검색
-
-
AI 에너지 효율성 100배 개선⋯클라우드 의존 없는 실시간 나노전자소자 개발
- 노스웨스턴 대학교 엔지니어들은 가장 에너지 효율적인 방식으로 정확한 머신러닝 분류 작업을 수행할 수 있는 새로운 나노 전자 장치를 개발했다. 12일(현지시간) 미국 매체 노스웨스턴나우(northwestern now)에 따르면 기존 기술보다 100배 적은 에너지를 사용하는 방식으로 실시간으로 인공지능(AI) 작업을 수행할 수 있다. 이 장치의 가장 큰 특징은 클라우드를 이용하지 않고도 대용량 데이터를 실시간으로 처리하고 분석할 수 있는 점이다. 따라서 설치 공간이 협소하고 전력 소비가 적은 웨어러블 기기, 예를 들어 스마트 시계나 피트니스 트래커에 적용하기에 이상적이다. 연구 팀은 이 새로운 나노전자소자의 성능을 확인하기 위해 심전도(ECG) 데이터를 활용해 불규칙한 심장 박동인 부정맥을 진단하는 실험을 진행했다. 실험 결과, 이 장치는 다양한 부정맥 유형을 거의 95%의 높은 정확도로 판별할 수 있었다. 이번 연구 결과는 공학과 의학 분야에서 큰 파장을 일으킬 것으로 보이며, 관련 논문은 12일 '네이처 일렉트로닉스(Nature Electronics)' 저널에 게재됐다. '개인화된 서포트 벡터 머신 분류를 위한 재구성 가능한 혼합 커널 이종 접합 트랜지스터'라는 제목의 이 연구는 미국 에너지부, 국립과학재단, 육군 연구소의 지원을 받아 진행됐다. 이 연구의 선임 저자인 노스웨스턴의 마크 허삼(Mark C. Hersam) 박사는 "오늘날 대부분의 센서는 데이터를 수집한 다음 클라우드로 전송하고, 분석은 에너지 소모가 많은 서버에서 수행된 후 최종적으로 사용자에게 결과를 전송한다"며 "이 접근 방식은 엄청나게 비싸고 상당한 에너지를 소비하며 시간이 많이 걸린다"고 성명했다. 이어 "우리 장치는 에너지 효율이 매우 높아 웨어러블 전자기기에 직접 배치하여 실시간 감지 및 데이터 처리를 할 수 있으므로 건강 응급상황에 보다 신속하게 개입할 수 있다"고 말했다. 나노기술 전문가로 유명한 허삼 박사는 노스웨스턴 맥코믹 공과대학에서 월터 머피 재료과학 및 공학 교수로 활약하고 있다. 또한 재료 과학 및 공학과 학과장, 재료 연구 과학 및 공학 센터 소장, 그리고 국제 나노기술연구소 회원 등 왕성한 역할을 하고 있다. 허삼 박사는 이번 연구를 서던캘리포니아 대학교의 한 왕(Han Wang) 교수, 노스웨스턴 대학교의 비노드 상완(Vinod Sangwan) 연구 조교수와 공동으로 주도했다. 머신러닝 툴은 신규 데이터를 분석하기 전에, 먼저 학습 데이터를 다양한 카테고리에 정확하게 분류하는 과정을 거쳐야 한다. 예를 들어, 사진을 색상별로 분류하는 도구의 경우, 빨간색이나 노란색, 파란색 등 각 사진의 색상을 정확히 식별할 수 있어야 한다. 이러한 작업은 인간에게는 간단하지만, 기계에게는 상당한 에너지를 소모하는 복잡한 작업이다. 현재 실리콘 기반 기술로 심전도와 같은 대규모 데이터 세트를 분류하려면 100개 이상의 트랜지스터를 필요로 한다.이러한 각각의 트랜지스터는 작동과정에서 에너지를 소비한다. 하지만 노스웨스턴의 나노 전자 장치는 단 두 개의 장치로 동일한 머신러닝 분류를 수행할 수 있다. 연구진은 디바이스 수를 줄임으로써 전력 소비를 획기적으로 줄이고 표준 웨어러블 기기에 적용 가능한 훨씬 더 작은 크기의 디바이스를 개발했다. 이 새로운 디바이스의 비결은 다양한 소재를 혼합하여 전례 없는 조정성을 구현한 것이다. 기존 기술은 실리콘을 사용하지만 연구진은 2차원 이황화몰리브덴과 1차원 탄소 나노튜브로 소형화된 트랜지스터를 제작했다. 따라서 데이터 처리 단계마다 하나씩 많은 실리콘 트랜지스터가 필요한 대신, 재구성 가능한 트랜지스터는 다양한 단계 간에 전환할 수 있을 만큼 동적이다. 이번 새로운 디바이스의 성공 비결은 다양한 소재의 혼합과 창의적인 조절 능력에 있다. 기존에는 실리콘을 주로 사용했으나, 이번 연구에서는 2차원 이황화몰리브덴과 1차원 탄소 나노튜브를 활용하여 소형화된 트랜지스터를 구현했다. 이러한 혁신적 접근 방법 덕분에, 각 데이터 처리 단계에 여러 개의 실리콘 트랜지스터를 사용하는 것이 아니라, 하나의 재구성 가능한 트랜지스터만으로도 다양한 단계를 동적으로 전환할 수 있게 되었다. 허삼 박사는 이에 대해 "두 가지 서로 다른 재료를 하나의 디바이스에 통합함으로써, 전류 흐름을 강력하게 조절할 수 있는 동적 재구성이 가능하다"며 "이런 방식으로 단일 디바이스에서도 높은 수준의 조절이 가능해져, 작은 공간과 적은 에너지만을 소비하면서도 정교한 분류 알고리즘 실행이 가능하다"고 덧붙였다. 연구진은 장치를 테스트하기 위해 공개적으로 사용가능한 의료 데이터 세트를 찾았다. 먼저 심전도 데이터를 해석하도록 디바이스를 훈련시켰는데, 이는 일반적으로 숙련된 의료진이 상당한 시간을 들여야 하는 작업이다. 그런 다음 장치에 정상, 심방 조기 박동, 심실 조기 수축, 속도 박동, 왼쪽 다발 분기 블록 박동, 오른쪽 다발 분기 블록 박동 등 6가지 유형의 심장 박동을 분류하도록 요청했다. 연구팀은 장치의 성능을 테스트하기 위해 공개적으로 접근 가능한 의료 데이터 세트를 활용했다. 첫 단계에서 연구팀은 디바이스를 훈련시켜 심전도 데이터를 해석할 수 있도록 하였는데, 이는 일반적으로 전문 의료인력이 상당한 시간을 투입해야 해결할 수 있는 문제였다. 연구팀은 이어서 장치에게 정상 심장 박동, 심방 조기 박동, 심실 조기 수축, 속도 박동, 왼쪽 번치 가지 블록, 오른쪽 번치 가지 블록 등 총 6가지 유형의 심장 박동 패턴을 구분하도록 요청했다. 이렇게 개발된 나노전자 장치는 1만 개의 심전도 샘플을 분석하며 각각의 부정맥 유형을 정확하게 식별할 수 있었다. 또한, 이 장치는 데이터를 클라우드로 전송할 필요가 없어, 환자의 소중한 시간을 절약할 수 있을 뿐만 아니라, 환자의 개인 정보 보호도 가능하다. 허삼 박사는 "데이터가 전송될 때마다 도난당할 위험이 증가한다"고 주장했다. 그는 "개인 건강 정보가 손목 시계와 같은 웨어러블 장치에서 로컬로 처리될 경우, 정보의 도난 위험이 크게 감소한다"고 덧붙였다. 그러면서 이런 방법으로 이 장치가 개인 정보의 보호를 강화하고 정보 유출의 위험을 줄일 것이라고 강조했다. 그는 이러한 나노전자 장치가 향후 웨어러블 기기에 통합되어, 각 사용자의 건강 상태에 맞춰 개인화되며 실시간 애플리케이션에 적용될 것으로 전망했다. 이를 통해 사용자들은 추가적인 전력 소모 없이도 기존에 수집된 데이터를 최적화하여 활용할 수 있을 것으로 보인다고 말했다. 허삼 박사는 "AI 도구들이 전력 소비의 큰 부분을 차지하고 있는 상황"이라며 "현재의 컴퓨터 하드웨어에 계속 의존하는 것은 지속 가능하지 않다"라고 경고했다.
-
- IT/바이오
-
AI 에너지 효율성 100배 개선⋯클라우드 의존 없는 실시간 나노전자소자 개발
-
-
페덱스의 신형 AI로봇, 테트리스 연상 적재 신공 과시
- 매일 1500만 개 이상의 패키지를 처리하는 물류 대기업 페덱스(FedEx)가 최근 AI 기반의 양팔 로봇 '덱스(DexR)'를 선보였다. 이 로봇의 목적은 다양한 크기와 무게의 상자를 트럭에 테트리스처럼 효율적으로 적재하는 것이다. '덱스'는 페덱스 직원들에게 가장 어려운 작업인 화물의 트럭 적재를 자동화하기 위해 개발되었다. 기술 전문 매체 와이어드에 따르면, 이 로봇은 AI를 활용해 다양한 크기의 상자를 최대한 효율적으로 배치, 트럭 내부의 공간을 최대한 활용한다. 이는 결코 쉽지 않은 작업이다. 페덱스의 레베카 양(Rebecca Yang) 운영 및 첨단 기술 담당 부사장에 따르면, 패키지는 다양한 포장재, 크기, 모양, 무게로 제공돼 그 조합은 예측하기 어렵다. 로봇은 패키지를 감지하기 위해 카메라와 라이다(LiDAR, 일종의 레이저 광) 센서를 사용한다. 그리고 상자들을 효과적으로 배열해 안정적인 '벽'을 구성하고, 상자를 끊임없이 조정하여 미끄러짐이나 기타 문제에 대응한다. 양 부사장은 "몇 년 전 AI는 이처럼 복잡한 결정 과정을 처리하기엔 한계가 있었다"고 설명했다. 양팔 로봇 덱스는 현재 페덱스에서 광범위한 적용을 위한 예비 테스트를 거치고 있다. 챗GPT와 같은 생성형 AI 도구 덕분에 많은 산업이 AI가 거의 모든 작업을 수행할 수 있다고 인식하기 시작했다. 그렇지만, 예측하기 어려운 현실 세계에서 물체를 다루는 것은 알고리즘에게 여전히 큰 도전이다. 대다수의 산업용 로봇은 주로 반복적이고 극도로 정밀한 작업을 수행하기 위해 설계되었다. 반복 작업 위해 정밀 설계 로봇 공학은 지속적으로 발전하고 있으며, 현재 많은 기계들이 AI를 통해 물체를 인식하고 이를 처리하는 방법을 결정하고 있다. 이런 과정에서 알고리즘이 실제 로봇에 적용되기 전에, 시뮬레이션에서 오류를 최소화하며 훈련을 받을 수 있다. 하지만 시뮬레이션의 세계에서 현실로의 전환은 간단하지 않다. 개선된 알고리즘, 로봇 기계 학습에 대한 신선한 접근법, 그리고 발전된 하드웨어 및 센서 덕분에 고급 로봇의 실용적인 응용이 점점 확장되고 있다. 카네기 멜론 대학의 로보틱스 연구소장 매튜 존슨-로버슨은 "최근 1~2년 동안 AI와 머신러닝의 발전으로, 많은 사람들이 이를 '비용 절감 및 효율성 향상을 통한 수익성 있는 비즈니스 케이스로 활용할 수 있다'고 주장하고 있다"고 밝혔다. 자율주행 차량과 AI의 지속적인 발전에 대한 오랜 기간의 투자 덕분에 로봇이 더 다양한 작업장에서 활용될 수 있게 될 것이라고 존슨-로버슨은 지적했다. 그는 "현재 상업용 로봇 공학의 초창기에 불과하다고 볼 수 있다"라고 덧붙였다. 생성 AI 활용해 패턴 계산 페덱스 로봇은 캘리포니아 레드우드 시티에 본사를 둔 스타트업인 덱스터리티(Dexterity)가 페덱스를 위해 개발했다.덱스터리티는 창고 운영을 위한 다양한 AI 기반 로봇 시스템 개발을 전문으로 하는 기업이다. 페덱스의 로봇은 캘리포니아 레드우드 시티에 위치한 스타트업 덱스터리티(Dexterity)가 개발했다. 덱스터리티는 창고 자동화를 위한 AI 기반 로봇 시스템의 전문 개발업체이다. 사미르 메논(Samir Menon) 덱스터리티의 최고경영자(CEO)는 페덱스를 위해 제작된 로봇이 생성 AI를 활용하여 다양한 유형의 상자를 적절히 쌓을 수 있도록 설계되었다고 밝혔다. 이 AI는 상자를 인식하고, 그것을 잡는 과정에도 활용된다. 그렇지만 메논은 이러한 시스템을 구축하기 위해서는 신중한 엔지니어링 작업이 필요하다고 강조했다. 로봇이 상자를 적재할 때마다, 포스 피드백을 통해 패키지의 정확한 배치를 확인한다. 더불어 카메라와 깊이 센서로 로딩 된 물품을 스캔하여 기존의 모델과의 일치성을 점검한다. 일치하지 않을 경우, 로봇은 현재 작업 상태에 맞춰 적재 전략을 수정한다. 온라인 쇼핑의 대표 기업인 아마존의 성장과 함께, 패키지 처리는 로봇 개발에서 혁신적인 핵심 분야로 부상했다. 아마존은 현재 제품을 보다 효율적으로 관리하고 처리하기 위해 수천 대의 첨단 로봇을 운영하고 있다. 트럭 내부는 다양한 상자를 적재해야 하는 제한된 공간이다. 이것은 로봇이 창고에서 수행하는 일반적인 선택 작업보다 "더 큰 도전"이라고 매사추세츠 공과대학(MIT)의 AI와 로봇 공학 전문가 풀킷 아그라왈(Pulkit Agrawal) 교수는 지적했다. AI로봇 활용으로 실업 우려 확산 로봇이 다양한 업무를 수행하는 시대가 급속히 다가오면서, AI 기반 로봇 활용의 증가로 인한 실업에 대한 우려가 커지고 있다. 미국의 자동차 공장 노동자들의 연속적인 파업은 전기차와 자율 주행과 같은 급변하는 기술 트렌드와 연관되어 있다. 페덱스의 양 부사장은 이 로봇이 완벽하진 않지만, 결국 숙련 노동자와 동등한 속도로 트럭에 화물을 적재할 수 있을 것이라고 전망했다. 페덱스는 이미 버크셔 그레이의 기술을 활용해 일부 시설에서 소포 분류 작업을 수행 중이다. 이 기술에 대해 회사는 2022년에만 약 2억 달러를 투자했다. 양 부사장은 페덱스가 몇 대의 로봇을 언제 도입할지에 대해 구체적으로 밝히지 않았다. 로봇의 신뢰성 관련 데이터는 아직 수집 단계에 있다. 그럼에도 덱스터리티의 로봇 기술은 다른 영역에도 적용될 전망이며, 페덱스는 로봇을 통해 더욱 다양한 업무를 처리하고자 한다. 그는 "이것은 우리에게 큰 전환점이며, 다가오는 세대가 우리의 업무 방식을 향상시키는 것을 목격하게 되어 기쁘다"고 말했다.
-
- IT/바이오
-
페덱스의 신형 AI로봇, 테트리스 연상 적재 신공 과시
-
-
[퓨처 Eyes(4)] 2023년 이후 주목받는 AI 트렌드 5가지
- 인공지능(AI) 시장은 지난 몇 년 동안 기하급수적인 속도로 성장했다. 전 세계적으로 널리 알려진 챗GPT(ChatGPT)와 구글 바드(Bard), IBM의 왓슨(Watson), 네이버의 클로바X와 같은 제품 덕분에 이런 성장이 가능했다. 글로벌 경영 컨설팅 회사인 맥킨지(McKinsey)는 현재 전체 조직의 50~60%가 이미 AI 기반 도구를 사용하고 있으며, 이 비율은 가까운 미래에 더욱 늘어날 것으로 추정된다. 포브스 보고에 따르면, AI는 현재 세계에서 가장 빠르게 성장하고 있는 산업 중 하나이다. 이 분야의 시장 가치는 10년 내로 연평균 37.3%의 성장률을 기록하며, 같은 기간 동안 약 1조 8100억 달러의 누적 가치에 이를 것으로 전망된다. 이러한 증가세는 근거가 없는 것이 아니며, 실제로 많은 전문가들이 2030년까지 AI가 세계 경제에 기여할 가치가 15조 7000억 달러에 이를 것으로 예측한다. 이는 현재 인도와 중국의 GDP를 합한 것보다도 더 큰 금액이다. 이러한 예상은 생성형 AI)와 자연어 처리(NLP) 같은 특정 기술 트렌드의 발전 덕분이라고 할 수 있다. 기술의 중요성이 점점 부각됨에 따라, 시장 및 기술 전문가들은 AI가 주도하거나 영향을 미칠 주요 트렌드들에 주목하고 있다. AI 어시스턴트의 성장부터 생성형 AI의 부상까지 코인텔레그래프가 진단한 '2023년 이후 주목받는 AI트렌드 5가지'를 소개한다. AI 어시스턴트 사용 증가 기술이 지속적으로 발전하며 확장되면서, AI 어시스턴트는 다양한 서비스 분야의 자동화와 디지털화를 가능하게 하는 준비 상태에 있다. AI 기반 디지털 서비스 개발사 VAIOT의 최고 운영 책임자 파베 안드루슈키에비츠는 법률 서비스, 공공 행정, 시민 서비스 등이 AI의 도움으로 크게 향상될 수 있는 몇몇 분야라고 지적했다. 그는 "AI 어시스턴트는 사용자에게 더 나은 접근성과 비용 절감, 사용의 편리성을 제공한다. 법률 서비스의 경우, 많은 사람들이 비용 문제나 접근성의 어려움으로 인해 이용하는데 어려움을 겪기도 한다. AI 어시스턴트는 24시간 연중무휴로 모바일 기기에서 접근 가능한 '자연스러운 사용자 인터페이스'를 제공함으로써, 이런 부분의 장벽을 낮추어 누구나 쉽게 법률 지원을 받을 수 있도록 도와준다"고 설명했다. 포춘 500대 기업에서 AI 도입 선호도 상승 AI 컨설팅 전문 회사 킨포크스(Keenfolks)의 미구엘 마차도 CEO이자 공동 창립자는 최근 사람들이 AI 제품의 빠른 확장 속도와 폭넓은 접근성에 대해 놀라게 될 것이라고 전망했다. 그는 오픈AI의 챗GPT 인터페이스가 2022년 3월에 출시된 후 현재 사용자 수가 1억 명이 넘는 것을 예로 들었다. 그는 "다양한 파일럿 실험을 통해, 포춘 500대 기업은 AI 전략을 더 빠르게 조정하고 향상시킬 수 있을 것이며, 커뮤니티는 언어 모델에 대한 지식을 활용하여 협동 학습과 기술 개발을 추진하는 플랫폼 구축에 핵심 역할을 할 것"이라고 강조했다. 마차도는 법률, 인사, 재무 등의 분야에서 최고 경영진이 비즈니스를 혁신하기 위해 AI를 적극 도입하는 추세가 확산되고 있다고 지적했다. 그는 "노코드(Nocode) 솔루션의 등장은 AI도입을 대중화해서 기술적 전문성이 부족한 브랜드들도 첨단 기술을 그들의 운영체계에 손쉽게 통합하게 만들어줄 것"이라고 덧붙였다. 생성형 AI 급성장 최근 몇 년 간 많은 AI 기반 애플리케이션은 기존 데이터를 활용하여 예측하거나 인사이트를 추출하는 예측 모델에 주로 의존했다. 이렇게 생성된 결과는 기존 데이터에서 파생되며 실제로 새로운 내용을 제공하지 않는다. 반면, 생성형 AI는 머신러닝과 딥러닝을 사용해 기존 학습 데이터 위에 구축된 새로운 패턴을 사용하여 독립적으로 계산된 독창적인 정보를 생성한다. 지난 한 해 동안 이러한 모델은 텍스트, 이미지, 오디오 및 비디오 콘텐츠를 생성하는 데 광범위하게 사용됐다. 메타와 언스트앤영의 생성형 AI 전문가이자 기술 자문인 헨리 아더(Henry Ajder)는 이 기술의 미래 가능성에 대해 "우리는 현재 생성형 기술의 초기 단계에 있으며, 앞으로 합성 미디어는 단순한 신기함에서 벗어나 엔터테인먼트, 교육, 접근성 등의 분야에서 큰 발전을 이끌 것"이라고 전망했다. 자연어 처리(NLP) 시스템의 성장 가까운 미래에 큰 관심을 받을 것으로 예상되는 AI 분야 중 하나는 자연어 처리(NLP)이다. 이 기술은 검색 엔진부터 음성 인식 시스템까지, 많은 사람들이 일상적으로 의존하는 다양한 기술 제품의 핵심이다. NLP를 통해, 기계는 사람의 언어를 보다 자연스럽게 이해하고 해석하여 대응할 수 있다. 실제로, 언어 모델링, 구문 분석, 감정 분석, 기계 번역, 음성 인식 등의 방식을 활용하여 이 기술은 다양한 비즈니스 환경에서 사용자에게 현실적인 대응을 제공한다. 아직 초기 단계이 이 분야의 잠재력을 강조하는 그랜드 뷰 리서치(Grand View Research)의 최신 보고서에 따르면, 2023년에서 2030년 사이에 연평균 40.4%의 성장률을 보일 것으로 예상되며, 10년 후에는 약 4385억 달러의 시장 규모를 이룰 것으로 전망된다. 의료 분야의 AI 활용 확대 포브스에 따르면, 의료 분야에서 AI의 활용은 질병을 진단하고 치료하는 의사의 방식을 혁신적으로 바꿀 것으로 보인다. 또한 신약 개발과 의학 연구 분야에서도 머신 러닝의 적용이 확대될 것이다. 2027년까지 신약 개발에 AI가 사용되는 규모는 40억 달러에 달할 것으로 예상된다(45.7%의 연평균 성장률로 성장). 마찬가지로 미국 의료 서비스 제공업체의 50% 이상이 내부 의료 프로세스의 일부로 로보틱스 프로세스 자동화와 같은 AI 도구를 도입했거나 도입할 계획이다. 2027년까지 AI가 신약 개발에서 차지하는 부분은 약 40억 달러로 추정되며, 이는 45.7%의 연평균 성장률로 성장할 것으로 예측된다. 또한, 미국의 의료 서비스 제공자 중 절반 이상이 로보틱스 프로세스 자동화 등의 AI 도구를 의료 프로세스에 통합하거나 도입 계획을 세우고 있다. 결과적으로 AI, 머신러닝, 딥러닝, 자연어 처리와 같은 첨단 기술이 주도하는 디지털 시대로 전환하면서 다양한 산업에서 이러한 기술의 적용이 확대되어, 보다 디지털화되고 자동화된 미래를 구축하는 데 큰 역할을 할 것으로 예상된다.
-
- 포커스온
-
[퓨처 Eyes(4)] 2023년 이후 주목받는 AI 트렌드 5가지
-
-
도시바, AI로 '포트홀' 감지해 중대 사고 예방
- 비가 쏟아지면 도로 표면에 구멍이 생기는 포트홀(pot hole)은 자칫 중대 사고로 이어질 확률이 높다. 이 포트홀은 일반적으로 사람의 눈으로 직접 확인하고 보수해야 했기 때문에, 많은 시간과 노동력이 소모되어왔다. 그런데 일본의 전기기기 회사 도시바와 도시바 디지털 솔루션즈가 포트홀을 해결할 수 있는 '노면 변화 감지 AI(인공지능)'를 개발해 실용화에 나섰다. 일본 IT전문 매체 지디넷(ZD NET)에 따르면, 도시바와 도시바 디지털 솔루션즈는 NEXCO 중일본과의 협력 하에 고속도로 일상 점검의 효율성을 향상시키기 위한 검증실험을 진행했다. 그 결과, 이 AI 기술은 일상 점검의 자동화와 노동력 절감 뿐만 아니라, 긴급 보수가 필요한 포트홀을 조기에 발견하는 데 큰 효과가 있음이 밝혀졌다. 이로써 고속도로의 유지보수와 장기적인 안정적 운영에도 큰 도움이 될 것으로 기대된다. 지난 2019년 NEXCO 중일본 지역 내의 고속도로에서 약 3200건의 포트홀이 발견됐다. 이 중 30년이 경과한 도로가 전체의 60%를 차지하며, 노면의 변화로 인해 포트홀 발생 빈도가 증가했다. 이로 인해 적시에 이루어지는 점검 및 유지보수가 절실하게 필요한 상황이었다. 기존의 점검 방식은 점검원이 순찰 차량을 이용하여 정기적으로 도로를 순회하며 육안으로 포트홀을 확인하는 방식이었다. 긴급 보수가 필요한 포트홀을 발견할 경우, 점검원은 안전한 정차 지점을 찾은 후, 다시 포트홀이 있는 장소로 돌아와 사진 촬영을 해야 했다. 이후 해당 사진을 도로관제센터에 보고하는 과정을 거쳤다. 도시바 연구개발센터의 미디어 AI 실험실 전문가 노다 레이코 씨는 "노면 변화 감지 AI는 점검원이 탑승한 차량에 설치된 카메라로 이미지를 수집하며, 이 이미지를 AI로 분석한다. 이를 통해 주행 중에도 실시간으로 포트홀을 자동으로 파악하고, 바로 도로관제센터에 보고가 가능하다. 이로써 점검 품질의 일관성과 작업의 안전성이 보장되며, 긴급 보수에 소요되는 시간도 크게 줄일 수 있다"고 말했다. 이번 AI의 눈에 띄는 특징은 '약교사 학습형' 기술이 탑재된 것이다. '약교사 학습형' 기술은 영어로 'Weakly Supervised Learning'이라고도 하며, 머신러닝에서 사용되는 학습 방식 중 하나다. 도시바는 AI가 딥러닝 모델을 통해 입력 이미지에서 비정상 패턴의 스코어 맵을 생성한다고 설명했다. 이 모델은 스코어 맵의 최대값이 입력 이미지의 변화와 일치하도록 학습되어, 정상 이미지와 비정상 이미지 사이의 차이점을 높은 스코어로 표시한다. 이 기술의 도입으로 이미지 분석 시간이 기존 1분 40초에서 단 1초로 줄어들었다. 이로 인해 작업 부담을 줄이고 다양한 도로 환경에서의 적용이 용이해졌다. 향후 두 회사는 NEXCO 중일본과 실증 실험을 진행해 긴급 보수가 필요한 포트홀의 검출 정밀도를 향상시키고 오는 2024년 실용화를 목표로 하고 있다. 2024년 이후로는, 네쿠스코(NEXCO 일본도로공단 후계의 민영기업으로, 동일본, 중일본, 서일본의 3개 회사로 구성)는 각 점검 항목별로 내부에서 AI 모델을 개발할 수 있는 서비스를 제공할 계획이다.
-
- 산업
-
도시바, AI로 '포트홀' 감지해 중대 사고 예방
-
-
[퓨처 Eyes(3)] 양자 컴퓨터, AI·챗GPT보다 더 큰 기술 혁신 온다
- 미래 기술에서 양자 컴퓨터를 빼고 이야기할 수 없다. 양자 컴퓨터는 독특한 도전과제를 제시하고 전례 없는 연산 능력을 약속하는 최첨단 기술이다. 양자 컴퓨터는 양자역학의 원리를 이용하여 작동한다. 이진 논리(0과 1)와 순차적 계산으로 작동하는 기존 컴퓨터와 달리, 양자 컴퓨터는 무한한 수의 가능한 결과를 나타낼 수 있는 양자 비트, 즉 '큐비트(qubit)'라는 정보 단위를 사용해 계산을 수행한다. 이를 통해 양자 컴퓨터는 양자역학의 확률적 특성을 활용하여 엄청난 수의 계산을 동시에 수행할 수 있다. 인공지능(AI) 챗 GPT보다 더 큰 기술혁신을 몰고 올 것으로 기대되는 양자 컴퓨터의 장점은 첫째, 기존 컴퓨터보다 어떤 작업도 더 빠르게 수행할 수 있다. 양자 컴퓨터에서는 원자가 기존 컴퓨터보다 더 빠르게 움직이기 때문이다. 둘째, 높은 수준의 정밀도로 국가 보안 및 메가데이터 처리에 적합하다. 셋째, 에너지 낭비가 적다. 양자 컴퓨터는 아직 초기 단계에 있지만 암호화부터 신약 개발에 이르기까지 다양한 분야에 혁신을 가져올 잠재력을 가지고 있다. 양자 컴퓨터를 사용하면 부작용이 적고 더 효과적인 신약을 개발할 수 있다. 또한 IT 보안의 주요 도전 과제이기도 하다. 연구자와 기술 기업은 양자 컴퓨터의 성능을 견딜 수 있는 새로운 암호화 방법을 모색해야 한다. 여기에는 새로운 암호화 알고리즘을 개발하거나 양자역학의 원리를 사용하여 '양자 암호화'로 알려진 것을 만드는 게 포함될 수 있다. 프랑스 일간 경제지 라 트리뷘(LATRIBUNE)에 따르면 2030년까지 2000~5000대의 양자 컴퓨터가 작동할 것으로 보인다. 이 매체는 양자 컴퓨터 퍼즐에는 많은 조각이 있기 때문에 가장 복잡한 문제를 처리하는 데 필요한 하드웨어와 소프트웨어는 2035년 이후에나 존재할 수 있다고 전망했다. 또 대부분의 기업은 2035년까지 양자 컴퓨터를 통해 상당한 가치를 창출할 수 없겠지만, 일부 기업은 향후 5년 동안 이득을 볼 수 있을 것으로 내다봤다. 양자 컴퓨터 시장 규모는 2022년 약 10억 달러에서 2030년 80억 달러로 증가할 것으로 추정된다. 퓨처 아이즈에서는 양자 컴퓨터 작동 원리와 금융이나 생명공학, 공급망 등의 적용 분야, 향후 양자 컴퓨터 개발 과제 등을 점검해본다. 양자 컴퓨터의 작동 원리 1) 중첩 양자컴퓨터의 '중첩(Quantum superposition)'은 양자역학의 기본 원칙 중 하나로, 양자시스템이 두 개 이상의 상태를 동시에 가질 수 있다는 개념을 의미한다. 전통적인 컴퓨터에서 비트는 0 또는 1의 값을 갖는다. 그러나 양자컴퓨터에서 '큐비트'는 중첩의 원칙 덕분에 0과 1의 상태를 동시에 가질 수 있다. 이러한 특성은 양자컴퓨터가 복잡한 계산을 전통적인 컴퓨터보다 훨씬 빠르게 수행할 수 있게 해준다. 2) 양자 얽힘 양자 얽힘은 큐비트가 서로 결합하여 한 큐비트의 상태가 다른 큐비트의 상태에 즉각적으로 영향을 미칠 수 있게 함으로써 큐비트 사이의 거리에 관계없이 큐비트를 연결할 수 있게 한다. 이 특성 덕분에 양자 컴퓨터는 기존 컴퓨터보다 복잡한 문제를 더 효율적으로 해결할 수 있다. 3) 양자 게이트 양자 게이트는 큐비트 집합에서 수행할 수 있는 연산이다. 양자 게이트는 고전 컴퓨팅의 논리 게이트와 유사하지만, 중첩과 얽힘 덕분에 양자 게이트는 가능한 모든 입력을 동시에 처리할 수 있다. 양자 컴퓨터의 적용 잠재력 양자 컴퓨터의 잠재력은 방대한 양의 정보를 병렬로 처리할 수 있어 기존 컴퓨터에 비해 계산 능력이 기하급수적으로 증가한다는 데 있다. 기존 컴퓨터는 한 사람의 경주 결과를 계산할 수 있지만, 양자 컴퓨터는 서로 다른 경로를 가진 수백만 명의 참가자가 참여하는 경주를 동시에 분석하고 확률 기반 알고리즘을 사용하여 가장 가능성이 높은 우승자를 결정할 수 있다. 양자 컴퓨터는 특히 여러 가지 확률적 결과가 나오는 최적화 문제와 시뮬레이션을 해결하는 데 적합하며 물류, 의료, 금융, 사이버 보안, 날씨 추적, 농업 등의 분야에 혁신을 가져올 수 있다. 양자 컴퓨터의 영향력은 지정학까지 확장되어 전 세계적으로 힘의 역학 관계를 재편할 수 있다. 양자 컴퓨터는 금융과 생명공학, 공급망 등 많은 산업 분야에 혁신을 가져올 것이다. ◇ 금융 금융 및 투자 산업은 양자 AI(퀀텀 AI)의 혜택을 크게 받을 수 있는 분야 중 하나다. 대량의 데이터를 실시간으로 분석할 수 있는 양자 AI 알고리즘은 금융회사가 보다 정보에 입각한 투자 결정을 내리고 리스크를 보다 효과적으로 관리하는 데 도움이 될 수 있다. 예를 들어, 양자 AI는 시장 동향을 분석하고 주식, 채권 및 기타 금융상품의 움직임을 예측하는 데 사용될 수 있다. 이는 투자자가 투자 시점에 대해 더 많은 정보를 바탕으로 구매, 판매 또는 보유 결정을 내리는 데 도움이 될 수 있다. 또한 금융회사가 새로운 투자 기회를 파악하는 데도 도움이 될 수 있다. 양자 AI 알고리즘은 대량의 데이터를 분석하여 새로운 트렌드와 성장 가능성이 있는 산업을 파악할 수 있다. 이를 통해 투자자는 새로운 산업의 초기 단계에 진입하고 잠재적으로 상당한 투자 수익을 얻을 수 있다. ◇ 생명공학 양자 AI는 유전자 데이터와 기타 복잡한 의료 정보를 분석할 수 있는 능력을 통해 질병에 대한 새로운 치료법과 치료법을 찾아내는 데 도움을 줄 수 있다. 예를 들어, 양자 AI는 대량의 유전자 데이터를 분석하여 암과 같은 질병의 근본적인 원인을 파악하는 데 사용될 수 있다. 이는 연구자들이 이러한 질병을 유발하는 특정 유전자 돌연변이를 표적으로 하는 새로운 치료법을 개발하는 데 도움이 될 수 있다. 또한 의료진이 환자 개개인에게 맞춤화된 치료를 제공하는 데 도움이 될 수 있다. 양자 AI 알고리즘은 환자의 유전자 데이터를 분석하여 해당 환자의 특정 질환에 가장 효과적인 치료법을 찾아낼 수 있다. 이를 통해 의료진은 보다 효과적인 치료를 제공하고 환자 치료 결과를 개선할 수 있다. ◇ 공급망 및 물류 물류 및 공급망 관리는 양자 AI의 혜택을 크게 받을 수 있는 또 다른 분야다. 복잡한 물류 네트워크를 최적화함으로써 기업은 비용을 절감하고 효율성을 개선할 수 있다. 양자 AI는 배송 경로와 배송 시간을 분석하여 가장 효율적인 상품 운송 방법을 파악하는 데 사용될 수 있다. 양자 AI 알고리즘은 판매 데이터 및 기타 요인을 분석하여 제품 수요를 예측하고 기업이 재고 수준을 최적화할 수 있도록 도울 수 있다. 이를 통해 기업은 낭비를 줄이고 수익성을 개선할 수 있다. ◇ 기후 및 환경 모델링 양자 AI는 기후 및 환경 모델링에도 큰 영향을 미칠 수 있다. 연구자들은 대량의 환경 데이터를 분석함으로써 기후 변화의 영향을 더 잘 이해하고 그 영향을 완화하기 위한 전략을 개발할 수 있다. 양자 AI는 위성 데이터를 분석하여 해수면 변화를 추적하고 해수면 상승이 해안 지역 사회에 미치는 영향을 예측하는 데 사용될 수 있다. 또 기상 조건을 분석하고 허리케인이나 토네이도와 같은 자연재해의 발생 가능성을 예측하는 데에도 사용될 수 있다. 양자 컴퓨터의 개선점 양자 컴퓨터는 큐비트 수정과 양자 오류 등의 수정, 양자 알고리즘 개발 등이 문제점으로 거론된다. 이를 개선하면 양자 컴퓨터는 상상할 수 없는 혁신적인 단계로 접어들 것으로 보인다. 1) 큐비트 개선 양자 컴퓨팅의 기본 단위인 큐비트는 고전적인 비트에 해당한다. 연구자들은 양자 정보를 보다 안정적으로 저장하고 조작할 수 있는 더 안정적이고 일관된 큐비트를 개발하기 위해 노력하고 있다. 초전도 큐비트, 갇힌 이온 기반 큐비트, 광자 기반 큐비트 등 다양한 기술이 연구되고 있다. 2) 큐비트 수 증가 양자 계산의 규모와 복잡성은 사용 가능한 큐비트 수에 따라 달라진다. 연구자들은 더 강력한 양자 알고리즘을 실행하기 위해 큐비트 수를 크게 늘리고자 한다. 큐비트 수가 많은 양자 컴퓨터는 기존 컴퓨터로는 접근할 수 없는 계산을 수행할 수 있게 해준다. 3) 양자 오류 수정 양자 시스템은 노이즈, 간섭, 불안정성 등의 요인으로 인해 오류가 발생하기 쉽다. 양자 오류 수정은 양자 오류를 감지하고 수정하는 기술을 개발하여 실제 시스템에서 양자 계산의 신뢰성을 보장하는 것을 목표로 하는 활발한 연구 분야다. 4) 양자 알고리즘 연구원들은 양자 컴퓨터에서 실행되도록 설계된 특정 알고리즘을 개발하기 위해 노력하고 있다. 이러한 알고리즘은 양자 속성을 활용하여 기존 알고리즘보다 복잡한 문제를 더 빠르게 해결한다. 유망한 양자 알고리즘의 예로는 쇼 인수분해 알고리즘, 그로버 검색 알고리즘, 양자 시뮬레이션 알고리즘 등이 있다. 5) 양자 머신 러닝과 양자 인공 지능의 사용 연구자들은 양자 시스템의 고유한 특성을 활용할 수 있는 새로운 머신러닝 및 인공 지능 알고리즘을 개발하기 위해 양자 컴퓨팅의 활용을 모색하고 있다. 6) 양자 클라우드 서비스의 부상 큐비트 수와 일관성 시간이 증가함에 따라 많은 기업이 사용자에게 양자 클라우드 서비스를 제공하여 자체 양자 컴퓨터를 구축하지 않고도 양자 컴퓨팅의 성능을 이용할 수 있도록 하고 있다. 7) 양자 오류 수정의 발전 양자 컴퓨터를 실질적으로 유용하게 사용하려면 계산 중에 발생하는 오류를 최소화하는 양자 오류 수정 기술이 필요하다. 이 목표를 달성하기 위해 많은 새로운 기술이 개발되고 있다. 양자 컴퓨팅은 아직 개발 초기 단계에 있으며, 널리 사용 가능하고 상업적으로 실행 가능한 양자 시스템이 현실화되려면 많은 기술적 과제를 극복해야 한다. 하지만 이러한 혁신 분야의 지속적인 발전은 가까운 미래에 양자 컴퓨팅에 대한 흥미로운 전망을 열어줄 수 있다. 양자 컴퓨팅은 새로운 논리 패러다임으로 인해 프로그래밍에 완전히 다른 접근 방식이 필요하다. 이 기술의 잠재력을 효과적으로 활용하려면 불확실성과 반복적인 휴리스틱 접근 방식을 수용하는 것이 필수적이다. 그러나 양자 컴퓨팅의 한 가지 중요한 과제는 오류 확률을 높이지 않고 여러 큐비트를 연결해야 한다는 점이다. 이는 양자 컴퓨팅 기술의 상업적 성장을 가로막는 중요한 장애물로 남아 있다. 양자 상태를 저하시키는 디코히어런스를 피하기 위해 큐비트를 실제 환경으로부터 격리해야 한다는 현실적인 제약이 있다. 현재는 극도로 낮은 온도로 냉각하는 것이 격리에 사용된다. 현재 진행 중인 연구에서는 양자 프로세서의 확장성과 상업적 실용성을 높이기 위해 포토닉스 및 다양한 소재를 포함한 다양한 방법론을 모색하고 있다. 또한 양자 컴퓨터는 '1000큐비트'의 강력한 성능이 필요하다. 지난 10년 동안 양자 컴퓨팅은 괄목할 만한 발전을 이루었다. 예를 들어 IBM은 2017년에 50큐비트 칩을 출시했으며, 2019년에는 특정 계산에서 가장 빠른 기존 슈퍼컴퓨터를 능가하는 성능을 보였다고 주장했다. 1000큐비트 양자 컴퓨터 개발 경쟁이 이미 진행 중이며, 더 많은 발전이 기대된다. 양자 컴퓨터의 잠재력을 최대한 발휘하려면 오류 수정 큐비트의 개발이 필수적이다. 현재의 양자 프로세서는 하나의 오류 수정 큐비트를 구현하기 위해 상당한 수의 표준 큐비트가 필요한 경우가 많다. 그러나 이 문제는 향후 몇 년 내에 해결될 것이라는 낙관적인 전망이 나오고 있다. 현재 거론하는 양자 컴퓨터에 대한 단기적인 전망은 과장된 것일 수 있지만, 장기적인 결과는 판도를 바꿀 가능성이 높다. 다양한 분야에서 전 세계적으로 관심이 높아지면서 상당한 자본이 투입되고 있으며, 향후 몇 년 동안 놀라운 실용적 혁신이 이루어질 수 있는 기반을 마련하고 있다. 양자 컴퓨터는 전례 없는 연산 능력을 제공하고 다양한 산업과 분야에 혁명을 일으켜 세상을 변화시킬 수 있는 가능성을 지니고 있다. 아직 해결해야 할 과제가 남아 있지만, 양자 기술의 지속적인 발전은 언제든 획기적인 발전이 일어날 수 있음을 시사한다. 양자 컴퓨터의 잠재력을 활용하면 모든 첨단 기술 중에서 가장 영향력 있는 기술이 되어 우리 사회에 큰 발전을 가져올 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(3)] 양자 컴퓨터, AI·챗GPT보다 더 큰 기술 혁신 온다
-
-
오픈AI의 GPT-4 경쟁자 구글 '제미니', 올해 말 공개 예정
- 기술 대기업 구글에서 오픈AI의 생성형 인공지능(AI) 챗GPT의 대항마인 '제미니(Gemini)'를 출시한다. 현재 생성형 AI 시장의 예상 가치는 2032년까지 1조 3000억 달러에 달할 것으로 전망된다. 지난해 11월 첫선을 보인 오픈AI의 챗GPT는 이미 월간 활성 사용자 수가 1억 명을 돌파하며 그 성장세를 이어가고 있다. 이러한 상황에서 구글이 자체 개발한 대화형 AI 챗봇 '바드(Bard)'와 새로운 언어 모델(PaLM 2 LLM)을 선보이며 시장에서의 존재감을 확대하고 있다. 4일(현지시간) 기술 전문매체 더 테크아웃룩에 따르면 구글이 올해 말 오픈AI의 챗GPT의 GPT-4와 직접적으로 경쟁할 수 있는 '제미니'를 공개할 예정이라는 소식이 전해졌다. GPT-4는 오픈AI에서 개발한 자연어 처리(NLP) 모델로, GPT(Generative Pre-trained Transformer) 시리즈의 네 번째 버전으로 5000억 개의 파라미터를 가지고 있는 것으로 알려졌다. 이전 버전인 언어 기반 인공지능 모델 GPT-3는 약 1750억 개의 파라미터를 가지고 있다. 제미니는 구글이 보유한 TPUv5 칩, 총 1만6384개의 칩을 활용해 훈련되었으며, 훈련 데이터는 압도적인 65조 개의 토큰으로 이뤄져 있다. 또한 유튜브 콘텐츠와 알파고의 훈련 기법 역시 활용되었다. 시장 전문가들은 구글 제미니가 GPT-4를 능가할 세 가지 주요 이유를 지적한다. 첫째, 텍스트와 이미지 생성 능력, 둘째, 구글 서비스에서 확보한 독점적 학습 데이터, 그리고 셋째, 세르게이 브린(구글 공동 창업자)과 폴 바햄(딥마인드 수석 AI 과학자 겸 머신러닝 전문가) 등 AI 분야의 석학들이 구글의 딥마인드와 브레인 팀의 협력으로 더 많은 것을 기대할 수 있다는 점이다. 아직 결과는 미지수지만, 구글의 '제미니'가 얼마나 GPT-4에 버금가는 성능을 보여줄 것인지에 대한 관심이 높아지고 있다.
-
- IT/바이오
-
오픈AI의 GPT-4 경쟁자 구글 '제미니', 올해 말 공개 예정



