검색
-
-
UNIST, 실시간 변형 가능 메타 물질 개발
- 울산과학기술원(UNIST) 연구진이 실시간으로 모양과 성질을 바꿀 수 있는 물질을 개발했다. 5일 UNIST 발표에 따르면, 신소재공학과 김지윤 교수와 제1저자 최준규 연구원 등 연구팀은 세계 최초로 실시간으로 물질의 모양과 특성을 조절할 수 있는 메타 물질을 개발했다. 기존 메타 물질은 설계된 모양과 특성을 바꿀 수 없거나 제한적으로만 변화할 수 있었지만, 이번 연구에서 개발된 메타 물질은 실시간으로 적재적소에 사용할 수 있다는 점이 특징이다. 메타 물질은 자연에 존재하는 물질과는 달리 특별한 물리적 특성을 가지도록 설계된 인공 물질이다. 예를 들어, 젤리와 같은 일반적인 물질은 세로 방향으로 누르면 가로가 늘어나지만, 메타 물질은 세로 방향으로 눌러도 가로가 줄어들 수 있다. 이러한 특성은 건축, 항공, 로봇 등 다양한 분야에서 응용될 수 있다. 다시 말하면, '메타 물질'은 일반적인 물질과는 다르게 극미세한 구조나 특수한 물성을 가진 물질을 지칭하는 용어다. 이러한 물질은 전자파 등의 에너지를 특별한 방식으로 상호 작용하거나 제어할 수 있는 특성을 갖고 있다. 최근의 연구에서는 메타 물질을 사용하여 광학 장치, 플렉서블 전자기기, 에너지 효율적인 소자 등의 다양한 응용 분야에서 혁신적인 기술이 개발되고 있다. 메타 물질은 주로 나노 기술이나 메타물질 공학을 통해 디자인되며, 다양한 형태와 특성을 갖추고 있다. UINST 연구팀은 메타 물질의 기본 단위 구조인 메타 픽셀에 액체 또는 고체로 변하게 만드는 녹는 점이 낮은 합금을 융합했다. 이어 융합된 합금의 상태가 변화하는 것을 픽셀 단위로 조절하면서 메타 물질의 다양한 성질을 구현했다. 또한, 융합된 합금을 활용하여 디지털 패턴의 정보(0=액체, 1=고체)를 표현하며, 사용자는 실시간으로 디지털 패턴 명령어를 입력할 수 있도록 설계됐다. 입력된 디지털 패턴을 통해 메타 물질의 모양, 강도, 변형 비율 등이 실시간으로 조절된다. 연구팀은 개발한 메타 물질의 활용하여 '적응형 충격 에너지 흡수 물질'을 시연했다. 이 물질은 예측하지 못한 상황에서 발생하는 충격에 따라 성질을 적절히 변형하고, 보호하는 대상에 전달되는 힘을 최소화해 손상이나 부상의 가능성을 줄였다. 연구팀은 또 메타 물질을 원하는 장소와 시간에 힘을 전달할 수 있는 '힘 전달 재료'로 성공적으로 활용했다. 김지윤 교수는 "개발한 메타 물질은 기존의 다양한 디지털 기술과 기기뿐만 아니라 딥러닝 등 인공지능 기술과도 원활하게 호환될 수 있다"며 "스스로 학습하고 주변 환경에 적응할 수 있는 혁신적인 신소재의 첫걸음이 될 것"이라고 말했다. 연구 결과는 국제 학술지 '어드밴스드 머티리얼스'에 표지 논문으로 선정돼 지난달 25일 정식 출판됐다. 이번 연구는 과학기술정보통신부 한국연구재단, 한국재료연구원 지원을 받았다.
-
- IT/바이오
-
UNIST, 실시간 변형 가능 메타 물질 개발
-
-
커피 찌꺼기, 모기 퇴치·친환경 활용 꿀팁
- 커피 찌꺼기는 모기 퇴치뿐만 아니라 주방 세제 등 다양한 용도로 사용할 수 있다. 갓 내린 커피의 향은 많은 사람들에게 안락함과 에너지를 전하는 신호로 여겨진다. 뿐만 아니라 사용한 커피 찌꺼기를 냉장고나 신발장에 넣으면 냄새와 습도를 흡수해 준다. 더불어 은은한 커피 향이 퍼져서 쾌적한 분위기를 조성할 수 있다. 미국 온라인 매체 하우스다이제스트(housedigest)는 커피 찌꺼기를 차고에서 활용하는 것이 놀라울 정도로 유용한 방법이 될 수 있다고 소개했다. 이 매체는 커피 찌꺼기가 악취 제거에 도움을 주는 것 뿐만 아니라 차고에 모기가 모이는 것을 방지하는 데도 효과적이라고 설명했다. 차고는 배기 가스, 잔류 페인트, 자동차 냄새 등으로 인해 퀴퀴하거나 불쾌한 냄새가 나는 공간일 수 있다. 이때 커피 찌꺼기는 자연의 방향제 역할을 하여 악취를 흡수하고 중화시킨다. 찌꺼기의 다공성 구조는 스펀지처럼 작용하여 원치 않는 냄새를 흡수하고 중화시킨다는 것. 또한 카페인에서 나오는 질소는 불쾌한 냄새를 흡수하는 데 도움이 된다. 더 나은 향기 분배를 위해서는 통풍구 아래에 커피 찌꺼기를 놓으면 좋다. 모기 퇴치 효과 커피 찌꺼기가 모기 퇴치에 효과적일 수 있다는 의견이 있다. 강한 향이 있는 커피 찌꺼기는 모기들이 싫어하는 냄새로 알려져 있다. 커피 찌꺼기 특유의 톡 쏘는 향이 모기를 막아줄 수 있다는 증거가 있다. 카페인, 산, 그리고 다른 화합물들의 조합은 모기가 싫어하는 냄새를 형성해 커피 찌꺼기가 있는 장소로 모기가 못 오게 만들거나, 모기가 해당 장소에 알을 낳을 가능성을 줄일 수 있다. 이러한 특성은 또한 차고에서 민달팽이, 말벌, 벼룩, 그리고 개미를 퇴치하는 데 도움을 줄 수 있다. 커피 찌꺼기가 모기 퇴치에 효과적인 또 다른 방법은 사람의 냄새를 가리는 특성이 있다. 모기는 인간이 내뿜는 특정 냄새에 끌리며, 커피 찌꺼기는 이러한 냄새를 가리는 데 도움이 되어 모기가 사람을 찾는 것을 더 어렵게 만들 수 있다. 중요한 점은 '신선도' 차고에서 커피 찌꺼기를 사용할 때 염두에 두어야 할 몇 가지 사항이 있다. 그 중에서도 가장 중요한 것은 신선함이다. 최대의 효과를 얻기 위해서는 최근에 양조한 찌꺼기를 선택해 건조해야 한다. 오래된 것이나 축축한 커피 찌꺼기는 효능을 잃고 냄새 흡수나 해충 억제력이 거의 없다. 최악의 경우 곰팡이 포자가 자라도록 조장할 수 있다. 갓 양조하고 말린 커피 찌꺼기를 사용하거나 모기를 멀리하기 위해 찌꺼기를 태우는 것이 더 좋다. 더 큰 효과를 얻기 위해 팬에 넣고 가볍게 구워 더 많은 향을 내고, 그 다음에 입구와 안뜰 주변에 커피 찌꺼기 그릇을 놓아두면 곤충이 들어오는 것을 막을 수 있다. 커피 찌꺼기 스프레이를 만들 수도 있다. 사용한 커피 찌꺼기를 물에 넣고 끓여서 혼합물을 식힌 다음 액체를 스프레이 병에 걸러낸다. 일시적인 보호를 위해 피부나 옷에 뿌릴 수 있다. 커피 찌꺼기 스프레이를 만들 수도 있다. 사용한 커피 찌꺼기를 물에 넣고 끓여서 혼합물을 식힌 다음 액체만 걸러 스프레이 병에 넣는다. 이를 피부나 옷에 뿌리면 일시적으로 보호 효과를 낸다. 사용한 찌꺼기는 퇴비통이나 일반 쓰레기통에 버리는 것이 좋다. 배수구에 버리면 배수관을 막을 수 있어서 주의해야 한다. 이외에도 커피 찌꺼기는 훌륭한 천연 비료로 활용될 수 있다. 커피 찌꺼기에는 식물 성장에 필요한 질소, 칼륨, 인 등의 영양분이 풍부하며, 토양에 섞어주면 토양의 질을 개선하고 식물의 성장을 돕는 데 기여할 수 있다. 또한 세안 시에 사용하면 스크럽 효과를 주어 피부의 노폐물을 제거하고 혈액 순환을 촉진하는 데 도움이 된다. 특히 주방에서 설거지를 위한 세제로 사용할 때 거친 질감이 기름과 음식물 찌꺼기를 효과적으로 제거해 준다.
-
- 생활경제
-
커피 찌꺼기, 모기 퇴치·친환경 활용 꿀팁
-
-
美 MIT, 액체 금속 이용한 고속 3D 프린팅 기술 개발
- 미국 매사추세츠 공과대학(MIT) 연구진이 액체 금속을 사용해 대형 알루미늄 부품을 몇 분 만에 제작할 수 있는 새로운 3D 프린팅 기술을 개발했다고 미국 기술 전문 매체 엔가젯(Engadget)이 최근 보도했다. 액체 금속을 활용한 이 3D 프린팅 기술은 기존 금속 3D 프린팅 기술에 비해 상당한 시간 단축이 가능하며, 대형 알루미늄 부품을 빠르게 제작할 수 있다. 이 기술은 이미 테이블 다리와 의자 프레임 등 가구 부품 제작에 사용되고 있다. '액체 금속 프린팅(Liquid Metal Printing, LMP)'으로 불리는 이 기술은 용융된 알루미늄을 미리 정의된 경로를 따라 작은 유리 비드 층 위로 분사하는 방식으로 작동한다. 이 유리 비드들은 알루미늄이 빠르게 굳어지며 3D 구조를 형성하도록 한다. 연구팀은 이 기술이 기존 금속 제조 공정보다 최소 10배 더 빠르다고 밝혔다. 그러나, 해상도가 낮은 한계로 인해 복잡한 형상의 부품 제작보다는 저해상도의 부품 제작에 더 적합하다는 설명이다. 연구팀은 저해상도 한계가 미세한 디테일이 필수적이지 않은 더 큰 구조물의 구성 요소 제작에는 심각한 문제가 되지 않을 것이라고 말했다. 이러한 구성 요소에는 가구 부품뿐만 아니라 건설 및 산업 디자인 부품도 포함된다. 예를 들어, 액체 금속 프린팅 기술을 통해 테이블 다리 등과 같은 가구 부품을 몇 분 만에 제작할 수 있다. 이와 함께, 건물이나 공장 구조에 필요한 대형 알루미늄 부품의 제작도 가능하다. 이 기술이 아직 초기 단계임에도 불구하고, 금속 제조 분야에서 혁신적인 가능성을 제시하고 있다는 평가를 받고 있다. 액체 금속 프린팅의 한계 액체 금속 프린팅으로 제작된 부품은 해상도가 낮음에도 불구하고 높은 내구성을 지니며 추가 가공을 견딜 수 있는 것으로 나타났다. 연구팀은 이 기술로 제작된 제품이 기존의 와이어 아크 적층 제조 방식으로 제작된 제품보다 내구성이 뛰어나다고 보고했다. 또한, 연구팀은 빠른 속도와 높은 해상도가 동시에 필요한 작업에 대해 액체 금속 프린팅 기술을 다른 기술과 결합하는 것을 권장했다. 이 기술은 알루미늄 외에도 다양한 금속에 적용 가능하다. 연구팀은 알루미늄을 선택한 주된 이유로 건축 분야에서의 인기와 재활용 용이성을 들었다. 연구팀은 가열 과정의 일관성을 향상시키고, 금속의 고착 문제를 방지하며, 용융 금속의 흐름을 더 정밀하게 제어하기 위해 이 기술을 지속적으로 개선하는 작업을 계획하고 있다. 특히, 더 큰 노즐 직경으로 인해 불규칙한 인쇄를 일으키는 문제를 해결하는 것도 연구 과제 중 하나다. 연구팀은 이 기술이 금속 제조 분야에서 중대한 변화를 일으킬 수 있는 '게임 체인저'가 될 것으로 기대하고 있다. 최근 몇 년 동안 3D 프린팅 기술은 눈에 띄게 발전했다. 과학자들은 신체에 삽입되어 손상된 조직을 복구하고 청소할 수 있는 작은 3D 프린터를 개발했다. 또한 인간 심장의 작동 가능한 부분을 3D 프린팅하는 데 성공했다. 액체 금속 인쇄 기술이 상용화되면 기존 금속 제조 방식보다 부품을 훨씬 빠르고 효율적으로 제작할 수 있는 가능성을 열게 된다. 이는 제조업체의 생산성을 크게 향상시키고, 제품 비용을 절감하는 데 기여할 것으로 예상된다. 한국의 액체 금속 3D 프린팅 현황 그렇다면 한국의 액체 금속 3D 프린팅 기술은 어느 단계까지 왔을까. 국내 액체 금속 3D 프린팅 기술에 대한대표적인 연구기관으로는 한국과학기술원(KAIST), 한국생산기술연구원(KITECH), 한국전자통신연구원(ETRI) 등이 있다. KAIST에서는 액체 금속을 활용한 3D 프린팅용 합금 개발에 주력하고 있다. 이 합금은 기존의 금속 프린팅 합금에 비해 내구성과 인장 강도가 뛰어난 것으로 평가되어, 건설, 자동차, 항공우주 등의 분야에서의 응용 가능성이 기대된다. KITECH에서는 액체 금속 프린팅 기술을 통해 자동차 부품 제작에 관한 연구를 수행 중이다. 이 연구는 자동차 부품의 제조 공정 단축과 품질 개선을 목표로 하고 있다. 한국전자통신연구원의 경우, 인공지능(AI)을 적용한 3D 프린팅 시스템 개발에 착수했다. 이 시스템은 AI를 활용해 3D 프린팅 공정을 최적화하고, 부품 제조의 효율성 및 품질을 향상시키는 데 중점을 두고 있다. 이러한 연구 개발 노력을 바탕으로, 한국에서의 액체 금속 인쇄 기술 상용화 가능성이 점점 더 커지고 있다.
-
- 산업
-
美 MIT, 액체 금속 이용한 고속 3D 프린팅 기술 개발
-
-
우주에서 쏟아지는 다이아몬드 비⋯자기장 형성 열쇠?
- 다이아몬드는 지구에서 가장 귀중한 보석 중 하나이지만, 천왕성과 해왕성과 같은 거대 얼음 행성에서는 대기 중에서 비처럼 쏟아져 내릴 것으로 예상된다는 가설이 제기됐다. 과학기술 전문 매체 ifl사이언스와 엔디티비(NDTV)에 따르면 전통적으로 다이아몬드 형성에는 매우 높은 온도와 압력이 필요하다고 여겨져 왔지만, 최근의 연구는 다이아몬드가 지구보다 낮은 온도와 압력 조건에서도 형성될 수 있음을 시사한다. 최근 미국 SLAC 국립가속기연구소와 독일의 DESY 연구소, 헬름홀츠 센터 드레스덴-로젠도르프와 같은 국제 연구팀이 천왕성과 해왕성의 대기권과 유사한 조건을 실험실에서 재현하여 다이아몬드 생성 실험을 진행했다. 연구팀은 폴리스티렌 필름에 다이아몬드 모루를 사용하여 2200℃(화씨 3992도) 이상의 온도와 지구의 해수면 대기압의 약 100만 배에 해당하는 압력을 가했다. 이 실험 조건은 천왕성과 해왕성의 대기권 깊은 곳에서 발견될 수 있는 조건과 유사한 것으로, 과학자들은 이를 통해 다이아몬드가 형성되는 과정을 연구했다. 이후, 고에너지 X선을 사용하여 폴리스티렌 필름을 가열했다. 이 X선은 필름 내의 탄소 원자를 활성화시켜 다이아몬드로 변환하는 데 중요한 역할을 했다. 이 과정을 통해 연구팀은 폴리스티렌 필름에서 다이아몬드를 형성하는 데 성공했다. 이 다이아몬드는 천왕성과 해왕성의 대기권에서 형성되는 다이아몬드와 같은 구조와 특성을 가지고 있는 것으로 밝혀졌다. 이 연구 결과는 전통적인 다이아몬드 형성에 대한 이해를 바꾸는 중요한 발견이다. 기존에는 다이아몬드 형성에는 매우 높은 온도와 압력이 필요하다고 여겨졌었다. 그러나 이번 연구는 다이아몬드가 더 낮은 온도와 압력에서도 형성될 수 있음을 보여줬다. 이는 천왕성이나 해왕성과 같은 거대한 얼음 행성의 대기권에서 다이아몬드가 어떻게 형성되는지에 대한 새로운 통찰을 제공하며, 천문학과 우주 과학 분야에 중요한 영향을 미칠 것으로 기대된다. 다이아몬드 비가 형성되는 이유 천왕성과 해왕성의 대기권은 지구의 대기권보다 훨씬 깊고 뜨겁다. 이러한 조건에서는 수소, 헬륨, 메탄, 아르곤 등의 기체가 높은 압력과 온도에 의해 액체 상태로 변환된다. 이 액체 상태의 기체들은 천왕성과 해왕성의 내부에서 바깥쪽으로 이동하면서 점차 식게 된다. 이 과정에서 액체 상태의 기체들은 다시 고체 상태로 변하게 되는데, 이때 탄소 원자들이 모여 다이아몬드 결정을 형성한다. 이렇게 형성된 다이아몬드는 대기 중에서 무거운 물체처럼 가라앉게 되며, 이를 '다이아몬드 비'라고 부른다. 다이아몬드 비는 지구에서는 발생하지 않는다. 지구의 대기권은 천왕성이나 해왕성 대기권보다 훨씬 얇고 차가워 이러한 과정이 일어나지 않기 때문이다. 다이아몬드 비와 자기장 형성 연구팀의 수석 저자인 멍고 프로스트 박사는 "다이아몬드 비는 천왕성과 해왕성의 복잡한 자기장의 형성에 영향을 미쳤을 가능성이 있다"고 말했다. 프로스트 박사의 연구에 따르면, 천왕성과 해왕성의 대기권에는 다이아몬드가 풍부하게 존재할 것으로 추정된다. 다이아몬드는 전기를 잘 전달하는 성질을 가지고 있기 때문에, 이 물질이 대기권을 통해 이동하며 자기장 생성에 기여했을 가능성이 제기됐다. 프로스트 박사는 "이번 연구는 거대 얼음 행성에 대한 우리의 이해를 크게 확장시킬 것"이라고 말했다. 더 나아가, 다이아몬드 비와 자기장 형성에 대한 추가 연구는 이러한 거대 얼음 행성들의 신비를 더욱 깊게 탐구하는 데 도움이 될 것이다. 다이아몬드 비는 우주의 또 다른 매혹적인 현상으로, 향후 추가 연구를 통해 이 현상에 대한 더 많은 정보를 얻을 수 있을 것으로 기대된다.
-
- 산업
-
우주에서 쏟아지는 다이아몬드 비⋯자기장 형성 열쇠?
-
-
하버드대 연구팀, 고체 배터리 재충전 10분대로 단축
- 미국 스타트업이 가격이 저렴하면서도 충전 시간을 획기적으로 줄인 전기자동차(EV)용 전고체 배터리를 개발했다. 현대 사회에서 탄소 중립을 향한 움직임이 활발해지면서, 전세계 에너지 기업들은 화석 연료에 대한 의존도를 줄이는 데 집중하고 있다. 이러한 상황에서 전기차용 배터리의 중요성이 더욱 강조되고 있으며, 특히 환경 친화적이고 에너지 효율이 높은 전고체 배터리 개발이 업계의 중요한 과제로 부상했다. 기술 전문 매체 클린테크니카(cleantechnica)는 최근 하버드 대학의 스핀오프 기업인 아덴 에너지(Adden Energy)가 충전 시간을 10분대로 낮춘 새로운 전고체 배터리를 개발했다고 보도했다. 이 배터리는 최대 6000사이클 동안 사용 가능하며, 재충전 시간은 단 10분에 불과하다. 이는 연료 탱크를 채우는 시간과 유사하다고 한다. 비용에 대한 구체적인 언급은 없었으나, 이 회사의 배터리는 수명이 길어 전기차의 제조 비용을 줄이는 데 크게 기여할 것으로 전망된다. 새로운 고체 에너지 저장 기술은 기존 리튬 이온 배터리의 액체를 폴리머, 첨단 세라믹 또는 기타 고체 재료로 대체하는 차세대 기술이다. 리튬 이온이 고체를 통과해 이동하게 하는 것은 어려운 기술이지만, 그로 인해 더 긴 사용 범위와 더 빠른 충전 시간을 제공한다. 새로운 고체 에너지 저장 기술은 기존 리튬 이온 배터리에서 사용되는 액체 전해질을 폴리머, 첨단 세라믹, 또는 다른 고체 재료로 대체하는 혁신적인 접근법이다. 리튬 이온이 고체를 통과해 이동하는 것은 기술적으로 어려운 과제이지만, 이를 통해 배터리의 사용 가능 범위를 확장하고 충전 시간을 단축할 수 있다. 아덴 에너지는 여러 고체 배터리 혁신 기업 중 하나로, 이온 이동의 장애를 극복하는 데 중점을 두고 있다. 특히 이 회사는 리튬 이온 배터리의 양극에서 발생하는 수상돌기 문제에 대한 강력한 해결책을 제시했다. 덴드라이트(일종의 수지상의 골격을 형성한 결정)는 리튬 이온 배터리의 양극에서 발생하는 작은 양치류의 돌기처럼 생긴 현상으로, 배터리 성능을 저하시키고 화재 위험을 증가시키는 요인이다. 2018년, 아덴 에너지는 국제 학술지 네이처 커뮤니케이션즈(Nature Communications)에 황화물 기반의 고체 전해질 연구 결과를 발표하며 고체 배터리 분야에서 중요한 발전을 이루었다. 아덴 에너지는 "우리 논문의 목표는 LGPS와 LSPS라는 두 가지 유형의 결정질 황화물 고체 전해질의 미세 구조를 조절하고 수정함으로써 전압 안정성을 향상시킬 수 있다는 점을 입증하는 것이다"라며 두 가지 유형의 결정질 황화물 고체 전해질에 대해 밝혔다. 더 나아가, 회사는 "황화물 고체 전해질의 미세 구조와 성능 간의 기본 메커니즘을 밝히는 것이 중요하다"며 "이는 미래 재료 및 배터리 셀 설계에 대한 지침이 될 수 있다"고 기대했다. 덴드라이트 현상은 과거에는 주로 액체 전해질을 사용하는 배터리에서만 관찰되었지만, 최근 연구에 따르면 고체 배터리에서도 문제가 될 수 있음이 밝혀졌다. 이 문제를 해결하기 위한 여러 방법이 연구되고 있는 가운데, 하버드 대학 SEAS(John A. Paulson School of Engineering and Applied Sciences)의 재료과학 부교수 신 리(Xin Li) 팀은 이 현상을 완전히 멈추는 데 성공했다. 하버드 대학의 언론 담당자 레아 버로우스(Leah Burrows)는 리 팀의 새로운 연구에 대해 "연구팀은 리튬화 반응을 제어하고 균일한 리튬 금속층의 도금을 촉진하기 위해 양극에 마이크론 크기의 실리콘 입자를 사용하여 덴드라이트 형성을 방지했다"고 설명했다. 버로우스는 "이 코팅된 입자가 전류 밀도가 균일하게 분포되는 표면을 만들어 덴드라이트의 성장을 막는다"고 설명했다. 또한, "이런 설계 덕분에 도금과 박리 과정이 평평한 표면에서 더 빠르게 일어날 수 있어 배터리를 약 10분 만에 재충전할 수 있다"고 덧붙였다. 리 부교수는 "우리의 설계에서 리튬 금속이 실리콘 입자를 감싸는 것은 초콜릿 트러플에 있는 헤이즐넛 코어를 단단한 초콜릿 껍질이 감싸는 것과 유사하다"라고 비유했다. 이 혁신적인 새 배터리는 현재 상업적 생산을 위한 확장 단계에 있다. 연구팀은 우표 크기의 파우치 셀을 사용하여 이번 실험을 진행했다. 이는 일반적인 대학 연구실에서 만들어진 배터리보다 10~20배 정도 크며, 실제 사용 환경에서의 데이터 수집에 충분한 크기라고 할 수 있다. 버로우스는 이 배터리의 내구성에 대해서도 언급했다. 그녀는 "배터리가 6000사이클을 거친 후에도 초기 용량의 80%를 유지하며, 이는 현재 시장에 나와 있는 다른 파우치 셀 배터리보다 우수한 성능을 나타낸다"고 말했다. 한편, 아덴 에너지는 2022년에 하버드 대학교의 기술개발실(Office of Technology Development)로부터 이 기술에 대한 독점 라이선스를 획득했다. 또한, 회사는 515만 달러(한화 약 68억원)의 시드 자금을 조달하는 데 성공했다. 이 자금은 창업 아이템을 구체화하고 개발하여 시제품을 생산하는 과정에 사용될 예정이다. 회사 측은 라이선스 획득과 벤처 자금 조달을 통해 하버드 대학의 실험실 프로토타입을 상업적 규모로 확장할 수 있게 되었다고 설명했다. 이를 통해 아덴 에너지는 전기자동차(EV) 시장에 빠르게 충전되고 안정적인 고체 리튬-금속 배터리를 제공할 수 있게 될 것으로 기대된다. 아덴 에너지는 2022년에 손바닥 크기의 파우치 셀을 개발하는 것을 첫 단계로 삼고, 향후 3~5년 이내에 전기자동차(EV)용 풀사이즈의 전고체 배터리 개발을 목표로 하고 있다. 이 회사는 2030년 이전에 이러한 배터리를 시장에 출시될 것으로 예상하고 있다. 리 부교수는 전기차의 중요성에 대해 강조하며, "전기차가 말 그대로 도로 위의 1%에 불과한 단순한 고급 패션 아이템으로 여겨져서는 안 된다"고 말했다. 그는 "청정에너지 미래를 향해 나아가기 위해서는 전기차가 일반 대중에게도 접근 가능해야 한다"고 강조했다. 그는 또한 "만약 전기차 배터리가 3년에서 5년만 지속된다면, 미국은 중고차 시장을 갖지 못할 것"이라고 지적했다. 이어 "기술은 모든 사람이 접근할 수 있어야 하며, 우리가 하고 있는 것처럼 배터리 수명을 연장하는 것은 그 과정에서 매우 중요한 부분이다"라고 덧붙였다.
-
- 산업
-
하버드대 연구팀, 고체 배터리 재충전 10분대로 단축
-
-
미 FDA, 당뇨병 체중 감량 약물서 탈모·자살 충동 보고 조사
- 캡션: 미국 FDA가 당뇨병 및 체중 감소 치료제로 사용되는 약물과 관련해 탈모·자살 충동에 대한 부작용 보고서를 조사 중이다. 미국 식품의약국(FDA)이 당뇨병 및 체중 감소 치료용으로 사용되는 약물인 오젬픽(Ozempic), 마운자로(Mounjaro), 웨고비(Wegovy) 등과 관련하여 탈모 및 자살 충동과 같은 부작용이 보고되어 이에 대한 조사를 진행 중이라고 밝혔다. 미국 방송매체 CNN에 따르면, 이 약물들은 GLP-1 수용체 작용제로 분류되며, 이들은 체내 호르몬인 GLP-1(glucagon-like peptide 1)과 유사한 작용을 나타낸다. 이러한 약물들은 당뇨병 또는 체중 감량 치료 목적으로 FDA 승인을 받았다. 이 중 오젬픽과 라이벨서스(Rybelsus), 웨고비는 세마글루타이드를, 삭센다(Saxenda)와 빅토자(Victoza)는 리라글루타이드를, 마운자로(Mounjaro)와 젭바운드(Zepbound)는 타이제매타이드(tirzepatide)를 주요 성분으로 한다. 이들은 체내에서 자연적으로 생성되는 호르몬인 GLP-1을 모방하여 위장을 통한 음식물의 통과 속도를 늦추는 역할을 하는 것으로 알려져 있다." FDA는 자체 부작용 보고 시스템인 FAERS를 통해 탈모증 또는 탈모에 관한 보고를 접수한 이후 해당 약물들에 대한 '규제 조치의 필요성'을 조사하고 있다. 이 조사에는 흡인(음식이나 액체를 잘못 흡입하는 현상) 및 해당 약물 복용자들의 자살 충동과 같은 부작용도 포함되어 있다. FAERS 웹사이트는 해당 약물 목록에 대해 "이 목록에 약물이 포함된다는 것이 FDA가 해당 약물의 나열된 위험을 인정했다는 의미는 아니다"라고 설명했다. 이어 "FDA가 잠재적 안전성 문제를 인식하고 있지만, 아직 해당 약물과 나열된 위험 사이에 인과 관계를 확립했다는 의미는 아니다"라고 덧붙였다. FDA는 이러한 약물을 사용하면서 부작용에 대해 질문이나 우려가 있는 사람들에게 의료 전문가와 상담할 것을 권고하고 있다. FDA는 "승인 이후를 포함하여 약물의 전체 수명주기에 걸쳐 안전성을 지속적으로 모니터링하고 있다"며, "약물 개발 과정에서 발견되지 않은 부작용을 식별하고 평가하기 위해 시판 후 감시 및 위험 평가 프로그램을 운영하고 있다"고 밝혔다. 이어서 FDA는 "새롭게 파악된 안전 신호에 대해 사용 가능한 데이터를 면밀히 검토한 뒤 적절한 조치를 결정할 것"이라고 덧붙였다. 이러한 조치에는 약물의 라벨 변경 요구나 약물의 이점이 위험을 상회하는지를 평가하는 데 도움이 되는 '위험 평가 및 완화 전략' 프로그램의 개발이 포함될 수 있다. 일부 연구에서는 GLP-1 작용제가 위 마비, 췌장염, 장 폐쇄와 같은 심각한 소화 문제와 연관되어 있지만 이는 드물게 발생하는 것으로 나타났다. 이러한 부작용 중 다수는 약물 처방 정보나 라벨에 언급되어 있다. 지난 6월 미국 마취과학회(American Society of Anesthesiologists)는 GLP-1 작용제를 복용하는 환자들에게 메스꺼움, 구토, 위 배출 지연과 같은 위장 문제의 가능성을 고려하여 수술 전 일주일 동안 해당 약물 복용을 중단할 것을 권장했다. 전신마취나 깊은 진정 상태에서는 위 내용물의 흡인이나 마취 중 구토가 발생할 수 있으며, 이로 인해 음식물과 위산이 폐로 유입되어 수술 후 폐렴이나 기타 합병증을 유발할 수 있다. 한편, 유럽 규제 당국은 몇 달 동안 이러한 약물을 복용하는 사람들 사이에서 자살 충동의 위험성을 조사해왔다. 그러나 이러한 약물이 사건의 직접적 원인인지, 아니면 다른 기저 질환과 연관이 있는지는 아직 명확하지 않다. GLP-1 작용제를 제조하는 주요 회사인 노보 노디스크(Novo Nordisk)와 일라이 릴리(Eli Lilly)는 성명을 통해 환자의 안전이 최우선임을 강조하며, FDA와 긴밀히 협력하여 안전성을 지속적으로 모니터링하고 있다고 밝혔다.
-
- IT/바이오
-
미 FDA, 당뇨병 체중 감량 약물서 탈모·자살 충동 보고 조사
-
-
도요타, 차세대 전고체배터리 EV 투입해 전기차 시장 주도 나서
- 도요타자동차는 충전시간을 줄이고 주행거리를 늘리는 전기자동차(EV)용 차세대 배터리인 전고체배터리를 탑재한 전기자동차(EV)를 수년내에 전세계에 투입할 방침이다. 로이터통신 등 외신들에 따르면 도요타자동차 고위관계자는 11일(현지시간) 인도에서 개최된 투자회의에서 이같이 밝혀 전기차 배터리 시장 주도 의지를 나타냈다. 전고체 배터리는 EV의 주행거리를 극적으로 향상시킬 수 있어 도요타가 지난해 6월에 발표한 전략적 전환의 중요한 항목중 하나다. 도요타와 이데미츠쿄산(出光興産)은 지난해 전고체 배터리의 개발과 양산에 제휴키로 발표했으며 오는 2027~2028년 상용화를 목표로 하고 있다. 도요타와 인도법인 도요타 킬로스카 모터를 이끌고 있는 비카람 굴라티 부사장은 "도요타는 앞으로 수년 이내에 전고체 배터리의 EV를 투입한다. 10분에 충전할 수 있고 주행거리는 1200Km이며 수명은 현저하게 늘어난다"고 설명했다. 반면 회의 개최중이었던 지난 10일 스즈키는 인도 자회사이며 도요타의 제휴처인 마루키 스즈키 인도가 그룹 첫 EV를 일본과 유럽으로 수출할 계획을 발표했다. 지난해 인도 자동차 판매대수에서 차지하는 EV 비율은 약 2%였지만 인도정부는 이 비율을 2030년까지 30%로 끌어올릴 목표를 내세우고 있다. 인도 도로교통장관은 회의에서 인도에서 연간 EV 판매대수가 2030년까지 1000만대에 이를 것이라고 전망했다. 전고체 배터리는 말 그대로 고체로만 만드는 배터리다. 주행거리를 비약적으로 늘리는 동시에 화재 위험성도 억제할 수 있어 '꿈의 배터리'로 불린다. 기존 리튬이온배터리의 4대 소재(양극·음극·분리막·전해질) 가운데 열에 취약한 액체 전해질을 고체로 대체하면 화재 가능성을 크게 낮출 수 있다. 또 고체전해질은 그 자체로 분리막 역할을 해서 별도의 분리막이 필요 없다. 따라서 배터리 부피를 줄일 수 있고, 이는 에너지밀도의 향상과 주행거리 증가로 이어진다. 현재 전고체 배터리 시장에서는 일본이 가장 앞서나가고 있다. 도요타는 전 세계에서 전고체 배터리 관련 특허를 가장 많이 가진 기업이다.
-
- 산업
-
도요타, 차세대 전고체배터리 EV 투입해 전기차 시장 주도 나서
-
-
나사 주노 탐사선, 목성 위성 '이오' 초근접 비행…화산 활동 원인·패턴 규명 기대
- 미국 항공우주국(NASA·나사)의 주노 우주선이 목성의 위성 이오(Io)에 대한 대담한 초근접 비행을 통해 화산 활동의 원인과 패턴을 탐구할 수 있는 새로운 기회의 문을 열었다고 과학 기술 전문 매체 퓨처리즘이 지난 7일(현지시간) 보도했다. 나사에 따르면 주노 우주선은 지난주 태양계에서 가장 활발한 화산 활동을 보이는 이오에 20년 만에 가장 근접한 비행을 실시했다. 이 과정에서 주노는 이오의 변화무쌍한 표면과 화산 활동의 새로운 이미지를 포착했다. 주노 우주선은 지구 저궤도를 벗어나 이오의 표면에서 약 930마일(약 1497미터) 이내까지 접근했을 가능성이 높은 것으로 알려졌다. 나사는 이번의 드문 초근접 비행을 통해 주노 우주선의 장비가 아주 풍부한 데이터를 축적했을 것으로 기대하고 있다. 주노, 이오 위성 20년 만에 초근접 촬영 이미 주노가 포착한 사진들은 이오의 화산 활동의 실체를 드러내는 데 큰 도움이 될 것으로 보인다. 이 사진들에는 유황으로 덮인 평원과 드문드문 솟아 있는 이오의 산들이 선명하게 포착됐다. 이는 갈릴레이 위성의 노란색과 갈색 색조에 대한 이해를 높이는 데 기여할 것이다. 또한, 목성에서 반사된 햇빛 덕분에 달의 어두운 면도 관찰될 수 있었다. 이번 근접 비행은 태양계 탐사에서 중요한 이정표가 될 것으로 기대된다. 사우스웨스트 연구소의 물리학자이자 주노 탐사선의 수석 연구원인 스콧 볼튼은 최근 뉴욕 타임스와의 인터뷰에서 이오 표면의 다양한 지형을 페퍼로니 피자에 비유하며 "경외감을 느꼈다"고 말했다. 이오, 뜨거운 용암 분출 위성 태양계에서 화산 활동이 가장 활발한 목성의 위성중 하나인 이오는 뜨거운 온도로 유명하다. 천문학자들은 이오의 지각 아래에 마그마의 바다가 존재한다고 믿고 있으며, 주노의 데이터를 통해 이를 확인할 수 있을 것으로 기대하고 있다. 이오의 열은 거대한 조석력에 의해 더욱 증폭되는 것으로 알려져 있다. 이오가 목성과 다른 위성들 사이의 중력적 힘겨루기의 중심에 위치해 마그마를 뒤흔들고, '조석 가열'이라는 현상을 통해 엄청난 마찰열을 생성한다고 한다. 이오는 갈릴레이 위성들과 달리 물이 존재하지 않지만, 그 대신 전혀 다른 형태의 액체인 용암이 흘러내린다. 이 용암의 흐름은 이오의 중요한 특징 중 하나이고, 때때로 수백 개의 화산이 장관을 이루며 분출하는 광경을 연출한다. 이 용암은 이오의 내부(마그마로 추정되는 바다)에서 끊임없이 표면으로 흘러나와 정기적으로 이전에 없던 완전히 새로운 표면을 만들고, 용암 호수로 메운다. 과학자들은 주노를 통해 이러한 화산 현상의 원인과 어떤 패턴이 있는 지를 탐구하고 있다. 볼튼은 비행 완료에 앞서 성명을 통해 "이번 비행에서 얻은 데이터와 이전 관측 자료를 결합하여 주도 과학팀은 이오의 화산이 어떻게 변화하는지 연구하고 있다"고 설명했다. 그는 "우리는 화산이 얼마나 자주 분출하는지, 얼마나 밝고 뜨거운지, 용암 흐름의 모양이 어떻게 변하는 지, 그리고 이오의 활동이 목성 자기권의 하전 입자의 흐름과 어떻게 연결되어 있는지 찾고 있다"고 말했다. 주노 우주선은 오는 2월 3일 목성을 다시 한번 '초근접' 촬영할 예정이다. 이는 7년 넘게 궤도를 돌면서 57번째로 목성을 근접 비행하는 임무가 될 것이다. 한편, 목성은 태양계의 다섯번째 행성이자 가장 큰 행성으로 종종 행성의 왕으로 불린다. 목성은 4개의 갈릴레이 위성을 포함해 최소 500개의 위성이 있는 것으로 알려져 있다. 일부 과학자들은 목성이 최대 600개의 위성을 가지고 있다고 추산하기도 한다. '갈릴레이 위성' 또는 '갈릴레오 위성'은 1610년 과학자 갈릴레이 갈릴레오가 목성 주변에서 발견한 4개의 위성을 말한다. 이들 위성은 이오, 에우로페, 가니메데, 칼리스토 등 제우스(목성의 이름)의 연인의 이름을 따서 지었다. 주노(Juno) 우주선은 나사의 목성 탐사선으로 2011년 8월 5일 뉴 프런티어의 일환으로 케이프커내버럴 공군 기지에서 발사됐다. 극 궤도에 존재하는 성분과 중력장, 자기장 등을 조사하는 임무를 맡았다. 그밖에 목성의 대기에 존재하는 물의 양과 바위 응어리 존재 여부, 행성의 질량 분포, 시속 600km에 도달할 수 있는 목성의 대기 조사 등의 임무를 수행하고 있다. 오는 2024년 2월 3일 58번째로 이오 위성을 근접 통과할 예정이며 2025년 9월 2차 탐사 확장 계획이 종료된다.
-
- IT/바이오
-
나사 주노 탐사선, 목성 위성 '이오' 초근접 비행…화산 활동 원인·패턴 규명 기대
-
-
영국 스타트업, 화장실 오수로 친환경 제트 연료 개발
- 인간이 버린 폐기물에서 제트 연료를 개발하는 것이 가능하다면 어떨까? 실제로 화장실 오수에서 탄소 배출량을 현저히 줄인 항공 연료를 만드는 혁신적인 기술이 최근 개발돼 화제를 모으고 있다. 미국의 IT 전문 매체인 엔가젯(Engadget)은 영국 스타트업 반딧불이 그린퓨엘(Firefly Green Fuels)이 크랜필드대학교(Cranfield University)의 전문가들과 협력해, 기존 항공 연료에 비해 90% 적은 탄소 배출량을 가진 연료를 개발했다고 보도했다. 반딧불이 그린퓨엘이 개발한 A1 제트 연료는 독립 규제 기관의 테스트를 통해 제품이 표준과 유사한 성능을 보이는 것으로 확인됐다. 이 회사는 2021년 지속 가능한 항공 연료 개발을 계속하기 위해 영국 교통부로부터 200만 파운드(33억4830만원)의 보조금을 받았다. 아직 상업적으로 이용 가능하지는 않지만, 회사 측은 이 연료를 세계 시장에 공급하기 위한 과정에 있으며 향후 5년 이내에 최초의 상업용 발전소를 가동하게 될 것이라고 자신하고 있다. 이 회사는 저비용 항공사인 위즈에어(Wizz Air)와 2028년부터 시작되는 연료 공급을 위한 파트너십을 이미 체결했다. 화장실 오수에서 연료 생산 반딧불이 그린퓨엘은 영국의 수자원 관리 회사로부터 폐기물을 공급받아, 정제된 하수를 얻기 위해 다음과 같은 공정을 거친다. 열수 액화 과정을 통해 액체 폐기물을 슬러지 또는 원유로 전환하고, 이 과정에서 발생하는 고체 부산물은 작물 비료로 재활용될 수 있다. 회사 측은 에너지 생산 과정에서 발생하는 총 탄소량을 측정하여, 전체 공정의 탄소 강도가 메가줄 당 이산화탄소 7.97g(gCO²e/MJ)이라고 주장한다. 이는 국제클린운송위원회(ICCT)가 밝힌 기존 제트 연료의 탄소 강도, 즉 85에서 95 gCO²e/MJ에 비해 현저히 낮은 수치다. 이 회사 데이터에 따르면 자연 상태에서 유기물이 화석 연료로 전환되는 데는 수백만 년이 걸린다. 반면에 반딧불이 그린퓨엘의 방법은 단 며칠 만에 연료를 생산할 수 있게 하며, 더욱 중요한 것은 인간의 배설물이 풍부하고 쉽게 접근할 수 있는 자원으로 활용될 수 있다는 점이다. 이 회사가 개발한 지속 가능한 항공 연료의 가격이 현재 시장에서 사용되는 연료보다 더 비쌀지, 아니면 더 저렴할지는 아직 확실하지 않다. 그러나 제임스 하이게이트 최고경영자(CEO)는 성명서에서 인간의 배설물을 연료로 사용하는 것이 '비용 효율적이고 풍부한 자원'이라며, 이 자원은 '절대로 고갈되지 않을 것'이라고 말했다. 탄소 중립 달성은 유럽과 미국의 규제 기관과 지도자들에게 오랜 목표였다. 전기 자동차는 자동차 산업에서 혁신을 가져왔지만, 배터리로 구동되는 상업용 제트기의 등장은 아직 먼 미래의 일로 보인다. 따라서, 친환경적인 대안적 제트 연료의 개발은 환영받는 솔루션으로 여겨진다. EU, SAF 2% 의무 사용 한편, 유럽연합(EU)은 2025년부터 지속 가능한 항공 연료(SAF, Sustainable Aviation Fuel)를 기존 항공유에 최소 2% 혼합하도록 의무화하는 '리퓨얼 EU' 법안을 지난해 4월 통과시켰다. SAF는 석유가 아닌 다양한 대체 원료(동식물성 바이오 오일, 합성 원유 등)로 만들어진 항공 연료로, 기존 항공유에 비해 탄소 배출을 최대 80%까지 줄일 수 있다고 알려져 있다. 또한 SAF는 기존 항공기 엔진 및 연료 공급 시스템과 호환된다. 따라서 새로운 인프라 투자 없이도 현재의 항공 시스템에 통합될 수 있다. 그러나 SAF의 비용은 일반 항공유보다 약 2∼6배 높다. 이러한 높은 비용은 항공사와 소비자에게 전가될 수 있다. SAF의 생산은 아직 초기 단계에 있으며, 대량 생산에 필요한 기술과 인프라가 완전히 구축되지 않았다. 따라서 현재의 수요를 충족시키기 위한 충분한 공급이 아직 불가능할 수 있다. 게다가 일부 SAF 원료는 식량 생산과 경쟁할 수 있다. 예를 들어, 식물성 기름의 사용이 증가하면 식량 가격 상승으로 이어질 수 있다. SAF는 항공 산업의 탄소 배출을 줄이는 데 중요한 역할을 할 수 있지만, 그 구현과 확산을 위해서는 여러 기술적, 경제적, 환경적 과제를 해결해야 한다.
-
- 산업
-
영국 스타트업, 화장실 오수로 친환경 제트 연료 개발
-
-
용융염 원자로, 안전하고 경제적인 차세대 에너지 솔루션
- 탄소 배출을 줄이기 위한 친환경 에너지원에 대한 세계적인 관심이 높아지고 있다. 이와 관련하여 비스니스 인사이더(BUSINESS INSIDER)는 미국이 기존의 원자로와는 다른 새로운 유형인 용융염 원자로 건설을 허가 했다고 보도했다. 이 용융염 원자로는 전통적인 원자로와 달리, 고온으로 녹인 액체 소금을 냉각재로 사용한다. 일반적인 원자로가 물을 이용하여 증기압으로 터빈을 돌려 전기를 생산하는 반면, 이 새로운 원자로는 물이 아닌 액체 소금을 사용함으로써 물의 증발 위험이 없다. 액체 소금의 끓는점이 약 1500도로 매우 높아, 원자로에 사고가 발생하더라도 냉각재의 증발로 인한 노심의 용융 가능성이 크게 낮아진다. 용융염 원자로의 독특한 점은 연료봉 대신 액체 핵연료를 사용한다는 것이다. 이 액체 핵연료는 매우 소형화되어 있어, 원자로를 더 작은 크기로 설계할 수 있으며, 연료 교체 시 원전의 가동을 멈출 필요가 없다. 이 특성 덕분에 용융염 원자로는 기존 원자로보다 크기가 작고 건설이 용이하며, 선박이나 외딴 지역과 같은 전력망이 부족한 곳에도 적합하다. 미국 원자력규제위원회(Nuclear Regulatory Commission, NRC)는 최근 미국 카이로스파워(Kairos Power)의 용융염 원자로 건설 프로젝트에 대해 승인했다. 카이로스파워는 2027년까지 테네시주 오크리지에 '에르메스(Hermes)'라 명명된 시험용 원자로를 건설할 계획이다. 이 프로젝트의 초기 버전은 전기를 생산하지 않겠지만, 그 후속 모델인 '헤르메스 2'는 2028년부터 전력 생산을 시작할 것으로 예상된다. 용융염 원자로는 1950년대부터 연구되었지만, 안전 문제와 재료의 부식 문제 등으로 인해 상용화에는 어려움을 겪어왔다. 그러나 최근의 기술 발전으로 이러한 문제들이 해결되면서, 용융염 원자로는 안전성과 경제성 측면에서 크게 개선되어 새롭게 주목받고 있다. 용융염 원자로 기술은 미국에서뿐만 아니라 중국, 영국 등 여러 국가에서도 적극적인 개발이 진행 중이다. 한국의 용융염 원자로 개발 2023년부터 한국 정부는 용융염 원자로 개발을 국가 연구개발 프로젝트로 지정하고 지원하고 있다. 이 프로젝트는 2026년까지 핵심 기술 개발을 목표로 하며, 인증 과정을 거쳐 2030년대에 해양용 원자로 첫 번째 모델의 건설을 목표로 하고 있다. 한국원자력연구원은 이 분야에서 민간 기업들과 협력하여 해양플랜트 및 선박 추진 시스템에 적용될 용융염 원자로 개발에 집중하고 있다. 우리나라의 용융염 원자로 개발은 아직 초기 단계에 있지만, 정부의 적극적인 지원과 민간 기업의 참여로 순조롭게 진행되고 있다. 우리나라가 용융염 원자로 개발에 성공한다면, 세계 최초로 해양용 원자로를 상용화하는 국가가 될 것으로 기대된다. 용융염 원자로가 상용화될 경우 기존의 원자로보다 안전하고 경제적인 방식으로 전력을 생산할 수 있는 가능성을 제시할 것이다.
-
- 산업
-
용융염 원자로, 안전하고 경제적인 차세대 에너지 솔루션
-
-
美 MIT, 미생물 비료 코팅 개발…재생농업 촉진
- 미국 매사추세츠 공과대학(MIT) 화학자들은 지속 가능한 대안으로 질소 고정 박테리아를 사용해 화학 비료의 탄소 배출량을 줄이고 있다. 과학 전문 매체 사이테크데일리(SciTechDaily)는 MIT 화학 엔지니어들이 박테리아 세포의 성장이나 기능을 방해하지 않으면서 세포를 손상으로부터 보호하는 금속-유기 코팅을 개발해 종자 발아율을 크게 향상시켰다고 보도했다. 이러한 혁신은 미생물 비료의 접근성을 높이고 재생 농업을 촉진할 수 있다. 이 코팅은 박테리아 세포의 표면에 금속과 폴리페놀로 구성된 삼각형 모양의 구조를 형성한다. 이러한 구조는 박테리아 세포를 둘러싸고 보호막을 형성하여 열이나 습도, 건조 등의 손상으로부터 박테리아 세포를 보호해주어 미생물 비료의 안정성을 향상시킬 수 있다. 화학 비료 생산은 전 세계 온실 가스 배출량의 약 1.5%를 차지한다. MIT 화학자들은 일부 화학 비료를 보다 지속 가능한 공급원인 박테리아로 대체하여 탄소 발자국을 줄이는 데 도움이 되기를 기대하고 있다. 질소 가스를 암모니아로 전환할 수 있는 박테리아는 식물에 필요한 영양분을 제공할 뿐만 아니라 토양을 재생하고 해충으로부터 식물을 보호하는 데 도움이 될 수 있다. 그러나 이러한 박테리아는 열과 습도에 민감하기 때문에 대량 생산해서 농장으로 배송하기가 어렵다. 박테리아 민감성 극복 이러한 장애물을 극복하기 위해 MIT 화학 엔지니어들은 박테리아 세포의 성장이나 기능을 방해하지 않으면서 손상으로부터 세포를 보호하는 금속-유기 코팅을 개발했다. 새로운 연구에서 MIT 연구진은 이러한 코팅 박테리아가 옥수수와 청경채와 같은 채소를 포함한 다양한 종자의 발아율을 향상시킨다는 사실을 발견했다. 코팅된 박테리아로 처리한 씨앗은 코팅되지 않은 신선한 미생물로 처리한 씨앗에 비해 발아율이 150% 증가했다. 연구를 주도한 MIT 화학 공학과 아리엘 퍼스트(Ariel Furst) 박사는 "이 코팅은 농부들이 미생물을 비료로 배치하는 것을 훨씬 쉽게 만들 수 있다. 건조 공정으로부터 박테리아를 보호하고, 액체가 아닌 건조 분말이기 때문에 훨씬 더 쉽고 더 적은 비용으로 유통할 수 있다. 또한 섭씨 55.55도(화씨 132도)까지 견딜 수 있으므로 이러한 미생물을 냉장 보관을 사용할 필요가 없다"라고 말했다. 연구진은 이 기술은 화학 비료 사용을 줄여 환경 오염을 감소시킬 수 있고 토양의 영양분을 보충하고 토양을 건강하게 유지하는 데 도움이 될 수 있어 농업의 지속 가능성을 높이기를 기대한다. 이번 연구는 최근 '미국 화학학회지 Au'에 게재됐다. 미생물 보호 코팅 화학 비료는 공기 중의 질소와 수소를 결합하여 암모니아를 만드는 데 매우 높은 압력을 사용하는 에너지 집약적인 하버-보쉬 공정을 통해 제조된다. 화학 비료의 또 다른 단점으로는 이 과정에서 상당한 탄소 발자국이 발생한다는 점 외에도 장기간 사용하면 결국 토양의 영양분이 고갈된다는 것이다. 토양을 복원하기 위해 일부 농부들은 작물 순환과 퇴비화 등 다양한 전략을 사용해 토양을 건강하게 유지하는 '재생 농업'으로 전환하고 있다. 질소 가스를 암모니아로 전환하는 질소 고정 박테리아가 이러한 접근 방식에 도움이 될 수 있다. 퍼스트 박사는 열과 동결 건조로부터 미생물을 보호하기 위해 이전에 소화관으로 전달되는 치료용 박테리아를 보호하는 등 다른 용도로 미생물을 캡슐화하기 위해 개발한 금속-페놀 네트워크(MPN)라는 코팅을 적용하기로 결정했다. 이 코팅에는 금속과 폴리페놀이라는 두 가지 유기 화합물 성분이 포함되어 있어 스스로 조립되어 보호막을 형성할 수 있다. 철, 망간, 알루미늄, 아연 등 코팅에 사용되는 금속은 식품첨가물로서 안전한 것으로 간주된다. 식물에서 흔히 발견되는 폴리페놀은 탄닌과 오트 등의 분자를 포함한다. 퍼스트 박사는 "우리는 그 자체로 효능이 있는 것으로 알려진 천연 식품 등급의 화합물을 사용하여 미생물을 보호하는 작은 갑옷을 만들고 있다라고 말했다. 이 연구를 위해 연구팀은 12가지 MPN을 만들어 유해한 곰팡이와 기타 해충으로부터 식물을 보호하는 질소 고정 박테리아인 슈도모나스 클로로라피스를 캡슐화하는 데 사용했다. 연구진은 모든 코팅이 최대 섭씨 50도(화씨 122도)의 온도와 최대 48%의 상대 습도로부터 박테리아를 보호한다는 사실을 발견했다. 또한 코팅은 동결 건조 과정에서도 미생물의 생존을 유지했다. 종자 발아 향상 연구팀은 망간과 에피갈로카테킨 갈레이트(EGCG)라는 폴리페놀의 조합인 가장 효과적인 MPN으로 코팅된 미생물을 사용하여 실험용 접시에서 종자 발아를 돕는 능력을 테스트했다. 또 연구팀은 코팅된 미생물을 접시에 넣기 전에 50°C로 가열한 후 코팅되지 않은 신선한 미생물과 동결 건조된 코팅되지 않은 미생물을 비교했다. 연구 결과 코팅된 미생물은 발아율을 150% 향상 시켰다. 퍼스트 박사는 "기술을 개발할 때는 의도적으로 저렴하고 접근하기 쉽도록 설계해야 하는데, 이 기술이 바로 그런 기술이다. 이 기술은 재생 농업의 대중화에 도움이 될 것이다라고 말했다. 퍼스트 박사는 이 기술을 상용화하기 위해 세이아 바이오(Seia Bio)라는 회사를 설립했다. 세이아 바이오는 현재 이 코팅을 적용한 미생물 비료를 농업 현장에 적용하는 데 대한 연구를 진행하고 있다.
-
- 산업
-
美 MIT, 미생물 비료 코팅 개발…재생농업 촉진
-
-
겨울철, 비타민 D 부족 주의보…충분히 섭취하는 방법은?
- 겨울철이 되면 기온이 낮아지고 실내에서 보내는 시간이 늘어나게 된다. 이로 인해 태양 노출이 줄어들면서 피부에서 합성되는 비타민 D의 부족 현상이 자주 발생하곤 한다. 비타민 D는 주로 햇빛에 노출될 때 피부에서 생성되는 영양소이기 때문에, 태양 노출이 감소하는 겨울철에는 특히 주의가 필요하다. 의학 전문지 '헬스(Health)'는 비타민 D가 뼈 건강을 유지하고, 면역 체계를 강화하는 데 중요한 역할을 하며 전반적인 건강을 유지하는 데도 필수적이기 때문에, 겨울철에는 비타민 D 관리에 특별한 주의를 기울여야 한다고 보도했다. 겨울철에는 실내 활동이 늘어나더라도 비타민 D를 적절히 섭취하고, 필요한 경우 보충제 등을 통해 충분한 양을 유지하는 것이 중요하다. 비타민 D 결핍 증상 비타민 D는 뼈 건강, 면역력 강화, 근육 기능 향상 등에 중요한 역할을 한다. 뼈 건강에 있어서는 칼슘의 흡수를 돕고, 면역력 강화에 있어서는 바이러스와 박테리아로부터 신체를 보호하는 데 영향을 미치며 근육 기능 향상에 있어서는 근육의 수축과 이완을 돕는다. 비타민 D 결핍은 골다공증, 면역력 저하, 근육통, 피로감 등의 증상을 유발할 수 있다. 이 외에도 심혈관 질환, 당뇨병, 암 등의 위험을 증가시킬 수 있다는 연구 결과도 있다. 비타민 D 보충 방법 비타민 D를 충분히 섭취하기 위해서는 다음과 같은 방법이 있다. 먼저 햇볕을 쬔다. 날씨가 맑은 날, 하루 15분 이상 햇볕을 쬐는 것이 비타민 D 합성에 도움이 된다. 그러나 햇볕이 강한 시간대에는 피부 보호를 위해 자외선 차단제를 바르는 것이 좋다. 비타민 D가 풍부한 음식을 섭취한다. 비타민 D를 많이 함유하고 있는 식품으로는 지방이 많은 생선(예: 연어, 정어리), 달걀 노른자, 치즈, 일부 버섯 종류 등이 있다. 특히 겨울철과 같이 햇볕을 충분히 쬐기 어려운 경우, 의사와 상담 후 비타민 D 보충제를 섭취하는 것도 효과적인 방법이다. 보충제는 비타민 D의 일일 권장 섭취량을 쉽게 충족시킬 수 있도록 도와준다. 비타민D 과다 섭취 시 부작용 비타민D는 과다 섭취하면 부작용이 발생할 수 있다. 따라서 하루 권장량을 초과하지 않도록 주의해야 한다. 특히 임산부, 수유부, 어린이, 간 질환이나 신장 질환을 가진 사람은 의사와 상담하여 안전하게 복용해야 한다. 비타민 D 보충제를 선택할 때는 다음과 같은 사항을 고려하는 것이 좋다. 보충제에 함유된 비타민 D의 양을 확인해야 한다. 성인의 경우, 일반적으로 하루 권장량은 약 15~20마이크로그램(㎍)이다. 비타민 D 보충제는 캡슐, 액체, 정제 등 다양한 형태로 제공된다. 본인의 취향과 섭취 용이성을 고려하여 적합한 형태를 선택하는 것이 좋다. 또한, 제품의 품질과 안전성을 보장할 수 있는 신뢰할 수 있는 제조사의 제품을 선택하는 것이 중요하다. 겨울철 비타민 D 관리 비타민 D 수치를 정기적으로 검사한다. 비타민 D 수치가 부족한 경우 의사의 지시에 따라 보충제를 섭취하는 것이 좋다. 비타민 D의 흡수를 방해하는 음식을 피한다. 칼슘, 철, 마그네슘, 칼륨과 같이 비타민 D 흡수를 방해하는 영양소가 많이 함유된 음식을 섭취한 후에는 비타민 D 섭취까지 2시간 정도 간격을 두는 것이 좋다. 겨울철에는 비타민 D가 부족해질 위험이 높기 때문에, 위의 지침을 참고하여 적절한 관리를 하는 것이 중요하다. 이를 통해 건강을 유지하고 비타민 D 부족으로 인한 건강 문제를 예방할 수 있다.
-
- 생활경제
-
겨울철, 비타민 D 부족 주의보…충분히 섭취하는 방법은?
-
-
지구의 자전축 이동, 지하수 고갈이 원인
- 지하수 고갈이 지구 자전축 이동의 원인이라는 새로운 연구 결과가 나왔다. 미국 매체 인디100(indy100)은 본질적으로 지구의 기울기는 시간이 지남에 따라 변하고 있으며, 몇 년 전 과학자들은 이를 지구 온난화와 극지방의 만년설이 녹는 현상으로 분류했다고 지적했다. 그러나 과학자들은 최근 연구에서 지구 자전축의 이동이 기존에 알려진 원인 이외에 다른 요소로 인해 발생하고 있다는 사실을 발견했다. 이 새로운 연구는 지하수 고갈이 지구의 물리적 균형에 어떻게 영향을 미치는지에 대한 이해를 넓히는데 중요한 역할을 하며, 기후 변화 및 지구 시스템에 대한 우리의 이해를 더욱 심화시킬 것으로 기대된다. 이는 지구의 물 순환 및 환경 관리에 대한 새로운 관점을 제공할 수 있다. 지구의 극은 빙상이 녹는 현상으로 움직일 수 있는 것으로 알려졌지만, 관개로 인한 지하수의 고갈도 같은 일이 일어날 수 있다는 것이다. 북극은 현재 점차 영국 방향으로 느린 속도로 이동하고 있으며, 이론적으로 이러한 극의 이동은 시간이 지나면서 지구의 계절 변화에 영향을 미칠 수 있는 능력을 가지고 있다. 가장 우려되는 점은 최근 '지구물리학 연구 학술지(Geophysical Research Letters)'에 게재된 연구에서 밝혀진 것으로, 지구 천연자원의 소비 방식, 특히 탈수된 땅에서 사용되는 염수와 관련한 연구 결과들이다. 이 연구에 공동으로 참여한 서울대학교 지구과학교육과 서기원 교수는 "지구의 회전 극은 실제로 큰 변화를 겪고 있으며, 우리 연구에 따르면 지하수의 재분배가 지구의 회전 극의 표류에 가장 큰 영향을 미치는 것으로 나타났다"고 우려했다. 서기원 교수가 이끄는 연구팀은 1993년부터 2010년까지 인류가 사용한 지하수의 양이 약 2조 1500톤에 달하며, 이로 인해 해수면이 약 6mm 상승하고, 지구의 자전축이 약 80cm 이동했다고 주장했다. 이 연구는 인간 활동이 해수면 상승에 중요한 영향을 미치고 있음을 시사한다. 지하수 사용이 증가함에 따라 육지의 물은 감소하고, 대신 바닷물이 증가하여 지구의 물질량 분포와 자전축의 위치에 변화를 가져왔다. 이 연구 결과는 물이 지표면에서 천천히 지하로 새어 나가는 현상을 발견한 최근의 과학적 발견에 이어 나온 것이다. 연구에 따르면, 액체는 지각판 아래로 하강하여 약 2900km 이동한 후 지구의 코어에 도달한다. 이 과정은 느리지만 수십억 년에 걸쳐 지구의 외핵 용융 금속과 맨틀 사이에 새로운 표면이 형성되었다. 이러한 발견은 지구과학에서의 중요한 이정표로, 인간 활동이 지구의 물리적 균형과 환경에 미치는 영향을 이해하는 데 중요한 기여를 한다. 지구의 자전축이 변하면 각 지역이 태양에 노출되는 정도에 변화가 생겨, 이로 인해 심각한 기후 변화가 발생할 수 있다. 특히 해수면 상승은 해발고도가 낮은 섬나라와 해안 도시들에게 큰 위협이 되며, 한국도 이러한 위험에서 자유롭지 못하다. 한국 해양수산부의 자료에 따르면, 1991년부터 2020년까지 한국의 평균 해수면은 매년 3.03mm씩 상승하여 총 9.1cm 높아진 것으로 나타났다. 국립해양조사원과 서울대학교의 연구에 따르면, 2100년까지 한국의 해수면은 최대 82cm까지 상승할 것으로 예측되며, 이는 2021년 발표된 예측치보다 10cm 높은 수치다. 전 세계적으로 해수면이 1미터 상승한다면 약 4억 명의 인구가 피해를 입을 것으로 추정된다. 이러한 상황은 우리가 탄소 배출을 줄여야 하는 중요한 이유를 제시한다.
-
- 생활경제
-
지구의 자전축 이동, 지하수 고갈이 원인
-
-
불포화 지방산 섭취로 콜레스테롤 감소
- 우리 몸은 중요한 기능을 유지하기 위해 콜레스테롤이 필요하지만, 높은 콜레스테롤 수치는 건강에 위협이 될 수 있다. 이를 예방하기 위해, 선진 의료 수준을 갖춘 한국은 콜레스테롤 수치를 낮추기 위해 국가 차원에서 다양한 건강 검진을 실시하고 있다. 독일 매체 메르커(Merkur)는 뮌헨 공과대학의 마틴 할레(Martin Halle) 박사가 포커스와의 인터뷰에서 콜레스테롤을 효과적으로 낮추는 방법을 제안했다고 보도했다. 마틴 할레 박사는 뮌헨 공과대학 의학부 예방 및 재활 스포츠 의학 의장이자 폴리클리닉의 의료 책임자로 "콜레스테롤은 우리 호르몬 균형에 큰 영향을 미치며, 신체의 모든 세포에는 천연으로 생산되는 물질이 포함되어 있다. 우리는 콜레스테롤 없이는 살 수 없다"고 말했다. 심혈관 질환 전문가인 할레 박사는 운동 부족과 건강에 해로운 지방이 많이 포함된 식단과 같은 현대 생활 방식을 비판하며, 이러한 생활 습관이 콜레스테롤 수치 상승을 촉진할 수 있다고 지적했다. 콜레스테롤을 낮추는 지방 할레 박사에 따르면, 지방은 체내에서 콜레스테롤(혈중 지질) 형성에 사용되지만, 혈관에 콜레스테롤이 과도하게 존재할 경우 혈관이 좁아지는 위험이 증가한다. 이는 혈관이 영향을 받는 부위에 따라 심장 마비나 뇌졸중과 같은 치명적인 결과를 초래할 수 있다. 그러나 모든 지방이 혈관 협착을 유발하는 것은 아니다. 좋은 지방과 나쁜 지방을 구분해야 한다. 올리브유나 유채씨유(카놀라유)와 같이 실온에서 액체 상태인 지방과 견과류, 콩류, 시리얼, 통곡물의 오일에 포함된 불포화 지방산은 혈관 벽을 탄력적으로 유지하는 데 도움을 준다. 이런 '좋은 지방'은 건강에 유리하며 혈관 건강을 개선하는 데 기여할 수 있다. 반면, 포화 지방산은 건강에 부정적인 영향을 미칠 수 있으므로 식단에서 조절하는 것이 중요하다. 건강하고 활동적인 신체를 유지하기 위해서는 지방의 종류를 신중하게 선택하고 균형 잡힌 식단을 유지하는 것이 필수적이다. 할레 박사는 포화 지방산을 건강에 해로운 지방으로 지목하며, 버터와 코코넛 오일을 대표적인 예로 들었다. 이와 함께, 실온에서 고체 형태를 이루는 다른 지방 역시 콜레스테롤 수치를 낮추는 데 도움이 되는 불포화 지방산으로 대체하는 것이 중요하다고 강조했다. LDL과 HDL의 차이 LDL과 HDL은 각각 '저밀도 지단백(low-density lipoprotein)'과 '고밀도 지단백(high-density lipoprotein)'을 의미한다. LDL은 저밀도 지단백(low-density lipoprotein)의 약자로, 이는 지질 대사 장애 및 합병증 DGFF(Lipid League) e.V.에 대한 독일 협회에서 보고한 바와 같이 혈중 지질의 '나쁜 성분'으로 간주된다. LDL 콜레스테롤은 간에서 장기로 지방을 운반한다. 신체 세포가 더 이상 LDL 콜레스테롤을 흡수할 수 없을 때, 이는 혈액에 남아 혈관 벽에 플라크 형태로 축적되어 혈류를 방해하고 혈관을 좁힐 수 있다. 이러한 이유로 LDL 콜레스테롤은 심혈관 질환, 심장 마비, 뇌졸중 및 죽상 동맥 경화증의 주요 원인으로 여겨진다. 반면, HDL 콜레스테롤은 체내의 과도한 콜레스테롤을 간으로 운반하여 분해하는 역할을 한다. HDL 콜레스테롤은 나쁜 LDL 콜레스테롤을 제거하여 혈관을 보호하는 데 중요한 역할을 하며, 이를 '좋은' 콜레스테롤로 간주한다. 전문가들은 총 콜레스테롤 수치를 관리할 때 HDL 콜레스테롤 수치가 남성의 경우 40mg/dl 이상, 여성의 경우 45mg/dl 이상이며, LDL 콜레스테롤 수치는 115mg/dl 미만이 되는 것이 바람직하다고 권장한다. 콜레스테롤 진단과 치료 콜레스테롤로 인해 발생할 수 있는 질병들에 대한 진단과 치료법은 다음과 같다. 대한진단검사의학회의 지침에 따르면, 고지혈증은 혈중 콜레스테롤, 인지질, 중성지방 중 하나 이상의 수치가 증가한 상태를 의미한다. 모든 성인은 20세 이상부터 5년마다 한 번씩 공복 시 혈액 검사를 받는 것이 권장된다. 이 검사는 총콜레스테롤, LDL(저밀도지단백)-콜레스테롤, HDL(고밀도지단백)-콜레스테롤, TG(중성지방)의 네 가지 항목을 포함한다. 만약 공복 상태가 아닐 경우, 총콜레스테롤과 HDL-콜레스테롤만 우선적으로 검사하고, 이상이 발견될 경우 나머지 항목은 추가로 공복 상태에서 검사를 받는 것이 좋다. 고콜레스테롤혈증(Hypercholesterolemia)의 치료와 관리에 있어서 'LDL-콜레스테롤' 수치는 중요한 기준이 된다. 혈액 검사 결과 LDL-콜레스테롤 수치가 높게 나타날 경우 치료를 시작하며, 치료의 효과 역시 LDL-콜레스테롤 수치를 기준으로 평가한다. 약물요법을 시작한 경우, 처음에는 4-6주에 한 번, 이후에는 3개월마다 LDL-콜레스테롤을 측정한다. 목표 LDL-콜레스테롤 농도에 도달하면 4개월 간격으로 측정하여 약물요법의 효과와 부작용을 평가한다. 장기적으로는 연 1회 LDL-콜레스테롤 수치를 검사한다. 한편, 고중성지방혈증은 총콜레스테롤과 LDL-콜레스테롤 수치가 정상 범위에 있으나 TG(중성지방) 수치만 높은 상태를 말한다. 최근 연구에 따르면, 중성지방 수치가 높은 경우에도 관상동맥 질환의 위험이 증가한다고 알려져 있다.
-
- 생활경제
-
불포화 지방산 섭취로 콜레스테롤 감소
-
-
전기차 배터리 니켈 기반 음극, 충전 수명 연장 길 열렸다
- 전기자동차(EV) 배터리의 수명을 연장하고 안전한 배터리를 만들 수 있는 새로운 기준이 제시됐다. 현재 전기차 배터리 시장에서 리튬이온 배터리가 가장 널리 사용되고 있지만, 화재 위험과 비싼 비용 문제로 어려움을 겪고 있는 상황이다. 최근 이 분야의 연구가 진전을 보이고 있다. 야후 뉴스에 따르면, 텍사스 대학교(UT) 오스틴캠퍼스 연구팀은 전기자동차용 배터리에서 사용되는 니켈 기반 음극의 균열 원인을 확인했다고 보도했다. 이 발견은 배터리의 충전 수명을 연장하고 더 안전한 배터리를 제작하는 데 중요한 발전으로 평가된다. 니켈 기반 음극은 배터리의 주요 부품 중 하나로, 사이언스다이렉트(ScienceDirect)에 따르면, 사이클 수명에 대한 의문이 있지만 높은 용량과 밀도를 제공하는 것으로 알려져 있다. 전기자동차 배터리의 수명을 단축시키는 음극 균열 문제는 오랜 기간 사용으로 인한 마모로 인해 발생하는 것으로 여겨져 왔다. 이 문제는 대부분의 업계 전문가들에 의해 '필연적'인 현상으로 인식되어 왔다. 그러나 UT 연구팀은 이러한 균열이 전해질과 음극 사이의 반응과 더 밀접한 관련이 있다는 새로운 발견을 했다. 이 발견은 파워 팩의 유용성을 확장하고, 더 나은 화학적 구성을 가진 배터리를 개발하는 데 중요한 기여를 할 수 있을 것으로 보인다. 연구팀의 책임자 아루무감 만티람(Arumugam Manthiram)은 "이 분야의 전반적인 이해에 오류가 있었으며, 우리는 이러한 오해를 바로잡고 전해질에 더 많은 주목을 기울여야 함을 보여주고 싶다"고 말했다. 이러한 연구 결과는 배터리의 안전성을 향상시키고, 이미 성장하고 있는 전기자동차 부문의 확장에 기여할 수 있는 새로운 검사 방법과 업계 노력의 일부로서 중요한 의미를 가진다. 리튬 이온 배터리에서 충전 및 방전 과정 중에 리튬 이온은 양극과 음극 사이를 오가며 이동한다. 미국 에너지부에 따르면, 이 이온들은 전해질이라고 불리는 용액(액체 또는 고체 형태일 수 있음)을 통해 이동한다. UT 연구팀이 최근에 발견한 문제의 핵심은 바로 이 전해질과 관련된 것이다. 연구팀 책임자 아루무감 만티람은 실험실 보고서에서 "전해질이 음극 표면과 반응하여 균열 형성을 증가시킨다는 사실을 발견했다"고 밝혔다. UT 팀은 배터리 작동 중에 가역적인 균열이 발생한다고 보고했는데, 이 보고서에 따르면 전해질은 이러한 균열로 침투하여 음극에서 산소를 제거하고 균열을 고정시킨다. 배터리 전문가들은 리튬 이온 배터리에서 발생하는 문제를 이해하기 쉽게 설명하기 위해 이 과정을 강둑이 침식되는 강에 비유했다. 이들의 견해에 따르면, 전해질이 음극 표면에 미치는 영향이 배터리 열화의 주요 원인으로 지목되고 있다. 이번 발견을 통해, 연구팀은 이제 더 많은 배터리 전문가들이 균열 문제 해결을 위해 전해질과 음극 간의 상호작용에 초점을 맞추기를 기대하고 있다. 실제로, 새로운 양극재를 개발하는 것보다 기존 양극재의 문제를 해결하는 것이 더 효과적일 수 있다는 의견이 제시됐다. 또한, 전 세계의 연구소에서는 최적의 배터리 성능을 달성하기 위해 다양한 금속 혼합을 탐구하고 있다. 이러한 연구에는 철이나 공기와 같은 일반적인 요소들도 포함되어 있으며, 이는 전기자동차 배터리의 성능과 안정성 향상을 위한 중요한 연구 분야로 자리잡고 있다. UT 연구원인 스티븐 리(Steven Lee)는 전해질 사용의 개선이 배터리 수명 연장에 중요한 역할을 할 수 있다고 강조했다. 리는 "상업적인 측면에서 보면, 입증되지 않은 이국적인 구조 수정 방법에 의존하는 것보다 더 나은 전해질을 사용하는 것이 훨씬 더 확장성이 뛰어나다"고 밝혔다. 그는 이어 "우리의 접근법은 배터리 수명을 연장하기 위한 더 쉬운 해법을 제공할 수 있는 새로운 관점으로 배터리 커뮤니티를 교육하는 것"이라고 덧붙였다. 한편, 전문가들은 전기차 사용의 증가와 함께 배터리 안정성이 중요한 경쟁 요소가 될 것으로 전망하고 있다. 이에 따라, 한국은 2023년 9월 여의도 전경련회관 콘퍼런스센터에서 전기차 및 에너지저장시스템(ESS) 화재의 원인 분석과 예방, 진압에 관한 기술 세미나를 개최했다. 전기차 화재의 주요 원인으로는 노화에 따른 성능 저하, 주행 중 배터리의 충격 및 손상 등이 꼽힌다. 대부분의 전기차 화재는 충전 완료 후 2시간에서 5시간 사이에 발생하는데, 특히 셀 간 전압 차를 조정하는 셀밸런싱 과정에서 문제가 발생할 가능성이 높다. 이러한 문제를 해결하기 위해 전기차 충전 기술 기업 차지인의 최영석 대표는 "전기차를 장기간 사용할 경우 화재 발생 위험이 있으므로 노화되고 손상된 배터리를 식별하는 기술이 필요하다"고 강조했다.
-
- 산업
-
전기차 배터리 니켈 기반 음극, 충전 수명 연장 길 열렸다
-
-
[퓨처 Eyes(12)]액체 금속, 화학공학 공정 혁신 '녹색화' 기대
- 호주 시드니 대학교에서 저온에서 촉매 역할을 하는 액체 금속을 개발했다. 액체 금속은 말 그대로 액체 상태인 금속을 의미한다. 이러한 금속들은 특정 온도에서 액체 상태로 존재하며, 그 특성 때문에 로봇공학이나 인공 장기, 핵융합 등 여러 분야에서 다양한 용도로 활용된다. 과학 전문매체 사이키(phys.org)에 따르면 호주 시드니 대학교 화학·생명분자 공학부의 쿠로쉬 칼란타르-자데 교수와 시드니 대학교와 뉴사우스웨일스 대학교에서 활동하는 준마 탕 박사가 이끄는 연구팀은 에너지 대량 소비가 특징인 20세기 초반의 화학 공정을 대체할 새로운 기술인 액체 금속을 테스트했다고 발표했다. '네이처 나노테크놀로지'에 발표된 액체 금속에 대한 최신 연구는 화학 산업의 전환점을 제시하고 있다. 연구팀은 녹는점이 낮은 30도의 액체 갈륨에 녹는점이 높은 주석과 니켈을 용해해 액체 금속을 얻었다. 액체 금속은 높은 전도성, 낮은 점도, 그리고 가변적인 형태를 가지고 있다. 즉, 액체 금속은 고체 금속에 비해 이동성이 높고, 형태를 자유롭게 변형할 수 있다. 대표적인 액체 금속인 수은은 상온에서 액체 상태를 유지한다. 연구팀은 에너지를 대량 소비하는 전통적인 고체 촉매 대신 액체 금속을 사용하는 새로운 방법을 도입했다. 현재 화학 공정으로 금속을 생산하는 것은 전체 온실가스 배출의 약 10~15%를 차지하고 있다. 전 세계 에너지의 10% 이상을 화학 공정에서 사용하는 현재 상황에서 이번 액체 금속 기술 개발은 중요한 의미를 갖는다. 액체 금속을 사용하는 방법은 기존 고체 촉매 기반 공정에 비해 에너지 소비를 크게 줄일 수 있다. 이는 환경에 미치는 부정적인 영향을 감소시키는 동시에 산업 효율성을 향상시킬 수 있다. 이 연구는 화학 산업의 지속 가능한 미래를 위한 중요한 단계로 여겨지며, 화학 공정의 혁신과 환경 보호라는 두 가지 주요 과제를 동시에 해결할 수 있는 가능성을 제시했다. 액체 금속의 특성 액체 금속은 독특한 물리적 성질과 화학적 안정성 덕분에 전자기기와 고체 배터리의 전극 소재, 냉각 시스템, 의료기기, 로봇공학 등 다양한 분야에서 적용될 수 있는 잠재력을 가지고 있다. 액체 금속은 뛰어난 전기 전도성을 가지고 있어, 유연한 전자기기, 인쇄 회로, 연결기기, 센서, 안테나 설계 등에 사용된다. 또한, 액체 금속의 낮은 점도와 높은 표면 장력은 미세 전자기기의 제조에 이상적이다. 아울러 액체 금속은 높은 열 전도성과 낮은 점도를 가지고 있어, 고성능 컴퓨터, 레이저 시스템, 핵 융합 반응기 등에서 발생하는 열을 효과적으로 관리하고 분산시키는 데 사용된다. 액체 금속은 핵 융합 반응기에서 냉각재로 사용되며, 핵 연료 재처리와 폐기물 관리에도 적용될 수 있다. 더 나아가 액체 금속의 생체 적합성과 유연성으로 인해, 의료 장치, 인공 장기, 생체 센서, 약물 전달 시스템 등의 개발에 활용된다. 액체 금속은 유연한 로봇, 착용 가능한 로봇 기술, 소프트 로봇공학에서 구조 및 센서 재료로서의 가능성을 가지고 있다. 액체 금속의 특성은 에너지 저장 시스템, 특히 고온 배터리와 연료 전지에서의 응용에 유리하다. 이러한 다양한 응용 분야는 액체 금속의 유연성과 기능성을 강조하며 미래 기술 발전에서 중요한 역할을 할 것으로 기대된다. 화학 공정 혁신으로 '녹색화' 기대 연구자들은 액체 금속이 기존 화학 산업의 '녹색화'를 앞당겨 화학 공정 혁신을 가져올 것으로 전망했다. 액체 금속 공정은 에너지 집약적인 고체 공정과 달리, 녹는점이 낮은 주석과 니켈을 용해하여 액체 금속의 표면으로 이동시키고 입력 분자인 카놀라유와 반응시킨다. 이 과정을 통해 작은 유기 사슬을 형성하며, 이 중에는 많은 산업에서 중요한 고에너지 연료인 프로필렌도 포함된다. 칼란타르-자데 교수는 "우리의 방법은 화학 산업이 에너지 소비를 줄이고 화학 반응을 녹색화하는 데 전례 없는 잠재력을제공한다"며 "2050년까지 화학 부문의 탄소 배출이 20% 이상을 차지할 것으로 예상되는 가운데, 패러다임 전환이 필수적이다"라고 말했다. 사진=시드니 대학교 연구팀은 녹는점이 높은 니켈과 주석을, 녹는점이 30도인 액체 갈륨 기반의 액체 금속에 용해시켜 액체 금속이라는 새로운 공정을 개발했다. 탕 박사는 "액체 갈륨에 니켈을 용해함으로써, 우리는 매우 낮은 온도에서 '슈퍼' 촉매로 작용하는 액체 니켈을 활용할 수 있게 되었다"고 설명했다. 저온에서 '슈퍼' 촉매 역할 시드니 대학교 화학 및 생명분자 공학부의 아리푸르 라힘 박사와 준마 탕 박사 팀은 액체 금속을 만든 공식을 낮은 온도 공정을 사용하여 다른 금속을 혼합함으로써 다양한 화학 반응에도 적용할 수 있다고 밝혔다. 탕 박사는 "낮은 온도에서 촉매 작용이 이루어지므로 이론적으로 주방 가스레인지에서도 가능하지만, 집에서는 시도하지 않는 것이 좋다"고 권했다. 한편 액체 금속은 다양한 분야에서 활용이 가능하다. 우선 냉각제다. 액체 금속은 열을 잘 전달하기 때문에, 반도체 제조 공정이나 레이저 제조 공정에서 냉각제로 활용된다. 또 액체 금속은 열을 잘 전달하기 때문에, 전자 제품이나 자동차의 냉각 시스템에서 열전도체로 활용된다. 전기를 잘 전달하기 때문에, 전기 회로나 센서의 전기 전도체로도 사용될 수 있다. 아직 연구 초기 단계에 있지만, 이러한 다양한 용도로 인해 액체 금속은 높은 잠재력을 지닌 신소재로 평가 받고 있다.
-
- 포커스온
-
[퓨처 Eyes(12)]액체 금속, 화학공학 공정 혁신 '녹색화' 기대
-
-
NASA, 전기추진 시스템(AEPS) 자격 시험 성공
- 미국 항공우주국(NASA)과 항공우주 회사인 에어로제트 로켓다인(Aerojet Rocketdyne)사가 12킬로와트(kW) 태양 전기추진(SEP) 엔진인 고도의 전기추진 시스템(AEPS)에 대한 자격 시험을 성공적으로 완료했다고 유니버스 투데이(Universe Today)가 최근 보도했다. AEPS는 현재 제조 중인 전기추진(이온 추진이라고도 함) 시스템 중 가장 강력한 것으로, 달과 그 너머에 있는 장기 우주여행에 사용될 예정이다. 12킬로와는 1330개 이상의 LED 전구를 작동시킬 수 있을만큼 강력하며, 이번의 성공적인 자격 시험은 NASA가 지난 7월 자격 시험을 시작한 이후 이루어진 것이다. NASA의 글렌(Glenn) 연구 센터에서 AEPS 프로젝트 매니저를 맡고 있는 클레이튼 카셀은 "AEPS는 진정한 차세대 기술"이라며 "현재의 전기추진 시스템은 약 4.5킬로와트의 전력을 사용하는 반면, AEPS는 단일 추진기에서 전력을 크게 증가시킨다"고 말했다. 이어 "이 기능은 미래 우주 탐사를 위한 무한한 기회를 열어준다. AEPS는 우리를 더 멀리, 더 빠르게 이끌 것"이라고 덧붙였다. AEPS의 자격 시험에서 관찰된 엔진의 푸른 배기 플륨은 이온화된 제논 가스에서 생성된다. 기존의 화학 추진은 액체 추진제를 연료로 사용하여 매우 짧지만 강력한 에너지 폭발을 일으켜 우주선을 원하는 방향으로 추진한다. 반면, 전기 추진은 비활성 가스 추진제를 연료로 사용하여 에너지는 더 적지만 지속 시간이 길어 효율성이 높고 장기 우주 임무에 적합하다. NASA가 계획 중인 게이트웨이 우주 정거장에는 AEPS 기술이 중요한 역할을 할 예정이다. 게이트웨이의 파워 앤드 프로펄전 엘리먼트에 세 개의 AEPS 전기추진체를 장착하여 게이트웨이 주변의 원하는 궤도를 유지하고 지구와의 고속 통신 및 전체 우주 정거장에 대한 전력 공급 등 다양한 기능을 수행할 예정이다. 게이트웨이는 2025년 발사를 목표로 하고 있으며, NASA의 아르테미스 임무의 중요한 부분으로 국제 및 상업적인 파트너와 협력하여 몇 년 안에 달 남극에 도달할 예정이다. AEPS의 리드 엔지니어인 로히트 샤스트리(Rohit Shastry)는 "이 기술이 어떤 종류의 임무를 수행하게 될지 지켜보는 것이 흥미로울 것 같다. 우리는 지금까지 이루어진 것의 한계를 뛰어넘고 성능과 기회를 향상시키기 위해 큰 도약을 하고 있다"라고 말했다. AEPS는 태양 전기 엔진을 기반으로 하는 전기 추진 시스템이지만, 다른 형태의 전기 추진 시스템으로는 핵 반응기를 사용하는 핵 전기 추진(NEP)이 있다. AEPS는 현재 제작 중인 가장 강력한 전기 추진체이며, NASA는 이전에도 전기 추진을 딥스페이스 임무에 사용한 바 있다. 예를 들어 2015년 발사된 NASA의 던(Dawn) 우주선은 이온 추진 시스템을 사용한 최초의 과학 탐사선이었다. 던 우주선은 중량이 1240kg에 달하는 비교적 작은 탐사선으로 7년 반 동안 우주를 날아 소행성 베스트와 세레스를 탐사했다. 최근인 지난 10월 13일에 성공적으로 발사된 NASA의 프시케(Psyche) 탐사선은 태양 전기 추진을 사용한 것으로, 소행성 16 프시케로 가는 36억 킬로미터(22억 마일) 여행을 하고 있다. AEPS의 성공적인 자격 시험은 전기추진 기술의 발전에 있어 중요한 진전이며, 이는 미래 우주 탐사를 위한 새로운 가능성을 열어줄 것으로 기대된다.
-
- 산업
-
NASA, 전기추진 시스템(AEPS) 자격 시험 성공
-
-
HJ중공업, 8500TEU급 탄소 포집 친환경 컨테이너선 개발
- HJ중공업은 선박에서 발생하는 이산화탄소를 포집·저장한 뒤 하역할 수 있는 8500TEU(1TEU는 20피트 컨테이너 1개)급 친환경 컨테이너선 개발에 성공했다고 13일 밝혔다. 이 회사는 액화천연가스(LNG)를 이용한 이중연료 시스템과 무평형수 선박, 메탄올 추진선, 수소 선박 개발 등 탄소중립을 앞당길 수 있는 기술력을 지속적으로 쌓아왔다. HJ중공업은 이번 기술 개발로 친환경 선박 전문 조선사로 도약할 수 있는 발판을 마련했다고 말했다. 앞서 HJ중공업은 지난 4월 국제해사기구(IMO)의 '2050년 온실가스 배출 넷제로(Net-Zero)' 목표에 따라 강화되는 해상 환경 규제에 선제적으로 대응하기 위해 세계적인 선박용 엔진 제조사인 핀란드 바르질라(Wartsila)사와 공동 개발 협약을 체결했다. 양사는 온실가스 감축을 넘어 탄소중립을 실현할 수 있는 차세대 친환경 선박 기술 개발을 위해 6개월여간 공동연구에 전념했다. 그 결과 바르질라의 CCS 시스템을 HJ중공업의 8500TEU급 컨테이너선에 적용함으로써 선박의 엔진이나 보일러에서 배출되는 탄소를 포집, 액체 상태로 저장 후 하역할 수 있는 새로운 선박 디자인을 개발했다. 국제 CCS 연구소(Global CCS Institute)는 탄소 포집·저장(CCS) 분야 연구기관으로, 세계 여러 나라의 탈탄소 정책 추진으로 글로벌 탄소 포집·저장 시장은 매년 30% 이상 성장해 2050년 포집량이 76억t에 이를 것으로 예상한다. HJ중공업이 이번에 개발한 탄소 포집 8500TEU급 컨테이너선은 동급 메탄올 추진선에 메탄올이 아닌 기존 석유계 연료를 사용하더라도 IMO 규제를 충족시킬 수 있을 정도로 높은 효율의 이산화탄소 포집이 가능하다. 이 회사는 LNG나 메탄올 연료 추진 선박에도 이 기술을 적용해 이산화탄소 배출을 추가로 줄일 수 있다고 전했다. 이번에 개발한 기술은 CCS시스템을 선체에 최적화하고 CCS 운영에 필요한 연료 역시 에너지 절감 장비를 통해 최소화한 것이 특징이다. 이와 함께 선박의 기존 화물적재량에 영향을 주지 않도록 CCS 시스템을 선체에 최적화했고, CCS 운영에 필요한 연료 역시 에너지 절감 장비를 통해 최소화한 것이 특징이다. HJ중공업은 배기가스에서 포집된 이산화탄소는 선박 내부에 액화되어 저장되며, 하역 후 지하 폐유정에 저장하거나 이산화탄소를 필요로 하는 다양한 산업에 활용된다고 설명했다. 이 회사는 이번 CCS 컨테이너선 선박 개발로 탄소중립 시장의 선점과 글로벌 CCS 선박 시장에서 우위를 확보하려는 전략을 세웠다. HJ중공업의 한 관계자는 "IMO의 환경 규제 강화에 따라 선박용 탄소 포집 기술이 중요성을 더해가고 있다"며 "2050년 탄소 제로 목표에 부응하여 지속적인 연구 개발을 통해 친환경 선박 시장에서의 기술 리더십을 확립해 나갈 계획"이라고 말했다. 한편, 정식명칭 '주식회사 에이치제이 중공업'은 1937년 설립됐으며 2005년 한진그룹에서 계열 분리됐다. 2021년 12월 한진중공업홀딩스와의 '한진중공업' 사명에 대한 상표권 계약이 만료되어 'HJ중공업'으로 사명을 변경했다. 조선부문 본사는 부산광역시 영도구에 있다.
-
- 산업
-
HJ중공업, 8500TEU급 탄소 포집 친환경 컨테이너선 개발
-
-
리튬이온 배터리 대체제 개발…EV 시장 혁신 기대
- 리튬이온 배터리 대체제로 불이 붙거나 폭발하지 않는 솔리드 스테이트 배터리가 개발됐다고 야후가 TC(The Cool Down)를 인용 보도했다. 이 매체는 호주 알텍 배터리(Altech Batteries Ltd)와 독일 프라운호퍼 연구소(Fraunhofer Institute)가 리튬이온 배터리보다 안전하고, 저렴하며, 오래 지속되는 솔리드 스테이트 배터리(CERENERGY) 기술을 개발했다고 전했다. 이 배터리는 알루미늄, 니켈, 세라믹과 같은 저렴하고 풍부한 재료를 사용하여 제작되었으며, 리튬과 코발트와 같은 희소 자원을 사용하지 않는다. 또한, 액체 전해질을 사용하는 리튬이온 배터리와 달리 화재나 폭발의 위험이 없다. CERENERGY 배터리는 현재 독일에서 파일럿 플랜트를 통해 상용화를 위한 테스트를 진행 중이며, 2024년부터 본격적인 생산이 시작될 예정이다. 리튬이온 배터리는 현재 전기차, 스마트폰, 노트북 등 다양한 분야에서 사용되고 있다. 그러나 리튬과 코발트와 같은 희소 자원을 사용해 비용이 높고 화재나 폭발 위험 등의 기술적 한계가 있다. CERENERGY 배터리는 이러한 한계를 극복한 획기적인 기술이다. 따라서 전기차(EV) 보급 확대와 배터리 산업의 지속 가능한 발전에 기여할 것으로 기대된다. 안전성·경제성·환경성 획기적 개선 CERENERGY 배터리는 기존 리튬 이온 배터리보다 안전성이 크게 개선됐다. 액체 전해질을 사용하는 리튬이온 배터리는 충전과 방전 과정에서 전해질이 과열되면 화재나 폭발이 발생할 수 있다. 반면, CERENERGY 배터리는 고체 전해질을 사용하기 때문에 이러한 위험이 없다. 또한, CERENERGY 배터리는 제조 비용이 40~50% 저렴할 것으로 예상된다. 이는 리튬과 코발트와 같은 희소 자원을 사용하지 않기 때문이다. 뿐만 아니라, CERENERGY 배터리는 기존 리튬이온 배터리 수명의 3배에 달하는 15년 이상 사용할 수 있을 것으로 예상된다. 한국 배터리 산업에도 기회 CERENERGY 배터리는 한국 배터리 산업에도 새로운 기회를 제공할 전망이다. 전 세계 리튬이온 배터리 시장의 약 20%를 점유하고 있는 한국은 배터리 제조의 선도 국가다. CERENERGY 배터리 기술이 상용화될 경우, 한국의 배터리 기업들은 해당 배터리의 생산을 위해 필요한 기술과 설비 투자를 확보하기 위해 노력할 것으로 예상된다. 이는 한국 배터리 산업의 경쟁력 강화로 이어질 수 있다. CERENERGY 배터리의 개발은 리튬이온 배터리의 고비용과 화재 위험 등 기술의 한계를 극복하고, 배터리 산업의 미래를 바꿀 것으로 기대된다.
-
- 산업
-
리튬이온 배터리 대체제 개발…EV 시장 혁신 기대
-
-
리튬이온 전지, 저온 합성법 리튬 세라믹 개발
- 리튬이온 배터리는 에너지 저장장치의 최정점에 서 있지만, 고비용과 화재 위험이 단점으로 지적된다. 특히 원자재 가격의 상승이 이어지면서, 보다 경제적이고 효율적인 리튬이온배터리의 연구개발이 가속화되고 있다. 과학기술·의학전문 매체 '사이언스엑스(Science X)'는 최근 화학 학술지 '앙게반테 케미(Angewandte Chemie)'에 게재된 고체 전해질 역할을 대신할 수 있는 경제적인 저온 합성법 리튬 세라믹 개발 소식을 전했다. 이 연구는 전기자동차의 배터리 개발에 있어서 큰 전환점이 될 것으로 보이며, 기존의 문제점들을 해결하는 데 일조할 것으로 보인다. 전기 자동차용 배터리 개발을 좌우하는 두 가지 요소는 차량 범위를 결정하는 '전력'과 '비용'으로, 이는 내연기관과의 경쟁에서 매우 중요하다. 미국 에너지부는 2030년까지 전기자동차의 배터리 생산 비용을 절감하고, 에너지 밀도를 높이는 것을 목표로 하고 있다. 이를 통해 내연기관 차량에서 전기 차량으로의 전환이 가속화될 것으로 전망되고 있다. 그러나 기존의 리튬이온 배터리만으로는 이 목표를 달성하기 어려울 것으로 보인다. 훨씬 더 작고, 더 가볍고, 강력하며 안전한 배터리를 제작하기 위한 새로운 접근 방식은 흑연 대신 금속 리튬을 사용한 양극 고체 셀을 사용하는 것이다. LLZO합성법 혁신 LLZO를 사용한 리튬이온 배터리 제조 과정에서는 일반적으로 이 물질을 1050°C 이상에서 음극과 함께 소결하여 급속한 리튬 전도성 입방 결정상을 형성하고, 전극에 강력하게 결합시켜야 한다. 그러나 600°C 이상의 고온 조건은 지속 가능한 저코발트 또는 무코발트 양극재의 안정성을 해치며, 생산비용과 에너지 소비 또한 상승시킨다. 이런 문제점을 해결하고자, 보다 경제적이며 지속 가능한 새로운 리튬이온 배터리 생산 방법의 필요성이 대두됐다. 이러한 배경 속에서 미국 케임브리지 MIT와 독일 뮌헨 TU의 연구팀이 새로운 합성 공정을 선보였다. 제니퍼 엘엠 루프(Jennifer LM Rupp) 박사가 이끄는 이 팀은 세라믹 전구체 화합물을 기반으로 하지 않는 새로운 방법을 개발했다. 이 공정은 LLZO를 형성하기 위해 순차적 분해 합성을 통해 직접 치밀화하는 액체 공정을 사용한다. 이를 통해 기존 방법보다 낮은 온도에서도 효율적으로 LLZO를 합성할 수 있게 되어, 생산 과정에서의 에너지 소비와 비용을 절감할 수 있을 것으로 기대된다. 루프 박사와 그의 연구팀은 LLZO의 무정형 형태에서 결정질 형태(cLLZO)로의 다단계 상변환을 분석하기 위해 다양한 방법(라만 분광법, 동적 시차 주사 열량계 등)을 활용했다. 이를 통해 시간-온도-변환 다이어그램을 제작하며, 합성 경로의 조건을 최적화하는데 성공했다. 500도 이하에서 합성 성공 연구팀은 이러한 분석을 바탕으로 500°C라는 상대적으로 낮은 온도에서 10시간 동안 어닐링 과정을 거친 후, cLLZO를 조밀하고 견고한 필름 형태로 만드는 새로운 기술을 선보였다. 이 최적화된 합성 방법을 통해 미래의 배터리 설계에서는 코발트와 같은 사회 경제적으로 중요한 자원을 사용하지 않아도 되며, 지속 가능한 음극과 고체 LLZO 전해질을 통합할 수 있게 됐다. 연구팀은 최근의 연구 성과를 바탕으로 "전고체 배터리의 상용화가 한 걸음 더 가까워졌다"며 "앞으로의 연구를 통해 리튬 세라믹의 성능을 더욱 향상시키고, 다양한 종류의 전고체 배터리에 적용할 수 있을 것"이라고 밝혔다. 한편, 한국원자력연구원 창업기업 내일테크놀로지는 나노 신소재를 이용하여 리튬이온전지의 성능과 안정성을 향상시키는 새로운 기술을 선보였다. 질화붕소 나노튜브(BNNT)를 활용한 이 기술은, 900도 이상의 고온에서도 안정성을 유지하며, 화학적 반응성이 낮은 것이 특징이다. 내일테크놀로지의 이러한 기술은 배터리 제작 공정에 무리 없이 적용될 수 있으며, 배터리의 출력과 용량, 충전과 방전, 그리고 안전성 등 전반적인 성능 향상에 기여할 것으로 예상된다. 이로써, 배터리 관련 기술 분야에서의 혁신과 더불어 에너지 저장장치의 성능 향상이 기대된다.
-
- 산업
-
리튬이온 전지, 저온 합성법 리튬 세라믹 개발