의 안전을 확보하고 군함 및 상선의 안전을 보호하는 데 도움이 될 수 있다. 뿐만 아니라, 쿼드로인은 해저 침몰선을 탐색하고 인양하는 데 활용될 수 있으며, 이를 통해 해양 역사 연구를 체계적으로 수행하고 침몰선에서 귀중한 유물을 발견하는 데 기여할 수 있다. 최근 미국 농업 분야에서는 드론과 인공지능(AI) 로봇 등 첨단 기술 도입이 활발하게 이루어지고 있다. 드론, 레이저 제초기, 로봇 손 등은 농작물 재배 및 가공 과정의 일부를 자동화할 수 있으며, AI 기반 시스템의 활용은 미래 농업의 새로운 가능성을 열어주고 있다. 수중 로봇 기술의 발전과 더불어 쿼드로인 또한 다양한 분야에서 활용될 것으로 전망된다. 하늘을 나는 드론이 다방면에서 활용되고 있는 것처럼, 쿼드로인 2세대는 아직 개발 초기 단계이지만, 앞으로 해양 분야뿐만 아니라 국방, 농업, 과학 연구, 레저 및 관광, 교육 등 다양한 분야에 새로운 변화를 가져올 것으로 기대된다. 한편 해양 강국인 한국은 한국해양과학기술원(KIOST), 한국해양연구원(KORDI), 한국과학기술원(KAIST), 포항공과대학교(POSTECH), 한화오션, HD현대중공업, 삼성중공업 등을 중심으로 자율 운항, 인공지능, 센서 기술, 통신기술, 로봇 공학 등의 핵심기술을 보유하고 있다. 특히 정부는 '해양 4.0' 산업 육성을 위해 수중 로봇 개발을 핵심 전략 분야로 지정하고 적극적으로 지원하고 있다.
-
- 포커스온
-
[퓨처 Eyes(34)] 펭귄처럼 헤엄치는 수중 로봇, 쿼드로인 2세대 출시
-
-
[먹을까? 말까?(9)] 비타민D, 장내 세균 증가로 암 면역에 도움
- 비타민 D가 장내 세균을 증가시켜 암 면역에 효과가 있다는 연구 결과가 나왔다. 최근 생쥐를 대상으로 이루어진 연구에 따르면 비타민 D는 암 면역 반응을 강화시키는 데 도움이 될 수 있다는 가능성을 제시했다고 폭스뉴스와 신경과학 뉴스 등이 보도했다. 이 연구는 지난 25일 과학 저널 '사이언스(Science)'에 게재되었으며 영국 프랜시스 크릭 연구소, 미국 국립암연구소(NCI), 덴마크 올보르그 대학교의 연구팀이 공동으로 진행했다. 연구팀은 비타민 D가 풍부한 식단을 제공한 쥐가 실험적으로 이식된 암에 대해 더 나은 면역 저항성을 갖고 면역요법 치료에 대한 반응이 개선됐다고 밝혔다. 연구 결과에 따르면 비타민 D가 풍부한 식단을 섭취한 생쥐는 장내 미생물총(gut microbiome) 조성이 변화해 암에 대한 면역 반응이 더욱 강력해졌다. 특히 비타민 D는 암 면역 반응을 개선하는 것으로 알려진 박테로이데스 프라길리스(Bacteroides fragilis)균의 수치를 증가시켰다. 연구팀은 비타민 D를 섭취한 생쥐에서 암 면역 치료에 대한 반응이 더욱 향상되었으며 새로운 종양 발생에 대한 면역력도 더 강력해졌다고 보고했다. 이 효과는 유전자 편집을 사용해 혈액 내 비타민D와 결합하여 조직에서 멀리 떨어져 있는 단백질을 제거할 때도 나타났다. 다만, 연구팀은 이전 연구에서 비타민 D 수준과 암 위험 사이의 잠재적 연관성이 제시되었기 때문에 이것이 인간에게 적용되는지 확인하려면 추가 연구가 필요하다고 지적했다. 연구 팀은 쥐 실험에서 박테리아만으로 더 나은 암 면역력을 제공할 수 있는지 테스트하기 위해 정상적인 식단을 제공하는 쥐에게 박테로이데스 프라길리스를 투여했다. 이 쥐들은 종양 성장에 더 잘 저항할 수 있었지만 비타민 D가 부족한 식단을 제공한 쥐는 그렇지 않았다. 이전 연구에서는 비타민 D 결핍과 인간의 암 위험 사이의 연관성을 제안했지만 증거가 결정적이지는 않았다. 이를 조사하기 위해 연구팀은 덴마크에서 150만 명의 데이터를 분석했는데, 이는 낮은 비타민 D 수치와 높은 암 발병 위험 사이의 연관성이 있음이 나타났다. 연구의 선임저자인 카에타누 레이스 이 소자(Caetano Reis e Sousa) 박사는 "이번 연구 결과는 놀랍다. 비타민 D는 장내 미생물총을 조절하여 특정 박테리아의 증식을 촉진할 수 있으며 이 박테리아는 생쥐의 암에 대한 면역력을 강화시켜준다"며 "이 연구 결과는 향후 인간의 암 치료에 중요한 역할을 할 수 있다"고 말했다. 한편, 연구팀은 아직 비타민 D가 왜 "양호한" 미생물총을 촉진하는지 정확히 규명하지 못했다. 논문의 공동저자인 에반겔로스 기암파조리아스(Evangelos Giampazolias) 박사는 "이 질문에 답을 얻을 수 있다면 미생물총이 면역 체계에 미치는 영향에 대한 새로운 지견을 얻을 수 있으며 암 예방이나 치료에 있어 흥미로운 가능성을 열어줄 수 있다"고 말했다. 연구팀은 또한 비타민 D가 암 면역에 미치는 영향에 대한 정확한 기전을 밝히기 위한 추가 연구가 필요하다고 강조했다. 소자 박사는 "비타민 D가 장내 미생총을 어떻게 조절하여 암 면역을 향상시키는지 이해하면 암 치료에 새로운 전략을 개발하는 데 도움이 될 수 있다"라고 말했다. 이 연구는 비타민 D가 암 치료에 중요한 역할을 할 수 있는 가능성을 제시하지만, 더 많은 연구가 필요하다는 점을 명심해야 한다. 암 환자는 비타민 D 수치를 확인하고 의사와 상담하여 자신에게 적합한 치료 계획을 세워야 한다. 영국 암 연구(Cancer Research UK)의 연구 정보 관리자인 Nisharnthi Duggan 박사는 “우리는 비타민 D 결핍이 건강 문제를 일으킬 수 있다는 것을 알고 있다. 그러나 비타민 D 수치와 암 위험을 연관시킬 수 있는 증거는 충분하지 않다"고 말했다. 한편, 영국에서는 지난 3월 비타민 D를 과다 섭취한 남성이 사망한 사례에 대해 집중 보도되면서 전문가들은 비타민D 독성에 대해 경고하기도 했다. 89세 남성 데이비드 미치너가 지난해 비타민D 과다 섭취로 인해 체내에 칼슘이 축적되는 고칼슘혈증으로 사망한 후, 서리 검시관은 규제 기관에 비타민 D의 과다 섭취의 위험성에 대해 소비자에게 경고를 촉구하는 보고서를 발표한 것. 비타민 D는 뼈 건강 유지 및 다양한 신체 기능 지원에 필수적이지만 과도한 섭취는 여러 가지 부작용을 유발할 수 있다. 비타민 D 중독 증상으로는 갈증과 메스꺼움, 과도한 배뇨 등이 있다. 한국의 경우 식약처에서 권장하는 성인의 비타민D 일일 섭취량은 400IU이다.
-
- 생활경제
-
[먹을까? 말까?(9)] 비타민D, 장내 세균 증가로 암 면역에 도움
-
-
인공지능, 기후변화 대처하는 식물 설계에 활용
- 과학자들이 인공지능(AI)을 활용해 기후 변화에 견딜 수 있는 식물을 설계하고 있다. 인공지능은 과학자들이 기후변화와 싸우고 지구 온도 상승을 억제하기 위해 식물을 개량하는 데 도움을 주고 있다고 웹사이트 피지스(phys. org)와 어스닷컴 등이 전했다. 기후변화 패널(IPCC)은 기후변화와 지구 온도 상승을 제한하기 위해서는 대기 중 이산화탄소를 제거하는 것이 필수적이라고 밝혔다. 미국 캘리포니아 라호야에 위치한 생명과학연구기관 솔크 연구소(Salk Institute) 과학자들은 기후 변화에 대응하기 위해 식물의 뿌리 시스템을 최적화해서 더 많은 이산화탄소를 더 오랜 기간 저장할 수 있는 식물의 자연적인 이산화탄소 흡수 능력 활용에 주목했다. 이 연구소의 '식물 활용 이니셔티브(Harnessing Plants Initiative)' 소속 과학자들은 기후변화 완화 식물을 설계하기 위해 'SLEAP'이라는 첨단 연구 도구를 사용하고 있다. 인공지능 SLEAP, 뿌리 성장 특징 추적 SLEAP은 사용하기 쉬운 인공지능 소프트웨어로서 다양한 뿌리 성장 특징을 추적한다. 솔크의 펠로우인 탈모 페레이라(Talmo Pereira)가 개발한 SLEAP은 당초 실험실에서 동물의 이동을 추적하기 위해 설계됐다. 페레이라는 현재 식물 과학자인 동료 연구원 볼프강 부쉬(Wolfgang Busch) 교수와 협력해 SLEAP을 식물에 적용하고 있다. 최근 '식물 게놈연구(Plant Phenomics)' 저널에 발표된 연구에서 부쉬 박사와 페레이라는 SLEAP을 사용해 식물 뿌리 형태 분석을 위한 새로운 프로토콜을 선보였다. 이 프로토콜은 뿌리가 얼마나 깊고 넓게 자라고, 뿌리 시스템이 얼마나 커지는 등 이전에는 측정하기 어려웠던 기타 물리적 특징을 분석한다. SLEAP을 식물에 적용한 결과 연구원들은 현재까지 가장 광범위한 식물 뿌리 시스템 형태 카탈로그를 구축할 수 있었다. 더욱이, 이러한 물리적 뿌리 시스템 특징을 추적하면 과학자들이 해당 특징과 관련된 유전자를 찾는 데 도움이 되며, 여러 뿌리 특징이 동일한 유전자에 의해 결정되는지 아니면 독립적으로 결정되는지를 판단할 수 있다. 이를 통해 솔크 연구팀은 식물 설계에 가장 유익한 유전자를 결정할 수 있다. 페레이라는 "이번 협업은 솔크 연구소의 과학이 특별하고 영향력 있는 이유를 실제로 보여주는 좋은 예"라고 말했다. 그는 "우리는 단순히 다른 분야의 지식을 '빌려오는' 것이 아니라, 더 큰 성과를 창출하기 위해 서로 동등한 위치에서 연구하고 있다"고 전했다. SLEAP을 사용하기 전에는 식물과 동물 모두의 물리적 특징을 추적하는 데 많은 노동이 필요했으며 이는 과학적 과정을 지연시켰다. 이전에는 연구원들이 식물 이미지를 분석하기 위해서는 이미지에서 식물 부분과 그렇지 않은 부분을 프레임 단위, 부분 단위, 픽셀 단위로 수작업으로 표시해야 했다. 그래야만 이전의 AI 모델을 적용해 이미지를 처리하고 식물 구조에 대한 데이터를 수집할 수 있었다. SLEAP의 독특한 점은 컴퓨터 시각(컴퓨터가 이미지를 이해하는 능력)과 딥 러닝(AI가 인간 뇌처럼 배우고 작업하도록 컴퓨터를 훈련하는 방법)을 모두 활용한다는 점이다. 이러한 조합을 통해 연구원들은 픽셀 단위로 이동하지 않고도 이미지를 처리할 수 있으며, 중간에 노동 집약적인 단계를 건너뛰고 이미지 입력에서 정의된 식물 특징으로 바로 넘어갈 수 있다. 부쉬 연구실의 생물정보학 분석가인 엘리자베스 베리건(Elizabeth Berrigan) 제1 저자는 "우리는 다양한 식물 유형에서 검증된 강력한 프로토콜을 개발했다. 이 프로토콜은 분석 시간과 인적 오류를 줄이고 접근성과 사용 편의성이 크며 실제 SLEAP 소프트웨어를 변경할 필요가 없었다"고 말했다. SLEAP의 기본 기술을 수정하지 않고 연구원들은 슬립 루트(sleap-roots)라는 SLEAP용 다운로드 가능한 도구킷을 개발했다. 슬립 루트는 오픈 소스 소프트웨어로 무료로 사용 가능하다. 슬립 루트를 사용하면 SLEAP는 뿌리 깊이, 질량, 성장 각도와 같은 뿌리 시스템의 생물학적 특성을 처리할 수 있다. 연구팀은 슬립 루트(sleap-roots) 패키지를 다양한 식물에서 테스트했다. 여기에는 대두, 쌀, 카놀라와 같은 농작물뿐만 아니라 모델 식물 종인 아라비도프시스 탈리아나(Arabidopsis thaliana)도 포함된다. 깊은 뿌리 시스템을 만드는 유전자 이해 높여 다양한 식물에서 시험한 결과 이 새로운 SLEAP 기반 방법은 기존 방법보다 1.5배 빠르게 주석을 달고, AI 모델을 10배 빠르게 훈련하고, 새로운 데이터에 대한 식물 구조를 10배 빠르게 예측하며, 모두 동일하거나 더 나은 정확도를 제공했다. 이러한 표형 데이터(예: 식물의 뿌리 시스템이 유난히 깊게 자라는 것)는 대규모 게놈 시퀀싱 노력과 함께 많은 숫자의 작물 품종에서 유전형 데이터를 밝히는 데 사용해 특히 깊은 뿌리 시스템을 만드는 유전자를 이해할 수 있다. 표형과 유전형을 연결하는 이 단계는 솔크 연구소의 목표인 더 많은 이산화탄소를 더 오랫동안 유지하는 식물을 만드는 데 중요하다. 이러한 식물은 더 깊고 더 강력한 뿌리 시스템을 설계해야 한다. 이 정확하고 효율적인 소프트웨어를 구현하면 식물 활용 이니셔티브는 원하는 표형을 표적 유전자에 아주 쉽고 획기적인 속도로 연결할 수 있다. 솔크의 식물 과학 부문 헤스 의장인 부쉬 박사는 "우리는 현재까지 가장 광범위한 식물 뿌리 시스템 형태 카탈로그를 만들 수 있었다. 이는 기후 변화와 싸우는 탄소 포집 식물을 만드는 연구를 실제로 가속화하고 있다"라고 말했다. 부쉬 박사는 "SLEAP은 탈모의 전문적인 소프트웨어 설계 덕분에 적용하고 사용하기 매우 쉬웠으며 앞으로 제 연구실에서 필수적인 도구가 될 것이다"라고 말했다. 페레이라가 SLEAP과 슬립 루트(sleap-roots)를 만들 때 접근성과 재현성을 가장 중요하게 고려했다. 연구원들은 NASA 과학자들과 토론을 시작하여 슬립 루트를 사용해 지구에서 탄소 포집 식물을 안내할 뿐만 아니라 우주에서 식물을 연구하는 데 도움이 되기를 기대한다. 솔크 연구소에서는 이미 SLEAP를 사용해 3D 데이터를 분석하는 새로운 도전에 착수하고 있다. SLEAP 및 슬립루트(sleap-roots)를 개선하고 확장하며 공유하는 노력은 앞으로 수년 동안 계속될 것이다. 솔크 연구소의 식물 활용 이니셔티브에서의 활용은 식물 설계를 가속화하고 연구소가 기후 변화에 대응하는 데 도움이 되고 있다.
-
- IT/바이오
-
인공지능, 기후변화 대처하는 식물 설계에 활용
-
-
[신소재 신기술(38)] 한국 과학자팀, 상온 상압에서 다이아몬드 최초 합성
- 한국 기초과학연구원 연구원들이 새로운 액체 금속 합금 시스템을 사용해 상온 상압에서 다이아몬드 합성에 성공했다. 기초과학연구원(IBS)은 다차원탄소재료연구단 로드니 루오프 연구단장 팀이 갈륨, 철, 니켈, 실리콘으로 구성된 액체 금속 합금을 이용해 1기압과 1025°C의 상온 상압 조건에서 다이아몬드를 합성하는 데 세계 최초로 성공했다고 25일 밝혔다. 이 연구는 기존의 다이아몬드 합성 방법을 획기적으로 발전시킬 수 있는 성과라고 사이언스얼럿과 과학기술 웹사이트 Phsy 등에서도 비중있게 다뤘다. 기존의 다이아몬드 합성은 고온 고압(HPHT) 방법을 사용하며, 고온고압 조건을 유지하기 위한 압력 셀 제한 크기 때문에 다이아몬드 크기도 작아서 약 1㎠로 제한된다. 일반적으로 다이아몬드는 액체 금속 촉매를 사용해 '기가파스칼 압력 범위'(일반적으로 5~6GPa, 1GPa는 약 1만 기압)와 1300~1600°C의 고온에서만 다이아몬드를 생산할 수 있다. 천연 다이아몬드는 지하 깊은 곳의 극식한 압력과 온도에서 형성되는 데 수십억년이 걸린다. 합성 다이아몬드는 최대 몃 주 동안 강력한 압착이 필요하다. IBS 연구팀이 이번에 개발한 액체 금속 혼합을 기반으로 한 새로운 방법은 기존 다이아몬드 합성 패러다임을 깨고,1025도 온도 및 1기압 압력 조건에서 처음으로 다이아몬드를 합성했다. 이는 우리가 해수면에서 느끼는 압력과 동일하며 일반적으로 요구되는 압력보다 수만 배 더 낮다. 연구팀은 빠르게 가열과 냉각이 가능한 'RSR-S'라는 냉벽 진공 장치를 자체 제작해 통상 3시간 걸리는 기존 장치들과 달리, 15분이면 끝날 수 있게 했다. RSR-S는 온도와 압력을 빠르게 조절해 액체 금속 합금을 만드는 장치다. 연구팀은 메탄과 수소에서 갈륨 77.75%, 니켈 11.00%, 철 11.00%, 실리콘 0.25%로 구성된 액체 금속 합금을 만들어 하부 표면에서 다이아몬드 구성 물질인 탄소가 성장하는 것을 확인했다. 이 연구는 '네이처(Nature)' 저널 온라인에 게재됐다. 현재 다양한 산업 공정, 전자 제품, 심지어 양자 컴퓨터에 사용되는 대부분의 합성 다이아몬드를 만드는 데 사용되는 공정은 며칠이 걸리며 훨씬 더 많은 압력이 필요하다. 이 새로운 기술이 그 잠재력을 발휘한다면 다이아몬드 제작은 훨씬 더 빠르고 쉬워질 것이다. UNIST 석좌교수이기도 한 루오프 소장은 "이 선구적인 돌파구는 인간의 독창성과 끊임없는 노력, 그리고 많은 공동 연구자들의 협력이 만들어낸 결과"라고 말했다. 연구팀은 "액체 금속을 사용하는 일반적인 접근 방식은 다양한 표면에서 다이아몬드의 성장을 가속화하고 발전시킬 수 있으며 아마도 작은 다이아몬드(씨앗) 입자에서 다이아몬드의 성장을 촉진할 수 있다"라고 썼다. 루오프 소장은 "우리는 대형 챔버(내부 용적이 100리터인 RSR-A 챔버)에서 파라미터 연구를 진행했는데, 공기를 펌핑(약 3분)하고 불활성 가스로 퍼지(90분)한 다음 다시 진공 수준으로 펌프 다운(3분)하여 챔버를 1기압의 매우 순수한 수소/메탄 혼합물로 채우고(다시 90분) 실험을 시작하는 데 3시간 이상 소요되는 시간 때문에 다이아몬드 성장을 위한 파라미터 탐색이 더뎠다!"고 밝혔다. 이어 성원경 박사는 "메탄과 수소의 혼합물에 노출된 액체 금속으로 실험을 시작하고 완료하는 데 필요한 시간을 크게 줄이기 위해 훨씬 더 작은 챔버를 설계하고 제작하도록 요청했다"고 말했다. 성 박사는 "우리가 새로 제작한 시스템 즉, 내부 용적이 9리터에 불과한 RSR-S은 총 15분 만에 메탄/수소 혼합물을 펌핑, 퍼지, 배출, 채우기까지 완료할 수 있다. 매개변수 연구가 크게 가속화되었고, 이를 통해 액체 금속에서 다이아몬드가 성장하는 매개변수를 발견할 수 있었다"라고 설명했다. 제1저자인 얀 공 UNIST 대학원생은 "어느 날 RSR-S 시스템으로 실험을 진행한 후 흑연 도가니를 식혀 액체 금속을 고형화한 후 고형화된 액체 금속 조각을 제거했을 때, 이 조각의 바닥면에 수 밀리미터에 걸쳐 '무지개 무늬'가 퍼진 것을 발견했다. 그 무지개 색이 다이아몬드 때문이라는 사실을 알게 되었다! 이를 통해 다이아몬드의 재현 가능한 성장에 유리한 매개변수를 파악할 수 있었다"라고 말했다. 연구팀은 또 '광 발광 분광법' 실험으로 물질에 빛을 쏘아 방출되는 파장 빛을 준석해 다이아몬드 내 '실리콘 공극 컬러 센터' 구조도 발견했다. 이 구조는 액체 금속 합성 구성요소 중 하나인 실리콘이 탄소로만 이루어진 다이아몬드 결정 사이에 끼어들어 있는 것이다. 실리콘 공극 컬러 센터 구조는 양자 크기의 자성을 가져 자기 민감도가 높고, 양자 현상(양자적인 특성)을 보인다. 그로 인해 향후 나노 크기의 자기 센서 개발과 양자 컴퓨팅 분야의 응용이 기대된다. 논문 공동 저자인 메이후이 왕 박사는 "실리콘 공극 컬러 중심을 가진 이 합성 다이아몬드는 자기 감지 및 양자 컴퓨팅에 응용될 수 있을 것"이라고 말했다. 연구팀은 이러한 새로운 조건에서 다이아몬드가 핵을 형성하고 성장할 수 있는 메커니즘에 대해 심도 있게 연구했다. 시료의 단면을 고해상도 투과전자현미경(TEM)으로 촬영한 결과 다이아몬드와 직접 접촉한 고체 액체 금속에 약 30~40nm 두께의 비정질 표면 영역이 존재하는 것으로 나타났다. 공동 저자인 최명기 박사는 "이 비정질 영역의 상부 표면에 존재하는 원자의 약 27%가 탄소 원자였으며, 탄소 농도는 깊이에 따라 감소하는 것으로 나타났다"고 말했다. 연구팀은 또한 실리콘이 다이아몬드의 새로운 성장에 중요한 역할을 한다는 사실도 발견했다. 합금의 실리콘 농도가 최적 값보다 증가함에 따라 성장한 다이아몬드의 크기는 작아지고 밀도는 높아진다. 실리콘을 첨가하지 않으면 다이아몬드를 전혀 성장시킬 수 없었으며, 이는 실리콘이 다이아몬드의 초기 핵 형성에 관여할 수 있음을 시사한다. 루오프 소장은 "이 액체 금속에서 다이아몬드의 핵 형성과 성장에 대한 우리의 발견은 매우 흥미롭고 기초 과학을 위한 많은 흥미로운 기회를 제공한다. 이제 우리는 핵 형성과 그에 따른 다이아몬드의 빠른 성장이 언제 일어나는지 탐구하고 있다. 또한 탄소와 기타 필요한 원소의 과포화를 먼저 달성한 다음 온도를 빠르게 낮춰 핵 생성을 촉발하는 '온도 강하' 실험도 유망한 연구"라고 말했다.
-
- 포커스온
-
[신소재 신기술(38)] 한국 과학자팀, 상온 상압에서 다이아몬드 최초 합성
-
-
삼성전자, 업계 최초 '9세대 V낸드' 양산…290단 적층 구현
- 삼성전자가 업계 최초로 '1Tb(테라비트) TLC(Triple Level Cell) 9세대 V낸드' 양산을 시작해 메모리 기술에서 리더십을 강화했다. 이 기술은 인공지능(AI) 시대의 고용량 및 고성능 낸드에 대한 수요 증가에 대응하기 위한 것이다. 삼성전자는 23일, '더블 스택' 구조를 적용한 최고 단수 제품인 9세대 V낸드를 양산한다고 발표했다. 이 제품은 현재 주력 제품인 236단 8세대 V낸드를 뒤이어, 약 290단 수준의 기술로 구현되었다고 한다. 더블 스택 기술은 낸드플래시 메모리의 각 레이어를 두 번의 '채널 홀 에칭' 과정을 통해 나누고 이를 단일 칩으로 결합하는 고난도의 제조 방식을 의미한다. 삼성전자는 이 채널 홀 에칭 기술을 통해 한 번의 공정으로 업계 최대의 단수를 달성하는 생산 효율성을 크게 향상시켰다고 설명했다. 채널 홀 에칭 기술은 몰드층을 순차적으로 쌓은 후 한 번에 전자가 이동하는 홀(채널 홀)을 형성하는 방식으로, 적층 단수가 높아질수록 한 번에 더 많은 채널을 생성할 수 있어 생산 효율이 증가한다. 이 과정은 높은 정밀도와 고도의 기술이 요구된다. 낸드 메모리의 적층 경쟁이 치열해지면서 적층 공정의 기술력이 더욱 중요해지고 있다. V낸드에서 원가 경쟁력은 가능한 적은 공정 단계로 높은 적층 단수를 달성하는 데 있어, 스택 수가 적으면 거쳐야 하는 공정 수도 줄어들어 시간과 비용을 절감할 수 있어 경쟁력을 높인다. 삼성전자는 업계 최소 크기 셀(Cell), 최소 몰드(Mold) 두께를 구현해 '1Tb TLC 9세대 V낸드'의 비트 밀도(단위 면적당 저장되는 비트의 수)를 이전 세대에 비해 약 1.5배 증가시켰다. 더미 채널 홀(Dummy Channel Hole) 제거 기술로 셀의 평면적을 줄이고, 셀 크기 축소로 인한 간섭 현상을 제어하기 위해 셀 간섭 회피 기술과 셀 수명 연장 기술을 적용해 제품의 품질과 신뢰성을 향상시켰다. 9세대 V낸드는 차세대 낸드플래시 인터페이스인 '토글(Toggle) 5.1'을 적용해 8세대 V낸드 대비 33% 향상된 최대 3.2Gbps(초당 기가비트)의 데이터 전송 속도를 구현했다. 삼성전자는 이를 토대로 PCIe 5.0 인터페이스를 지원하며 고성능 SSD 시장을 확대하여 낸드플래시 기술의 리더십을 강화할 계획이다. 또한, 9세대 V낸드는 저전력 설계 기술을 적용해 이전 세대 제품에 비해 전력 소비를 약 10% 줄였다. 삼성전자는 올해 하반기에 'QLC(Quad Level Cell) 9세대 V낸드'의 양산을 시작하는 등 AI 시대의 요구에 부응하는 고용량, 고성능 낸드 개발에 박차를 가할 예정이다. 삼성전자 메모리사업부 플래시개발실장 허성회 부사장은 "낸드플래시 제품의 세대가 진화함에 따라 고용량, 고성능 제품에 대한 고객의 요구가 증가하고 있다"며 "극한의 기술 혁신을 통해 생산성과 제품 경쟁력을 향상시켰다. 9세대 V낸드를 통해 AI 시대에 적합한 초고속, 초고용량 SSD 시장을 선도할 것"이라고 말했다. 시장조사기관 옴디아의 보고에 따르면, 낸드플래시 매출은 2023년 387억 달러에서 2028년에는 1148억 달러로 성장할 것으로 예상되며, 이는 연평균 약 24%의 성장률을 보일 전망이다. 이러한 성장은 AI 서버 시장의 확대와 직결되어 있으며, 높은 데이터 전송 속도와 성능을 요구하는 신규 AI 서버 설치가 증가함에 따라 SSD에 대한 수요도 증가하고 있다. 옴디아는 "AI 관련 작업에서의 훈련 및 추론 수요 증가와 함께, 대규모 언어 모델(LLM)과 추론 모델에 필요한 데이터 저장을 위해 더 큰 저장 용량이 요구되고 있다"고 말했다. 이러한 시장 수요 증가로 인해 낸드 적층 기술의 경쟁도 치열해지고 있다. 삼성전자는 작년 3분기 실적 발표에서 2030년까지 1,000단 V낸드 개발 계획을 발표했다. SK하이닉스는 작년 8월 미국에서 열린 '플래시 메모리 서밋 2023'에서 업계 최초로 300단을 넘는 '1Tb TLC 321단 4D 낸드' 샘플을 공개하며, 이를 2025년 상반기부터 양산할 계획임을 밝혔다. 마이크론은 2022년에 세계 최초로 232단 낸드를 양산하기 시작했다. 후발주자인 중국의 YMTC(양쯔메모리테크놀로지)도 지난해 232단 낸드 생산을 시작한 데 이어 올해 하반기에는 300단 이상의 제품 출시를 계획하고 있다. 한편, 삼성전자 주식은 이날 '9세대 V낸드' 양산 발표 이후 소폭 상승했다. 이날 23일 11시 27분 현재 삼성전자 주가는 전일 대비 0.26% 올라 7만6300원에 거래됐다.
-
- IT/바이오
-
삼성전자, 업계 최초 '9세대 V낸드' 양산…290단 적층 구현
-
-
[신소재 신기술(35)] 혁신적인 미사일 기술, 군사 기술·컴퓨터 파괴하지만 인명 피해는 최소화
- 군사 장비나 컴퓨터를 골라서 파괴하지만 사람은 죽이지 않고 인명 피해를 최소화하는 혁신적인 미사일 '챔프(CHAMP)'가 개발됐다. 챔프(CHAMP)는 대전자 고출력 마이크로웨이브 첨단 미사일 프로젝트(Counter-Electronics High Power Microwave Advanced Missile Project)의 약자로 미 공군 연구소에서 개발한 공동 개념 기술 실증 프로그램이다. 다시 말하면 CHAMP는 일종의 고출력 전자레인지인 '고출력 마이크로파 에너지 펄스' 이용해 컴퓨터를 파괴하기 위해 제작된 미사일이다. 미국 국방 전문 매체 포스 넷(Forces net)에 따르면 CHAMP 미사일의 목적은 사망자를 발생시키지 않고 적의 군사 능력을 사실상 쓸모없게 만드는 것이다. 즉, 이 프로젝트는 적의 전자 시스템을 무력화시키는 것이 목표다. CHAMP는 미 공군 연구소(Air Force Research Laboratory)에서 처음 개발한 후 보잉의 국방 및 보안 부문 첨단 프로토타입 제작 부문인 보잉의 팬텀 웍스(Phantom Works)가 제작한 것으로 알려졌다. 이 무기에 대해서는 알려진 바가 거의 없지만 공중 발사 순항 미사일에 장착되어 B-52 폭격기에 의해 전달되는 것으로 전해져 있다. CHAMP 미사일은 적 영공에 진입하면 낮게 유지되며 특정 목표를 겨냥하여 고출력 마이크로파 에너지 펄스를 방출해 중요한 전자 장비를 비활성화한다. 이러한 고출력 마이크로파 폭발로 손상을 입히지 않고 전자 장치를 튀겨버려 순식간에 컴퓨터를 마비시킬 수 있다. 미국이 이 무기를 어디에 배치하고 있는지, 누구와 기술을 공유했는지는 확실하지 않다. 간단히 설명하자면, CHAMP는 고출력 마이크로파 방출기를 장착한 미사일을 개발하는 프로젝트다. 이 미사일은 기존의 폭발물을 사용하지 않고도 적의 전자 시스템을 교란하거나 손상시키기 위해 발사할 수 있다. 또한 무인 시스템으로 설계되어 조종사가 탑승하지 않고도 발사 및 작동할 수 있다. 이란 당국자 두 명은 이 공격이 이스파한주 인근의 군사기지 내 S-300 대공 시스템을 타격했다고 밝혔다. 뉴욕타임스가 분석한 위성 이미지에 따르면, 이스라엘의 무기는 이스파한의 제8 셰카리 공군 기지에 위치한 S-300 대공 시스템의 레이더를 타격했다. 그에 앞서 이스라엘은 지난 13일 이란의 공격에 대응하여 그보다 적은 무기를 사용해 이란의 방어망을 우회하고 무력화시킬 수 있음을 보여줬다. NYT는 이스라엘의 이번 공격에 사용된 정확한 무기 유형이 어떤 것인지 불확실하다고 밝혔다. 다만 서방 당국자 세 명과 이란 당국자 두 명은 이스라엘이 여러 드론과 적어도 하나의 공대지 미사일을 사용했다고 전했다. 이에 반해, 이란 당국자들은 이번 공격이 소형 드론에 의한 것이었다고 주장했다.
-
- 포커스온
-
[신소재 신기술(35)] 혁신적인 미사일 기술, 군사 기술·컴퓨터 파괴하지만 인명 피해는 최소화
-
-
"알데히드 인체 노출 줄이면 노화 현상 지연시켜"
- 알데히드(aldehyde)가 신체 대사의 부산물이며, 이는 조기 노화 현상과 관련돼 있다는 사실이 일본 나고야대학 연구팀에 의해 발견됐다고 과학 전문매체 사이테크데일리가 전했다. 네이처 셀 바이올로지(Nature Cell Biology)에 출판된 연구 결과는 알코올, 환경 오염, 연기나 연무 등 알데히드 유도 물질에 대한 노출을 통제함으로써 건강한 개인의 조기 노화를 방지할 수 있다고 지적한다. 조기 노화 질병에 대한 예방 가능성을 보여주고 있다. 알데히드는 사람의 건강에 해를 끼칠 수 있다. 나고야대학의 연구 결과는 알데히드의 해로운 영향에 노화도 포함하고 있음을 시사한다. 나고야대학의 연구팀은 오카 야스요시, 나카자와 유카, 시마다 마유코, 오기 토무 연구원들로 구성됐다. 오카 박사는 "DNA 손상은 노화와 관련이 있으며, 이번 연구는 알데히드에서 유발된 DNA 손상과 조기 노화 사이의 관계를 규명한 것"이라고 말했다 알데히드와 노화의 관계 연구진은 'AMeD 증후군(어린 시절 골수 부전이 시작돼 재생불량성 빈혈을 초래하고 전반적인 발달 지연, 지적 장애, 저신장으로 인한 전반적인 성장 불량을 일으키는 증세)'과 같은 조기 노화 장애를 가진 사람은 알데히드를 분해하는 ALDH2(알데히드 탈수소 효소)와 같은 효소의 활성이 불충분하기 때문에, 알데히드와 노화 사이에 연관성이 있다고 가정했다. 건강한 사람들에게 ALDH2는 알코올에 대한 신체 반응에서도 중요하다. 사람이 술을 마실 때 간은 알코올을 알데히드로 대사하여 몸에서 제거한다. ALDH2의 활성은 알데히드를 독성이 없는 물질로 전환시키는 역할을 한다. 알데히드는 DNA 및 단백질과 반응성이 높기 때문에 몸에 해롭다. 체내에서 세포 증식 및 유지에 중요한 효소를 차단하는 'DNA-단백질 연결(DPC)'을 형성해 인체의 노화를 일으킨다는 것이다. 연구팀은 알데히드에 의한 DPC 형성에 초점을 맞추어, 조기 노화 질병 환자들의 알데히드 축적과 DNA 손상 사이의 연관성을 조사했다. 이를 위해 'DPC-seq'라고 불리는 방법을 사용했다. 연구팀은 실험에서, T세포 수용체(TCR) 복합체, 근병증을 유발하는 발로신 함유 단백질인 VCP 또는 p97, 그리고 세포 내에 존재하는 단백질을 분해하는 큰 단백질 복합체인 프로테아좀이 알데히드에 의해 형성된 DPC의 제거에 관여한다는 사실을 발견했다. 이는 AMeD 증후군 증상을 보인 실험 쥐를 통해 확인됐다. 요컨대, 알데히드를 줄이면 인체 노화도 완화된다는 것이다. "조기 노화 질환 치료 가능성 제시" 오기 교수는 "이번 연구에서 DNA 손상이 빠르게 치유되는 메커니즘을 규명함으로써 유전적 조기 노화의 원인 중 일부를 밝혀냈다"며 의미를 부여했다. 오카 박사도 "연구 결과는 조기 노화 질환의 기본 메커니즘을 이해하기 위한 새로운 길을 열어주고 치료 가능성을 제시하고 있다"고 말했다. 그는 "DNA 손상과 노화에 대한 알데히드의 역할을 밝혀냄으로써, 새로운 치료법 개발의 길을 닦았다"고 평가했다. 지금까지는 AMeD 증후군, 코케인 증후군(거동 불편, 왜소증, 소두증, 시력 감퇴, 광과민성, 조숙증 등을 특징으로 하는 선천적 증후군)의 원인을 완전히 파악하지 못해 치료제 개발이 진척되지 못했다. 이번 연구 결과는 이런 증후군이 세포 내에서 생성된 알데히드에서 유래된 DPC와 관련이 있음을 시사하며, 알데히드를 제거하는 방법으로 이들 증후군의 치료약을 개발할 수 있을 가능성이 열렸다는 기대다. 연구팀은 알데히드로 인한 DNA 손상이 건강한 개인의 노화 과정에도 영향을 미칠 수 있다고 밝혔다. 알데히드를 인체 노화에 기여하는 물질로 지적함으로써, 환경 요인과 세포 노화 사이의 연관성도 밝히고 있다. 이는 인간의 건강과 수명에 중요한 영향을 미칠 수 있다는 지적이다.
-
- 생활경제
-
"알데히드 인체 노출 줄이면 노화 현상 지연시켜"
-
-
미세 플라스틱, 인간 소변서도 발견⋯자궁내막증과 연관 시사
- 플라스틱이 인체에 미치는 다양한 연구가 진행되는 가운데. 인간의 소변에서 매우 강한 독성을 지닌 미세 플라스틱이 검출됐다. 과학 전문매체 더 쿨다운은 과학자들이 건강한 참가자와 자궁 내막 조직이 자궁 밖에서 자라는 만성 질환인 자궁내막증 환자의 소변 샘플에서 모든 종류의 미세한 입자(미세 플라스틱입자)를 검출했다고 지난 10일(현지시간) 보도했다. 이 연구는 4월 1일 '생태독성학 및 환경 안전 저널(Ecotoxicology and Environmental Safety)'에 게재됐다. 연궈 결과 두 집단 간의 미세 플라스틱 수치는 큰 차이가 없었지만, 검출된 미세 플라스틱의 종류는 달랐다. 건강한 사람의 경우 폴리에틸렌(27%)이 주를 이루었고, 자궁내막증 환자는 폴리테트라플루오로에틸렌(PTFE, 59%)이 가장 많았다. 또한 건강한 사람의 검체에서는 폴리스티렌(16%), 레진(12%), 폴리프로필렌(12%) 등이 검출됐다. 연구에 따르면 폴리에틸렌은 자궁내막증 참가자의 샘플에서 발견된 미세 플라스틱의 16%를 차지했다. 자궁내막증 환자의 금속 카테터에서 두 번째 샘플 세트를 채취한 결과, 미세 플라스틱의 크기는 약 32 마이크로미터에서 22 마이크로미터로 다른 검체보다 상당히 작았다. 일반적인 미세 플라스틱 크기는 평균 177 x 117 마이크로미터이다. 1마이크로미터는 0.001밀리미터이다. 연구팀은 "미세 플라스틱은 모든 환경에서 발견되며 인체 음식 사슬에도 존재하고 최근 여러 인체 조직에서 검출됐다"고 밝혔다. 자궁내막증은 알려진 원인이 없으며, 과학자들은 미세 플라스틱 수치가 질병과 관련이 있는지, 염증을 유발하거나 화학 물질을 체내로 침출시키는지 여부를 조사했다. 연구팀은 "미세 플라스틱이 신체 내 이동 경로와 이러한 입자의 크기가 신장 사구체 여과 시스템을 통과하기에는 너무 큰 것으로 보이지만 어떻게 이 기관을 통과하거나 우회했는지, 그리고 이러한 미세 플라스틱 존재로 인한 잠재적인 생물학적 영향에 대한 중요한 새로운 질문을 제기한다"라고 밝혔다. 연구팀은 "이는 미세플라스틱의 체내 이동과 신장 사구체 여과 시스템을 통과하거나 우회하는 방법, 그리고 이러한 장기를 통과하기에는 너무 커 보이는 크기로 인해 잠재적인 생물학적 영향과 관련하여 중요한 새로운 의문을 제기한다"고 말했다. 또한 연구팀은 미세 플라스틱이 인체 내에서 어떻게 이동하는지 살펴본 결과, 미세 플라스틱의 크기와 모양도 문제라고 말했다. 또한 오염 물질이 "이론적으로는 신장의 작은 모세혈관을 따라 방광에 도달하기에는 너무 크다"고 지적했다. 이 논문은 미세 플라스틱이 인간에게 미치는 영향은 알려지지 않았지만 "폴리머 특성 분석과 절차적 공백을 설명하는 인간 소변의 미세 플라스틱 오염에 대한 최초의 증거"를 제공했다고 밝혔다. 연구팀은 "그러나 높은 수준의 미세 플라스틱과 염증성 질환, 특히 장 질환 간의 관련성이 나타나고 있다"고 말했다. 또한 "이전 세포 기반 노출 실험에서 불규칙한 모양의 미세 플라스틱이 특히 독성이 강한 것으로 나타났다"면서 "'염증 및 산화 스트레스 유형의 영향'이 자궁 내막증 환자에게도 유사하게 영향을 미칠 수 있다"고 지적했다. 미세 플라스틱과 더 작은 나노 플라스틱은 플라스틱으로 만든 물병이나 식품 용기 등이 시간이 지남에 따라 분해될 때 생성된다. 미세 플라스틱의 양을 줄이는 가장 좋은 방법은 플라스틱 소비를 줄이는 것이다. 예를 들어 영국과 프랑스에서는 대부분의 패스트푸드와 테이크아웃 음식점에서 플라스틱 식기류의 사용을 금지했다. 인도는 2022년에 일회용 플라스틱 사용을 금지했다. 워싱턴 포스트는 다른 연구 결과를 인용하여 미세 플라스틱이 암과 알츠하이머병 위험을 증가시키고 출산 문제를 유발할 수 있다고 보도했다. 또한 이러한 영향은 나이가 들면서 더욱 악화될 수도 있다. 또다른 연구에 따르면 미세 플라스틱은 심장마비와 뇌졸중 발병에도 연관되어 있다. 세계자연보호연맹(IUCN)에 따르면 매년 약 4억톤 이상의 플라스틱이 생산되고 있다. 프랑스 파리의 에펠탑 무게는 약 1만톤이다. 매년 에[펩탑 4만 개 이상에 해당되는 플라스틱이 생산되고 있는 셈이다. 그러나 전 세계적으로 재활용되는 플라스틱은 약 9%에 불과하다. 매일 더 많은 플라스틱이 생산되고 있기 때문에 기업이 플라스틱에 대한 의존도를 낮추는 것이 중요하다. 소비자는 유리나 스테인리스 재질로 된 재사용 가능한 물병을 구입하고 플라스틱을 사용하지 않는 브랜드를 지지하는 등의 노력을 기울일 수 있다. 또한 기술 개발로 식수에서 미세 플라스틱을 제거할 수 있다. '예방이 치료보다 낫다'는 말이 있다. 플라스틱을 줄이기 위한 이러한 작은 실천이 모여 더 안전하고 깨끗한 미래를 만들 수 있다.
-
- 생활경제
-
미세 플라스틱, 인간 소변서도 발견⋯자궁내막증과 연관 시사
-
-
임신 중 타이레놀 복용, "자폐증이나 지적 장애와 관련 없어"
- 타이레놀은 해열진통제로 널리 복용되는 유명 브랜드다. 타이레놀의 주요 성분은 아세트아미노펜이다. 이 약물은 효과가 뚜렷하지만, 이로 인한 부작용에 대한 논란도 많다. 임신 중 타이레놀의 활성 성분인 아세트아미노펜을 복용해도 괜찮을까? 최신 연구에 따르면 임신 중 아세트아미노펜 복용은 어린이의 자폐증, ADHD(주의력 결핍 과잉행동장애) 또는 지적 장애 위험 증가와는 관련이 없다는 결과가 나왔다고 CNN이 보도했다. 이 연구는 JAMA(The Journal of the American Medical Association) 저널 최신호에 발표됐다. 새로운 연구는 임신 중 아세트아미노펜 사용이 자폐증, ADHD 및 지적 장애의 위험을 증가시킨다는 최근 연구 논문 및 주장을 반박한 것으로 의미가 크다는 평가다. 이 연구는 스웨덴 카롤린스카 연구소(Karolinska Institute)와 드렉셀 대학교(Drexel University)가 수행한 것으로, 1995~2019년 사이 스웨덴에서 태어난 약 250만 명의 어린이의 출생 전 및 의료 기록을 분석한 것이다. 임신 중 아세트아미노펜을 복용한 상황에서 태어난 어린이와 노출되지 않은 어린이를 비교한 통계 분석 결과, 노출된 그룹에서 자폐증, ADHD 및 지적 장애의 위험이 ‘약간’ 증가한 것으로 나타났다. 그러나 친부모가 동일한 형제자매 분석에서는 임신 중 아세트아미노펜 사용이 관련된 자폐증, ADHD 또는 지적 장애의 위험을 증가시키는 증거는 나타나지 않았다. 연구는 형제자매가 유전적, 환경적 요인을 공유하기 때문에 임상시험에서 잘 못된 결과를 도출할 가능성이 있는 혼란스러운 변수 중 일부가 제거된다고 밝혔다. 듀크대학교 소아과 에릭 브레너 박사는 친부모가 동일한 형제 대조군은 같은 공간에서 성장할 가능성이 높으며, 비슷한 식습관을 갖고 유사한 환경에서 생활하므로, 연구 과정에서 환경 요인을 더 잘 제어할 수 있다고 밝힌다. 브레너는 특히 이번 연구가 분석 대상 참가자 수가 많다는 점, 형제자매 분석을 같이 수행했다는 점 등을 강점으로 꼽았다. 브레너는 이 연구가 아세트아미노펜 사용과 자폐증 및 ADHD를 포함한 신경발달 장애 사이의 연관성을 발견하지 못한 ‘매우 잘 설계된 연구’라고 평가하고, “모든 약물은 항상 산부인과 의사와 상담해 신중하게 사용해야 하지만, 아세트아미노펜은 안전한 것으로 보인다”고 말했다. 미국 식품의약국(FDA)과 유럽 의약청(EMA: European Medicines Agency)은 아세트아미노펜이 임신 중에 위험을 거의 주지 않는다고 보지만, 국제 과학자 및 의사 그룹은 지난 2021년 예방 조치를 촉구하며, 임신한 사람들은 아세트아미노펜을 사용하지 않는 것이 좋다고 권고한 바 있다. 임신 중 아세트아미노펜 사용이 ADHD 및 기타 신경발달 장애의 위험 증가와 관련이 있다는 수많은 의학적 연구가 논문에 명시되어 있다는 것이다. 이는 종래와 상반된 주장으로 의학계에 혼란과 논란을 불러 일으켰다. 이로 인해 잘못된 결과 도출도 종종 발생했다. 예컨대, 유전성이 강한 신경발달 장애가 있는 부모는 임신 중에 아세트아미노펜과 같은 진통제를 사용할 가능성이 더 높고, 이런 관계로 인해 임신 중에 아세트아미노펜에 노출된 어린이는 신경발달 장애가 발생할 가능성이 더 높은 것처럼 보일 수 있지만, 실제로 위험 증가는 유전적 요인으로 인한 것으로 보고 있다. 또한 형제자매 분석 연구에서는 아스피린, 기타 NSAID (비스테로이드성 항염증제) 및 아편유사제와 같은 다른 진통제가 신경발달 장애의 위험 증가와 관련이 없다는 사실도 발견했다. 각각의 진통제는 선천적 결함과 관련이 있었다. 이번 연구에서 아스피린 사용은 오히려 신경발달 장애의 위험을 줄이는 것과 관련이 있었다. 다만 이 결과는 초기 연구이며, 더 많은 분석이 필요하다는 지적이다. 브레너는 현재 임신 중 일상적 아스피린 사용은 권장되지 않는다며, 산모들은 산부인과 의사와 아스피린 사용에 관해 논의하는 것이 바람직하다고 말했다. FDA는 아스피린과 이부프로펜을 포함한 NSAI(비스테로이드성 항염증제)를 임신 3기에는 사용하지 말 것을 권장하고 있다. 이러한 약물은 태아의 혈관을 조기에 닫을 우려가 있기 때문이다. 연구에 참여하지 않은 UCLA 얄다 아프샤르 산부인과 교수는 임신 중 처방약과 일반의약품의 사용 또는 중단에 대해 의료 전문가와 상담할 것을 권고하며, 이 연구는 건강을 최적화하기 위해 아세트아미노펜을 복용해야 하는 임산부에게 도움이 될 것이라고 부연했다.
-
- IT/바이오
-
임신 중 타이레놀 복용, "자폐증이나 지적 장애와 관련 없어"
-
-
지하수 30% 오염, 분해되지 않는 독성 화학물질 기준치 이상 발견
- 과불화화합물(PFAS)이라고 불리는 독성 화학 물질이 국제 규제기관이 허용하는 기준치보다 훨씬 높은 수준으로 전 세계 지표수와 지하수에서 발견되고 있다는 새로운 연구 결과가 나와 주목된다고 CNN이 보도했다. PFAS는 자연 상태에서는 영원히 분해되지 않는 화합물로 Perfluoroalkyl and polyfluoroalkyl substances(퍼플루오로알킬 및 폴리플루오로알킬 물질)의 약자다. 지난 1946년 듀폰이 테플론이라는 이름으로 처음 발표했으며 자연에서 분해되지 않고 결국 인체에 흡수되기 때문에 심각성을 더한다. PFAS는 자연 환경에서 완전히 분해되지 못하기 때문에 '영원한 화학물질'이라고 불린다. 연구에 따르면 오염원이 알려지지 않은 지역에서도 지하수 시료의 31%가 미국 환경보호청이 2023년 3월에 제시한 기준치를 초과했고, 거의 70%가 캐나다 보건부가 정한 기준치를 초과했다. 지하수 시료 31% 기준치 초과 조만간 최종 확정될 것으로 예상되는 미 환경보호국(EPA) 안은 과불화옥탄술폰산(PFOS)과 과불화옥탄산(PFOA) 등 2개의 대표적인 PFAS에 대한 구체적인 한도를 1조분의 4로 설정하는 한편, 이를 대체하기 위해 업계에서 개발한 4가지 화학물질의 혼합물에 대한 새로운 제한도 설정했다. EPA에 따르면 PFOA와 PFOS와 같이 가장 많이 연구된 PFAS 중 일부는 암, 비만, 갑상선 질환, 높은 콜레스테롤, 생식력 감소, 간 손상 및 호르몬 파괴와 같은 심각한 건강 문제를 일으킨다. 미국 국립과학기술원이 2022년 7월 발표한 보고서에 따르면 PFAS에 노출되면 성인과 어린이 모두에서 영유아 및 태아 성장 감소와 백신에 대한 항체 반응 감소가 발생했다. 보고서에 따르면 임산부, 어린이 및 노인과 같은 취약계층에게 일부 새로운 PFAS에서 동일한 건강 영향이 발견되었다. PFAS 및 기타 화학 물질에 대한 노출을 감시하는 소비자 단체 '환경작업그룹'의 과학자인 데이비드 앤드루스는 "이번 보고서는 화학 정책이 실패했다는 점을 강조하고 있으며, PFAS가 전 세계 모든 곳의 물을 오염시킬 정도로 광범위하게 노출되고 있음을 입증하고 있다는 점에서 의미가 크다"고 말했다 . 북극이나 에베레스트에서도 발견 앤드류스는 "이 독성 화학물질은 북극, 에베레스트 산 비탈과 같은 외딴 지역은 물론, 펭귄, 북극곰, 고래, 바다표범 등 다양한 생물종에서 발견됐다"며 "이 화학물질은 제조업체에 의해 방출되고 토양, 공기, 물 등으로 다양하게 흡수되고 퍼지기 때문에 지구촌 어디에나 있을 수밖에 없다”고 강조했다. 지금까지 이루어진 대부분의 PFAS 샘플링이 선진국과 연구원이 밀집된 지역에서 이루어졌기 때문에, 분석 지역을 넓힌다면 훨씬 많은 노출이 드러날 것“이라고 덧붙였다. 미국 국립과학원, 공학원, 의학원의 다른 보고서에 따르면, 미국인의 98%의 혈액에서 다양한 PFAS 화학물질이 검출되었고, 이 물질은 신체의 다른 기관에 수년간 보관될 수도 있다. 그러나 인체 흡수원 중에서 식수는 노출의 약 20%에 불과할 수 있으며, 가장 심각한 원인은 음식, 먼지 및 기타 요인에서 발생한다. 이는 PFAS가 음식 포장지를 비롯한 식품 포장을 포함, 수천 개의 소비자 제품에서 수십 년 동안 사용되었기 때문이다. PFAS는 카펫, 의류 및 가구 등이 얼룩, 물 및 기름에 손상되지 않도록 강화하는 데도 쓰인다. 또는 끈적이지 않는 조리기구, 휴대폰, 상업용 항공기 및 배기가스가 소형 차량 등도 용도에 포함된다. 각계의 우려와 과학자 및 시민단체의 노력으로 2008년 제조업체들은 PFOA와 PFOS의 사용을 단계적으로 중단하겠다고 약속했다. 그러나 독성물질 및 질병 등록기관은 웹사이트에서 "PFOS와 PFOA가 폐지되고 다른 물질로 교체돼도 다른 PFAS에 노출될 수 있다"고 경고한다. 또한 EPA가 2023년 6월 발표한 건강 경보에 따르면 특정 PFAS 화학 물질은 과학자들이 원래 생각했던 것보다 수천 배 낮은 수준으로도 훨씬 더 인간의 건강에 치명적이라는 사실이 드러났다. '네이처 지오사이언스' 저널에 발표된 이 연구는 2004년 이후 전 세계에서 수집된 4만 5000개 이상의 물 샘플에서 사용 가능한 데이터를 수집하고 분석한 결과다. 연구팀을 이끈 시드니 뉴사우스웨일스대 데니스 오코넬 교수는 "생명을 구하는 화재 진압에 쓰이는 엄청난 양의 거품(폼), 매립지, PFAS를 사용하는 제조업, 폐수처리장(하수처리장) 등이 모두 PFAS의 원천”이라고 지적한다. 역삼투압 필터, PFAS 여과에 효과 PFAS는 종류만도 1만 4000개 이상에 달한다. 그러나 검사받는 것은 그 중 극히 일부에 불과하다. 이는 오염의 정도와 그에 따른 인간의 건강에 대한 해악이 현재 알려진 것보다 훨씬 더 광범위할 수 있다는 또 다른 시사점이다. 더 많은 PFAS 검사가 이루어져야 한다는 주장이 제기되는 이유이기도 하다. 주요 도시의 처리장에서는 대부분 PFAS를 여과하고 있다. 새로운 EPA 가이드라인으로 인해 앞으로 3년 이내에 더 많은 처리장이 PFAS를 여과해야 한다. 그러나 미국 지질조사국에 따르면 미국 인구의 약 15%, 즉 4300만 명 이상의 인구가 우물물을 사용하고 있으며, 이는 연방정부의 규제를 받지 않는다. 소비자들은 수도꼭지에 사용할 물 필터를 시중에서 구입해 오염 노출을 피할 수 있다. 정부는 권장 필터 목록도 게시하고 있다. 그 중 PFAS에 가장 효과적인 물 필터는 역삼투압 필터다. 이 필터는 약 200달러로 가격이 비싼 편이다. 역삼투압 필터는 다양한 필터를 통해 물을 강제로 통과시킴으로써 용해된 고체를 포함해 다양한 오염 물질을 제거할 수 있다. 입상 활성탄 필터는 더 일반적이고 비용이 적게 들지만 PFAS에 효과적이지는 않다는 평가다.
-
- IT/바이오
-
지하수 30% 오염, 분해되지 않는 독성 화학물질 기준치 이상 발견