검색
-
-
[퓨처 Eyes(48)]세계 최초, 전자의 움직임 포착하는 '아토현미경' 개발 - 과학계 새 지평 열다
- 미국 애리조나 대학교 연구팀이 세계 최초로 전자의 움직임을 포착하는 투과 전자 현미경, 일명 '아토현미경' 개발에 성공했다. 이 현미경은 찰나의 순간에도 지구를 수십 바퀴 돌 수 있는 전자의 움직임을 포착할 수 있을 정도로 강력하다. 전자는 아주 작은 입자로 원자를 구성하는 기본 요소 중 하나다. 전자는 음(-)의 전하를 띠고 있으며, 원자핵 주변을 빠르게 돌고 있다. 전자의 움직임은 전기, 빛, 화학 반응 등 다양한 현상의 근본적인 원인지 된다. 연구팀은 움직이는 전자의 정지 프레임 화면을 찍을 만큼 강력한 아토현미경 개발이 물리학, 화학, 생명공학, 재료 과학 등 다양한 분야에 획기적인 발전을 가져올 것으로 기대하고 있다. 연구를 주도한 모하메드 하산(Mohammed Hassan) 물리학 및 광학 과학 부교수는 "이 투과 전자 현미경은 최신 스마트폰에 탑재된 고성능 카메라와 같다"며 "이전에는 볼 수 없었던 전자의 움직임을 관찰하고, 이를 통해 과학계가 전자의 행동과 양자 물리학을 더 깊이 이해할 수 있기를 바란다"고 밝혔다. 전자 빔 투과로 상세 이미지 생성 투과 전자 현미경은 빛 대신 전자 빔을 사용하여 물체를 최대 수백만 배까지 확대하는 장비다. 기존 광학 현미경으로는 볼 수 없는 미세한 부분까지 관찰할 수 있어 과학 연구에 널리 활용되고 있다. 다시 말하면, 투과 전자 현미경은 가시광선을 사용하는 대신 전자 빔을 연구 중인 샘플에 통과시킨다. 전자와 샘플 사이의 상호작용은 렌즈로 포착되고 카메라 센서로 감지되어 샘플의 상세한 이미지를 생성한다. 이와 같은 원리를 사용하는 초고속 전자 현미경은 2000년대 처음 개발됐으며, 레이저를 사용해 펄스 전자 빔을 생성한다. 이 기술은 현미경의 시간적 해상도, 즉 시간에 따른 샘플의 변화를 측정하고 관찰할 수 있는 능력을 크게 향상시킨다. 이러한 초고속 현미경에서는 카메라의 셔터 속도에 따라 이미지 품질이 결정되는 대신 투과전자 현미경의 해상도는 전자 펅스의 지속 시간에 따라 결정된다. 펄스가 빠를수록 이미지가 더 선명해진다. 연구팀이 개발한 아토현미경은 펨토초(femtosecond, 1000조분의 1초)보다 훨씬 빠른 아토초(attosecond, 100경 분의 1초-팸토초보다 1000배 더 짧음) 단위로 전자 펄스를 생성한다. 이는 2023년 노벨 물리학상을 수상한 과학자들의 연구를 기반으로 한 것으로, 극자외선 방사선 펄스를 아토초 단위로 측정하는 기술을 응용했다. 아토현미경은 강력한 레이저를 두 개의 초단파 광 펄스로 변환하여 작동한다. 첫 번째 펄스는 샘플에 에너지를 공급하여 전자를 움직이게 하고, 두 번째 펄스는 아토초 단위로 전자 펄스를 생성하여 샘플을 탐색한다. 두 펄스의 정밀한 동기화를 통해 전자의 움직임을 원자 수준에서 실시간으로 관찰할 수 있다. 하산 교수는 "전자 현미경 내부의 시간 해상도 개선은 오랜 숙원이었다"며 "이제 '아토현미경'을 통해 처음으로 전자의 움직임을 볼 수 있게 되었다"고 말했다. 아토현미경 개발의 의미 아토현미경의 개발은 과학계에 새로운 지평을 여는 혁신적인 성과로 평가된다. 전자의 움직임을 실시간으로 관찰할 수 있게 됨으로써, 과학자들은 다음과 같은 분야에서 획기적인 발전을 이룰 수 있을 것으로 기대하고 있다. 1) 물질의 근본적인 특성 규명 아토현미경을 통해 물질 내 전자의 상호작용 및 에너지 전달 과정을 밝혀낼 수 있다. 이는 새로운 소재 개발, 에너지 효율 향상, 촉매 반응 개선 등 다양한 분야에 응용될 수 있다. 2) 생명 현상의 이해 증진 생체 분자 내 전자의 이동 및 화학 반응 과정을 관찰하여 생명 현상의 메커니즘을 밝히고, 질병 치료 및 신약 개발에 기여할 수 있다. 3) 양자 컴퓨팅 기술 발전 양자 컴퓨팅의 핵심 요소인 큐비트의 동작 원리를 이해하고, 양자 컴퓨터 개발에 필요한 기술적 난제를 해결하는 데 도움을 줄 수 있다. 이번 연구 결과는 과학 학술지 '사이언스 어드밴시스(Science Advances)'에 게재됐다.
-
- 포커스온
-
[퓨처 Eyes(48)]세계 최초, 전자의 움직임 포착하는 '아토현미경' 개발 - 과학계 새 지평 열다
-
-
[신소재 신기술(95)] 옥스포드대, '초박막 태양전지' 개발⋯에너지 패러다임 전환 예고
- 영국 옥스포드 대학교 물리학과 연구팀이 기존 실리콘 태양광 패널을 대체할 수 있는 초박막 태양전지 기술을 개발해 에너지 패러다임 전환의 가능성을 제시했다. 이 기술의 핵심은 햇빛에 노출된 물체 외부에 부착할 수 있는 초박막 태양전지 필름이다. 이 필름은 빛을 흡수하는 페로브스카이트를 여러 겹으로 쌓아 1미크론 두께로 제작됐다. 기존 실리콘 웨이퍼보다 150배 얇으면서도 5% 더 높은 에너지 효율을 자랑한다. 특히, 일본 산업기술종합연구소(AIST)의 엄격한 인증을 통과하며 27% 이상의 에너지 효율을 공식적으로 인정받았다고 AZO클린테크가 전했다. 연구팀은 이 기술을 통해 태양광 장치의 에너지 효율을 궁극적으로 45% 이상까지 끌어올릴 수 있을 것으로 기대하고 있다. 또한, 매우 얇고 유연한 필름 형태로 제작되어 건물, 자동차, 심지어 휴대폰 뒷면 등 다양한 일상 생활에서 사용되는 사물의 표면에 부착 가능하다는 점에서 건설 및 설치 비용 절감 효과도 기대된다. 이는 태양광 발전소 보급 확대와 지속 가능한 에너지 사용 증진에 기여할 것으로 전망된다. 연구팀의 준케 왕 박사는 "이번 기술은 태양 에너지를 가장 지속 가능한 재생 에너지원으로 만들면서 비용 절감까지 가능하게 할 것"이라며 기대감을 드러냈다. 이번 연구는 옥스퍼드 대학교 물리학과 헨리 스나이스 교수의 지도 아래 약 30명의 전문가가 참여했다. 이들은 약 10년 전부터 박막 페로브스카이트 기술 개발에 주력해왔다. 스나이스 교수는 "우리 실험실에서 시연된 태양광 소재 및 기술의 최신 혁신은 기존 건물, 차량 및 물체를 사용하여 더욱 지속 가능하고 저렴하게 태양 에너지를 생성하는 재료를 제조하는 새로운 산업을 위한 플랫폼이 될 수 있다"고 말했다. 한편, 페로브스카이트 소재는 5년 만에 에너지 효율이 6%에서 27%로 비약적으로 발전했지만, 습기에 취약하여 안정성이 떨어지는 문제가 남아있다. 그럼에도 불구하고, 태양 에너지 가격은 지난 10년간 90% 하락하며 경제성을 확보했고, 이는 전 세계 태양광 발전소 증가에 기여했다. 최근 미국과 구글 등이 태양 에너지 인프라 확대에 적극적으로 나서고 있는 가운데, 옥스퍼드 대학교의 이번 연구는 태양 에너지 시대를 앞당기는 촉매제 역할을 할 것으로 기대된다.
-
- 포커스온
-
[신소재 신기술(95)] 옥스포드대, '초박막 태양전지' 개발⋯에너지 패러다임 전환 예고
-
-
[파이낸셜 워치(25)] 엔 캐리 규모, 최대 수조 달러 추산…시장 불안 요인 여전해
- 최근 글로벌 금융 시장을 뒤흔들고 있는 '엔 캐리 트레이드' 규모는 과연 얼마나 될까. 최근 월가 매도의 촉매가 된 엔 캐리 트레이드의 규모에 대해 적게는 수천억 달러(수백조 원)에서 많게는 수조원 달러(수천조원)에 이른다는 추정만 무성하다. '캐리 트레이드'란 이자율이 낮은 지역에서 돈을 빌려 금리가 더 높은 지역의 고수익 자산에 투자해 수익을 창출하는 것을 말한다. 특히 코로나19 이후 지난 3∼4년간 일본이 초저금리를 유지하면서 투자자들 사이에서 엔 캐리 트레이드가 대유행했다. 최근 수년 동안 일본의 이자율은 0%에 가깝거나, 거의 0%로 유지됐다. 앤 캐리 트레이드는 지난 4년 동안 특히 인기를 끌었다. CNN은 7일(현지시간) 투자자는 일본 엔을 소액 수수료로 빌려서 엔비디아 등 미국 기술 주식이나 정부 채권, 부동산 또는 멕시코 페소화 등 신흥시장 통화에 투자했다고 전했다. 이는 최근 몇 년 동안 탄탄한 수익을 제공했다. 이론적으로 엔이 달러에 비해 낮은 수준을 유지하는 한 빌린 돈을 갚지 않고도 여전히 수익을 낼 수 있었다. 일본은 세계 주요국 가운데 유일하게 거의 공짜로 돈을 빌려줬기 때문이라고 CNN은 지적했다. 미국과 유럽 등의 국가가 인플레이션과 싸우기 위해 금리를 인상하는 동안 일본은 경제 성장을 촉진하기 위해 차입 금리를 낮게 유지했다. CNN은 투자자들 사이에서는 이자를 거의 내지 않고 일본 엔화를 빌려서 미국 국채에 투자해 5%의 수익을 내는 것은 당연한 일처럼 여겨졌다고 전했다. 블룸버그 칼럼니스트 존 오서스는 빅 테이크 데일리 팟캐스트에서 "2000년 이후 스탠더드앤드푸어스(S&P)500지수 투자 수익보다 엔화를 빌려서 페소화에 투자한 경우 수익이 더 많았을 것"이라며 "정말 이상한 일"이라고 꼬집었다. 문제는 환율이었다. 몆 주 전부터 엔화 가치가 오르기 시작하면서 캐리 트레이드에서 얻을 수 있는 잠재적 수익이 줄어들기 시작했다. 일본은 지난 3월 금리를 올린데 이어 지난 주 두번째 금리 인상을 단행했다. 일본 중앙은행인 일본은행(BOJ)은 지난 7월 31일 금융정책결정회의에서 단기정책금리를 0.25%포인트(p) 인상했다. 이로써 일본의 단기금리는 0.25%로, 2008년 12월 이후 15개월만에 최고 수준으로 올라섰다. 이로 인해 엔화는 더욱 상승했고, 엔화 기반의 대출 상환 비용이 더 높아지면서 미국 경기 침체 우려와 함께 글로벌 금융시장을 흔들기 시작했다. 엔 캐리 트레이드 규모는 역대 최대인 것으로 보이지만 아무도 정확한 액수를 알지 못한다. 파이낸셜타임스(FT)는 전문가들은 헤지펀드, 패밀리 오피스, 민간 자본, 일본 기업까지 앤 캐리 트레이드 주체가 매우 다양한 것으로 보고 있다고 전했다. 그런데 지난 주 미국 연방준비제도(연준·Fed)가 금리 인하를 강력하게 암시하면서 달러는 약세를 보였고, 미국 기술 주식은 하락했다. 결국 5일 일본 주식 시장은 12.4% 하락해 글로벌 폭락을 촉발했다. 다음날인 6일 일본 주식은 손실의 일부를 회복했고, 미국 주식도 반등했다. 그러나 이러한 안도감은 일시적일 수 있다는 게 전문가들의 지적이다. JP모건 체이스의 글로벌 FX 전략 공동 책임자인 에린덤 산딜라는 "캐리 트레이드 정리는 50~60% 정도 완료됐다"고 말했다. UBS의 글로벌 전략가 제임스 말콤은 2011년 이후 누적된 달러-엔 캐리 트레이드 규모가 5000억달러(약 688조5000억원)에 이르며, 그 중 절반이 지난 2~3년간 추가된 것으로 추정했다. 그는 이 금액 중에서 지난 몇 주간 약 2000억달러(약 275조3200억원)가 청산됐으며, 이는 예상 청산 규모의 75%에 달한다고 밝혔다. 국제결제은행(BIS)에 따르면 국경간 엔화 대출은 2021년 말 이후 7420억달러(약 1021조2146억원)에 달했다. 다만, 이 금액이 전부 캐리 트레이드는 아니다. ING 은행의 분석에 따르면 일본에서 발생한 국경간 대출은 지난 3월 기준 157조엔(약 1477조3700억원)으로 3년 전에 비해 21%나 증가했다. 앞서 지적했듯이 캐리 트레이드에는 환율이 유리하게 작용해야 한다. 일본은행이 지난 주 금리 인상을 단행하고 추가 인상을 예고하자 앤 캐리 트레이드 우려로 글로벌 금융시장이 요동치기 시작했다. 엔화가치가 급등한 것은 지난주말에 발표된 7월 미국 고용통계에서 고용지수가 시장예상치를 훨씬 미치지 못한데다 실업률도 상승해 미국의 경기둔화(리세션) 우려가 부각된 때문으로 분석된다. 엔화 대출을 갚기 위해 투자를 회수하는 엔 캐리 트레이드 청산이 실제로 일부 이루어진 것으로 시장에서는 보고 있다. 그러나 투자자들이 서둘러 캐리 트레이드를 청산할 경우 금융 시장에 대혼란이 벌어질 수도 있다. 프랑스 금융 그룹 소시테에제네랄의 글로벌 매크로 전략가인 킷 주크스는 지난 5일 고객 서한에서 "세계가 본 적이 없는 가장 큰 캐리 트레이드를 마무리하려면 몇몇 사람의 머리가 깨질 수 밖에 없을 것"이라고 말했다. 로저스 인베스트먼트 어드바이저스의 에드 로저스는 주식 시장 매도가 심화되고 있음에도 불구하고 엔 캐리 트레이드는 아직 사라지지 않았다고 말했다. 그는 지난 5일 CNBC에 "확실히 엔 캐리 트레이드에 대한 순간적인 공황이 있을 거라고 생각한다. 저는 그것이 끝났다고 생각하지 않는다"고 말했다. 로저스는 "아직 활용할 수 있는 상당한 이자율 차이가 있지만, 많은 사람들이 기존 포지션을 커버하고자 하고 있고, 엔 캐리 트레이드가 사람들이 두려워하는 것 중 하나가 될 수도 있다"고 덧붙였다. RBC 캐피털 마켓의 글로벌 거시경제 전략가인 피터 샤프릭은 "지금은 조심해야 할 시점"이라고 말했다. 한편, 우치다 신이치 일본은행 부총재는 지난 7일 추가 금리 인상 가능성을 일축하는 발언을 해 시장 불안감을 일시적으로 진정시켰다. 지난주 금융정책결정회의에서의 매파적 발언과 대조되는 그의 발언은 이번 주 초 미국 경기침체 우려와 함께 금융시장을 혼란에 빠트린 '엔 캐리 트레이드 청산'에 대한 우려를 일시적으로 낮췄다. 엔/달러 환율은 우치다 부총재 발언 직후 144엔대 중반에서 147엔대 초반까지 급등하며 엔화 약세 기대감을 키웠다.
-
- 경제
-
[파이낸셜 워치(25)] 엔 캐리 규모, 최대 수조 달러 추산…시장 불안 요인 여전해
-
-
'영원한 화학물질' 과불화화합물(PFAS) 분해하는 박테리아 발견
- 자연적으로는 분해되지 않는다고 해 '영원한 화학물질(forever chemicals)'이라고 불리는 과불화화합물(PFAS)은 발암성 오염물질이다. 식품 포장재, 조리기구 등 생활용품에 널리 사용되는 플라스틱 재료로 인간의 건강에 치명적인 영향을 미치며 최근의 연구에서는 인간의 피부를 뚫고 혈관에까지 침투할 수 있는 것으로 밝혀져 충격을 안겨주기도 했다. 커피나 물 한 잔 속에도 영원한 화학물질의 위협이 숨겨져 있는 것이다. 그런 가운데 영원한 화학물질인 PFAS를 파괴하는 박테리아가 한 연구진에 의해 발견돼 큰 관심을 모은다고 환경 전문 어스닷컴이 전했다. 캘리포니아 주립대 리버사이드 캠퍼스(UC Riverside)의 유지 멘 교수 연구팀은 아세토박테리움(Acetobacterium) 속의 박테리아가 PFAS를 파괴한다는 사실을 규명했다. 이 연구는 '사이언스 어드밴시스(Science Advances)' 저널에 게재됐다. PFAS는 매우 강력한 탄소-불소 결합으로 인해 '영원한 화학물질'로 불린다. 자연환경(특히 수자원)에서 오랜 기간 분해되지 않고 머물러 있으면서 자연을 파괴하고 인간 건강애 치명적인 영향을 미친다. 장기 지속성으로 인해, 지하수를 비롯한 오염된 수자원 처리는 큰 고민거리였다. 그런데 연구팀은 아세토박테리움 박테리아가 탄소-불소의 강한 결합을 끊는 능력이 탁월하며, 이 박테리아는 전 세계적으로 폐수에서 흔히 발견된다고 밝혔다. 멘 교수는 "이는 PFAS 구조를 해체하고 탈 불소를 달성할 수 있는 첫 번째 발견된 박테리아“라고 말했다. 다만 이 박테리아에게는 한 가지 한계도 있다고 한다. PFAS 중에서도 탄소-탄소 이중 결합을 포함한 불포화 PFAS 화합물에만 효과를 나타냈다는 것이다. 멘 교수팀은 이번 탄소-불소 분리 박테리아 발견에 앞서 지난해에는 PFAS 화합물의 탄소-염소 결합을 끊는 미생물도 찾아냈다. 연구팀은 또 이번 박테리아 조사 과정에서 탄소-불소 결합을 절단하는 특정 효소도 규명해 냈다. 연구팀의 가장 큰 성과가 여기에 있다는 지적도 나온다. 효소는 생화학 반응의 촉매 역할을 하는 단백질로, 발견된 효소는 PFAS 분해의 게임 체인저가 될 수도 있다는 기대다. PFAS 분해 효소를 생산할 수 있는 길을 열 수 있기 때문이다. 오염된 지하수를 정화하는 데 박테리아를 사용하는 것은 충분히 비용 효율적이다. 박테리아는 영양분 주입을 통해 개체수를 늘리는 것도 가능하다. 미생물의 힘을 빌리기 때문에 ‘자연자원 솔루션’이기도 하다. 최근 미 환경보호국(EPA)이 마련한 새로운 PFAS 강화 규정으로 인해 박테리아를 이용한 분해 솔루션의 필요성은 더욱 높아졌다. EPA의 새 규정은 수돗물에 존재하는 특정 PFAS 화합물을 1조 분의 4까지로 제한한다. 새로운 규정에 부응하기 위해 물 공급업체는 PFAS 분해 솔루션을 찾는데 온 힘을 기울이고 있다. 그러나 저비용 고효율 솔루션을 찾기가 어려운 상황이었다. 이런 고민을 이번 연구 결과가 해결해 줄 수 있을 것으로 보인다. 박테리아 및 미생물학적 솔루션에 의한 PFAS 분해 성공은 다른 잔류성 화학물질에 대한 해법 연구로도 확대될 것으로 예상된다. 악명 높은 두 가지 환경 오염 물질인 폴리염화비페닐(PCB)과 다이옥신 등의 분해에 활용할 수 있다는 것이다. 다양한 산업 분야에 사용된 PCB는 자연 분해가 어렵고 토지 및 해수에 오래 잔류하면서 인간 건강과 생태계 모두에 심각한 위험을 초래한다. 산업 공정의 부산물인 다이옥신은 독성이 매우 높으며 암 및 생식 등 질병을 일으킨다. 전 세계 연구팀이 PCB와 다이옥신에 대해 효과적일 수 있는 다른 미생물 균주를 조사하고 있다. 전문가들은 미생물을 이용한 화학물질 분해 솔루션이 혁신적이고 지속 가능한 해법이 될 것이라고 낙관하고 있다. 미생물학과 환경 과학의 융합이 자연을 복원하고 유지하는 중추적인 역할을 담당할 것이며, 희망적인 미래를 예고하고 있다는 지적이다.
-
- IT/바이오
-
'영원한 화학물질' 과불화화합물(PFAS) 분해하는 박테리아 발견
-
-
[신소재 신기술(79)] 레이저와 2D 물질로 플라스틱 쓰레기 분해
- 레이저를 활용해 플라스틱 오염을 해결할 수 있는 방법이 개발됐다. 미국 텍사스 대학교 연구진이 주도하는 국제 연구팀은 레이저를 이용해 플라스틱 분자를 기본 요소로 분해해 재활용하는 기술을 개발했다고 사이테크데일리가 전했다. 매년 수백만톤의 플라스틱 폐기물이 매립지와 바다에 쌓이는 등 플라스틱 오염은 전세계적인 환경 문제로 떠올랐다. 기존의 플라스틱 분해 방법은 에너지 집약적이고 환경적으로 유해해 비효율적인 경우가 많았다. 연구팀은 분해하려는 물질을 전이 금속 디칼코게나이드(TMD)라는 2차원 물질 위에 놓고 빛을 비추는 방식을 활용했다. 이는 기존 기술로는 분해가 어려운 플라스틱 폐기물 해결에 기여할 것으로 기대된다. 연구팀은 이 기술을 통해 플라스틱의 화학 결합을 끊고 새로운 화학 결합을 형성해 발광 탄소점(carbon dot)을 생성했다. 탄소 기반 나노 물질은 다양한 분야에서 활용 가능성이 높다. 특히 이 발광 탄소점은 차세대 컴퓨터 메모리 소자로 활용될 가능성도 있다. 텍사스 오스틴 캠퍼스(UT Austin)의 18개 단과대학 중 하나인 콕렐 공과대학 워커 기계공학부 교수이자 프로젝트 리더 중 한 명인 유빙 정은 "이러한 독특한 반응을 활용하면 환경 오염 물질을 가치있고 재사용 가능한 화학물질로 전환하는 새로운 경로를 탐색해 보다 지속 가능한 순환 경제 발전에 기여할 수 있다"고 말했다. 그는 "이 새로운 발견은 환경 문제를 해결하고 친환경 화학 분야를 발전시키는 데 중요한 의미가 있다"고 덧붙였다. 또한 이번 연구는 탄소-수소 결합 활성화(C-H activation)라는 특정 반응을 이용했다. 이 반응은 유기 분자 내 탄소-수소 결합을 선택적으로 분해해 새로운 화학 결합을 형성하는 과정이다. 연구팀은 TMD를 촉매로 사용해 수소 분자를 가스 형태로 변환시키고, 탄소 분자들이 서로 결합해 정보 저장 점을 형성하도록 유도해 플라스틱 분해를 높였다. 이번 연구는 플라스틱 폐기물 문제 해결을 위한 지속 가능한 방안 모색에 중요한 발걸음을 내디뎠다는 평가를 받고 있다. 하지만 산업적 응용을 위해서는 빛 기반 C-H 활성화 공정의 최적화 및 확장에 대한 추가 연구 개발이 필요하다. 빛 기반 C-H 활성화 공정은 플라스틱 외에도 폴리에틸렌, 계면활성제 등 다양한 고분자 유기화합물에도 적용될 수 있을 것으로 기대된다. 연구 결과는 최근 학술지 '네이처 커뮤니케이션즈(Nature Communications)'에 게재됐다. 연구에는 텍사스대학교를 포함해 버클리 캘리포니아 대학교, 일본 도호쿠 대학교, 로렌스 버클리 국립 연구소, 베일리 대학교, 펜실베니아 주립대학교의 연구진이 참여했다.
-
- 포커스온
-
[신소재 신기술(79)] 레이저와 2D 물질로 플라스틱 쓰레기 분해
-
-
[신소재 신기술(78)] 유기 태양 전지 패널, 햇빛 20% 전기 변환 성공…실리콘 대체 가능성 높여
- 미국 과학자들이 새로운 유기 태양 전지 패널을 개발해 햇빛의 20%를 전기로 변환하는 데 성공했다. 유기 태양 전지판(Organic Solar Cell)은 빛을 흡수해 전기를 생산하는 태양 전지의 한 종류다. 기존의 실리콘 태양 전지판과 달리 탄소 기반의 유기 반도체 물질을 사용해 제작된다. 캔사스대학교 연구진이 유기 반도체에 햇빛의 20%를 전기로 변환해, 태양 에너지 분야에 혁신을 가져올 수 있는 가능성을 제시했다고 인터레스팅엔지니어링이 보도했다. 수년 동안 실리콘은 태양 에너지 환경을 지배해왔다. 실리콘의 효율성과 내구성 덕분에 태양광 패널에 가장 많이 사용하는 소재가 된 것. 하지만 실리콘 기반 태양전지는 딱딱하고 생산 비용이 비싸서 곡면에 적용하는 데 한계가 있었다. 유기 반도체는 실리콘 태양 전지 패널보다 저렴하고 유연하며, 다양한 색상과 투명도를 구현할 수 있어 차세대 태양 전지 소재로 주목받고 있다. 유기 태양 전지판은 얇고 가벼우며, 플라스틱 기판 등 다양한 소재에 적용할 수 있어 곡면이나 불규칙한 표면에도 설치가 가능하다. 게다가 유기 물질은 실리콘보다 독성이 적고 재활용이 용이해 환경 친화적이다. 유기 반도체는 이미 휴대전화, TV, 가상현실(VR)헤드셋과 같은 가전제품의 디스플레이 패널에 사용되지만 상업용 태양광 패널에는 아직 널리 사용되지 않는다. 유기 반도체인 탄소 기반 소재는 더 낮은 비용과 더 큰 유연성으로 실행가능한 대안을 제공한다. 하지만 지금까지는 빛을 전기로 변환하는 효율성이 낮아 실리콘 태양 전지 패널을 대체하기 어렵다는 한계가 있었다. 연구를 주도한 캔자스 대학교의 물리학 및 천문학 부교수인 와이런 챈 박사는 "이러한 재료는 벽에 페인트를 칠하는 것처럼 용약 기반 방법을 사용해 임의의 표면에 코팅할 수 있기 때문에 태양광 패널의 생산 비용을 잠재적으로 출 수 있다"고 설명했다. 이러한 유기 반도체는 단순히 비용 절감에만 그치지 않는다. 특정 파장의 빛을 흡수하도록 조정할 수 있어 새로운 가능성을 열어준다. 챈은 "이러한 특성 덕분에 유기 태양 전지 패널은 차세대 친환경적이고 지속 가능한 건물에 사용하기에 특히 적합하다"고 덧붙였다. 이번 연구는 유기 반도체의 일종인 비풀러렌 악셉터(NFA)의 높은 효율성에 대한 의문에서 시작됐다. 연구진은 NFA가 기존 유기 반도체보다 뛰어난 성능을 보이는 이유를 규명하는 과정에서 예상치 못한 현상을 발견했다. 특정 조건에서 NFA의 전자가 에너지를 잃는 대신 주변 환경으로부터 에너지를 얻는 현상을 관찰한 것이다. 이는 뜨거운 커피가 주변으로 열을 잃는 것과는 반대되는 현상으로 양자역학과 열역학의 결합으로 설명될 수 있었다. 연구진은 첨단 기술인 시간 분해 이광자 광전자 분해법을 활용해 1조분의 1초보다 짧은 시간 동안 전자의 에너지 변화에 추적했다. 그 결과 NFA의 전자가 양자역학적 특성으로 인해 여러 분자에 동시에 존재하는 것처럼 보이며, 이러한 현상이 열역학 제2법칙과 결합해 열흐름의 방향을 역전시키는 것을 확인했다. 이러한 역전된 열 흐름은 NFA의 전자가 주변 환경으로부터 에너지를 흡수하고 전하 분리 과정을 촉진해 전류 생성 효율을 높이는 데 기여한다. 연구진은 이번 발견이 태양 전지 효율을 20%까지 끌어올려 실리콘 태양 전지와의 격차를 좁히는 데 중요한 역할을 할 것으로 기대하고 있다. 또한 이러한 에너지 획득 메커니즘은 태양 전지 뿐만 아니라 이산화탄소를 유기 연료로 변환하는 광촉매 등 다른 재생 에너지 분야에도 적용될 수 있을 것으로 전망했다. 이는 유기 반도체 기반 기술의 잠재력을 극대화하고, 지속가능한 에너지 시스템 구축에 기여할 수 있는 중요한 발견으로 평가된다. 이번 연구는 '어드밴스드 머티리얼스(Advanced Materials)' 저널에 게재됐다.
-
- 포커스온
-
[신소재 신기술(78)] 유기 태양 전지 패널, 햇빛 20% 전기 변환 성공…실리콘 대체 가능성 높여
-
-
[신소재 신기술(74)] 탄소 포집·저장 6배 높인 '하이드레이트'
- 대기에서 포집한 이산화탄소(CO₂)를 6배나 빠르게 저장하는 새로운 하이드레이트 기술이 개발됐다. 미국 텍사스대학교 오스틴 캠퍼스 연구진이 개발한 새로운 대기 중 탄소 포집 하이드레이트 기술은 기존 방식보다 약 6배 빠른 속도로, 유해 화학 촉진제 없이 탄소를 저장할 수 있다고 테크익스로어와 어스닷컴 등 다수 외신이 보도했다. 미국화학회(ACS) 학술지 '지속 가능 화학 및 공학'에 발표된 이 연구에서 연구팀은 이산화탄소 하이드레이트를 초고속으로 형성하는 기술을 개발했다. 이 독특한 얼음 형태의 물질은 이산화탄소를 해저에 저장하여 대기 중 방출을 막는 역할을 한다. 탄소 포집에서 하이드레이트는 이산화탄소를 물 분자와 함께 얼음과 비슷한 고체 상태로 만드는 기술을 의미한다. 하이드레이트는 자체 부피의 최대 180배에 달하는 이산화탄소를 저장할 수 있다. 아울러 일정한 온도와 압력 조건에서 안정적으로 유지되므로 이산화 탄소 누출 위험을 줄일 수 있다. 연구를 이끈 바이바브 바라두르(Vaibhav Bahadur) 교수는 "우리는 대기 중 수십억 톤의 탄소를 안전하게 제거하는 방법을 찾는 엄청난 과제를 안고 있다"며 "하이드레이트는 탄소 저장을 위한 보편적인 해결책을 제공하며, 탄소 저장 분야에서 중요한 역할을 하려면 빠르고 대규모로 성장시키는 기술이 필요하다. 우리는 환경친화적인 방법으로 하이드레이트를 빠르게 성장시킬 수 있음을 입증했다"고 말했다. 이산화탄소는 가장 흔한 온실가스이며, 기후 변화의 주요 원인이다. 탄소 포집 및 저장 기술은 대기 중 탄소를 제거하고 영구적으로 저장하는 기술로, 지구 탄탄소화의 핵심 요소로 간주된다. 현재 가장 일반적인 탄소 저장 방법은 이산화탄소를 지하 저류층이 주입하는 것이다. 이 기술은 탄소를 포집하고 석유 생산을 증가시키는 이중 효과를 갖는다. 그러나 이 기술은 이산화탄소 누출 및 이동, 지하수 오염, 탄소 주입 관련 시 지진 위험 등 심각한 문제를 안고 있다. 또한 지하 저류층 주입에 적절한 지질학적 특징이 부족한 지역도 많다. 바하두르 교수는 하이드레이트가 대규모 탄소 저장을 위한 '차선책'이지만 주요 문제를 극복하면 '최선책'이 될 수 있다고 강조했다. 지금까지 탄소를 포집하는 하이드레이트 형성 과정은 느리고 에너지 집약적이어서 대규모 탄소 저장 수단으로 활용되기 어려웠다.. 이번 연구에서 팀은 기존 방법보다 하이드레이트 형성 기술을 6배 증가시켰다. 이러한 속도와 화학 물질을 사용하지 않는 공정은 대규모 탄소 저장에 하이드레이트를 더 쉽게 활용할 수 있게 한다. 이 연구의 핵심은 마그네슙으로, 화학촉진제 없이도 촉매 역할을 한다. 특정 반응기에서 이산화탄소를 고속 버블링으로 추가하면 빠르고 친환경적인 하이드레이트를 형성할 수 있다. 게다가 해수에서도 잘 작동하기 때문에 복잡한 담수화 공정이 필요하지 않다. 바라두르 교수는 "해저가 안정적인 열역학 조건을 제공하여 하이드레이트 분해를 방지하기 때문에 매력적인 탄소 저장 옵션이다"라며 "우리는 해안선을 가진 모든 국가에 탄소 저장을 가능하게 만들고 있으며, 이는 전세계적으로 탄소 저장 접근성과 실현 가능성을 높여 지속 가능한 미래에 더 가까워지게 한다"고 설명했다. 이번 연구 성과는 탄소 포집뿐만 아니라 해수 담수화, 가스 분리와 저장 등 다양한 산업에도 적용될 수 있다. 연구팀과 텍사스 대학교는 관련 기술에 대한 특허를 출원했으며, 상용화를 위한 스타트업 설립도 고려하고 있다. 하이드레이트 기술은 탄소 포집 및 저장 분야에서 혁신적인 기술로 주목받고 있으며, 지속적인 ㅇ녀구 개발을 통해 미래 탄소 중립 목표 달성에 기여할 것으로 기대된다.
-
- 포커스온
-
[신소재 신기술(74)] 탄소 포집·저장 6배 높인 '하이드레이트'
-
-
[퓨처 Eyes(42)] 인간 뇌세포 로봇, 현실로…중국, 뇌-칩 융합 로봇 '메타복' 개발 성공
- 중국 연구진이 인공 칩 위에서 배양한 뇌세포를 로봇에 연결하여 로봇을 제어하는 획기적인 시스템인 '메타복(MetaBOC)' 개발에 성공했다고 사우스차이나모닝포스트(SCMP)와 뉴아틀라스, 인터레스팅엔지니어링 등 다수 외신이 보도했다. 이는 인간의 뇌와 기계를 연결하는 '뇌-컴퓨터 인터페이스(BCI)' 기술의 새로운 지평을 열었을 뿐만 아니라, 인공지능(AI)과 생물학적 지능의 융합 가능성을 보여주는 중요한 성과로 기록됐다. 메타복은 뇌세포를 이용하여 로봇을 제어하고 학습시키는 시스템으로, 인간의 뇌 기능을 모방하는 인공지능 개발에 한 걸음 더 다가섰다는 평가를 받는다. 텐진대학교와 남방과학기술대학교 연구팀이 개발한 메타복은 뇌-칩 생체 컴퓨터와 다른 전자 장치의 인터페이스 역할을 수행한다. 즉, 인공적으로 배양된 뇌 오가노이드(미니 뇌)가 전기 신호를 통해 외부 환경을 인지하고, 로봇을 제어해 특정 작업을 수행하도록 돕는 것이다. 이는 인간의 뇌세포를 인공 신체에 이식하는 것을 목표로 하는 '바이오 컴퓨팅' 분야의 혁신적인 발전을 의미한다. 바이오 컴퓨팅은 생물학적 시스템, 즉 뇌세포를 이용하여 정보를 처리하고 계산하는 기술이다. 기존의 실리콘 기반 컴퓨터와 달리, 바이오 컴퓨터는 뇌세포의 벙렬 처리 능력과 에너지 효율성을 활용하여 복잡한 문제를 해결할 수 있다. 메타복은 이러한 바이오 컴퓨팅 기술을 로봇 제어에 적용함으로써, 로봇의 학습 능력과 지능을 획기적으로 향상시킬 수 있는 기능성을 제시했다. 브레인 온 칩 기술, 로봇 학습 능력 향상:인간 뇌 기능 모방 연구팀은 '브레인 온 칩(Brain-on-chip)' 기술을 활용해 로봇의 학습 능력을 획기적으로 향상시켰다. 브레인 온 칩은 작은 칩 위에 살아있는 뇌세포를 배양하고, 이를 통해 뇌의 복잡한 구조와 기능을 연구하는 기술이다. 연구팀은 이 기술을 통해 로봇이 물체를 잡고 장애물을 피하는 등 다양한 작업을 수행하도록 훈련시키는 데 성공했다. 특히, 뇌세포를 3차원 구형 오가노이드 형태로 배양해 더욱 복잡한 신경 연결을 형성하도록 유도했다. 또한 저강도 집속 초음파(LIFU) 자극을 통해 뇌 오가노이드의 지능적 기반을 강화해 뇌세포가 더욱 효과적으로 학습하고 정보를 처리할 수 있도록 했다. 이러한 기술적 진보는 로봇이 인간의 뇌처럼 학습하고 문제를 해결하는 능력을 갖추는 데 기여할 것으로 기대된다. 인공지능과 생물학적 지능의 융합: 새로운 지능 시스템의 탄생 메타복 시스템의 가장 큰 특징은 인공지능 알고리즘을 활용하여 뇌세포의 생물학적 지능과 효과적으로 소통한다는 점이다. 이러한 인공지능과 생물학적 지능의 융합은 뇌-컴퓨터 인터페이스 기술의 새로운 가능성을 제시하며, 인간과 기계의 상호 작용 방식을 혁신적으로 변화시킬 잠재력을 가지고 있다. 인공지능은 데이터 학습을 통해 스스로 문제 해결 능력을 향상시키는 반면, 생물학적 지능은 직관, 창의성, 감정 등 인간 고유의 능력을 발휘한다. 메타복 시스템은 이 두 가지 지능을 결합하여 새로운 형태의 지능 시스템을 구축하는 것을 목표로 한다. 이러한 시스템은 기존의 인공지능이나 인간의 지능만으로는 해결할 수 없는 복잡한 문제를 해결하는 데 활용될 수 있다. 시뮬레이션 환경에서의 로봇 학습: 안전하고 효율적인 학습 환경 제공 메타복 시스템을 통해 뇌 오가노이드는 시뮬레이션 환경에서 로봇을 제어하고, 장애물 회피, 목표 추적, 물체 파지 등의 작업을 학습하는 데 성공했다. 시물레이션 환경에서의 학습은 실제 뇌세포 손상 없이 효율적인 학습을 가능하게 하며, 다양한 시나리오에서의 학습을 통해 로봇의 성능을 더욱 향상시킬 수 있다. 이러한 시뮬레이션 기반 학습은 로봇이 실제 환경에 배치되기 전에 다양한 상황에 대한 경험을 쌓을 수 있도록 하며, 로봇의 안전성과 신뢰성을 높이는 데 기여할 수 있다. 또한, 시뮬레이션 환경에서의 학습 데이터를 분석하여 로봇의 성능을 개선하고 새로운 기능을 추가하는 데 활용할 수 있다. 윤리적 문제와 기술적 과제: 인간 존엄성과 안전성 확보 하지만 이러한 뇌-칩 인터페이스 기술은 윤리적인 문제를 야기할 수 있다. 접시에서 배양되는 뇌세포는 과연 의식이 있는 것인가. 인공지능 또한 의식이 있다고 봐야 하는가. 생물학적 지능과 실리콘 기반 지능의 윤리는 다르다고 봐야 하는가 등의 의문을 제기한다. 이러한 시스템이 의식을 발달시킨다고 가정해 보면, 실제로 이 시스템으로 테스트 하는 것이 윤리적으로 옳은 일인지, 아닌지를 결정해야 할 수도 있다. 인공 뇌세포를 이용한 로봇 제어가 인간의 존엄성을 침해할 수 있다는 우려와 함께 뇌세포의 생존 유지 및 시스템 안정성 확보 등 해결해야 할 과제도 많다. 또한 뇌-칩 인터페이스 기술이 발전함에 따라 인공지능과 인간 지능의 경계가 모호해지면서 철학적인 논쟁도 불가피할 것으로 보인다. 따라서 메타복 시스템과 같은 뇌-컴퓨터 인터페이스 기술 개발 과정에서는 윤리적 문제와 기술적 과제를 충분히 고려해야 한다. 인공 뇌세포 사용에 대한 명확한 윤리적 지침을 마련하고, 뇌세포의 안전한 관리 및 시스템의 안정성 확보를 위한 기술 개발에 힘써야 한다. 또한 인공지능과 인간 지능의 한계에 대한 사회적 논의를 통해 기술 발전에 따른 잠재적 문제점을 예방하고 해결 방안을 모색해야 한다. 미래 사회 변화의 촉매제: 의료, 로봇 공학, 인공지능 분야의 혁신 그럼에도 불구하고, 이번 연구는 뇌-컴퓨터 인터페이스 기술의 발전 가능성을 보여주는 중요한 성과다. 앞으로 메타복 시스템과 같은 기술은 의료, 로봇공학, 인공지능 등 다양한 분야에 혁신적인 변화를 가져올 것으로 기대된다. 예를 들어, 뇌졸중이나 착수 손상 환자의 제활 치료, 인공지능 로봇 개발, 뇌 질환 연구 등에 활용될 수 있다. 특히, 메타복 시스템은 인간의 뇌 기능을 모방하는 인공지능 개발에 새로운 가능성을 제시한다. 인간의 뇌는 정교한 정보 처리 시스템으로, 현재의 인공지능 기술로는 완벽하게 모방하기 어렵다. 하지만 메타복 시스템과 같은 뇌-컴퓨터 인터페이스 기술을 통해 인간의 뇌 기능을 더욱 심층적으로 이해하고 이를 인공지능 개발에 적용할 수 있을 것으로 기대된다. 이번 연구는 인간과 기계의 융합이라는 새로운 시대를 앞당기는 중요한 발걸음이 될 것이다. 앞으로 뇌-컴퓨터 인터페이스 기술이 어떻게 발전하고 우리 사회에 어떤 영향을 미칠지 주목된다.
-
- 포커스온
-
[퓨처 Eyes(42)] 인간 뇌세포 로봇, 현실로…중국, 뇌-칩 융합 로봇 '메타복' 개발 성공
-
-
[신소재 신기술(61)] 에스테르 환원, 새로운 광촉매로 청색광 활용해 효율성 극대화
- 새로운 광촉매(N-BAP)로 청색광을 활용해 에스테fm를 효율적으로 환원하는 기술이 개발됐다. 일본 국립자연과학연구소(NINS) 연구팀은 빛을 에너지원으로 활용하여 에스테르를 효월적으로 환원하는 새로운 광촉매를 개발했다고 밝혔다고 PHYS가 전했다. 이 연구 결과는 지난 6월 14일 '미국 화학학회지(Journal of the American Chemical Society)'에 게재됐다. 에스테르는 유기화합물의 한 종류로 알코올과 산이 반응하여 물이 빠져나오면서 생성되는 물질이다. 일반적으로 에스테르는 딸기 등 과일 향이나 꽃 향 등 특징적인 향기를 가지고 있다. 이러한 향기 때문에 향수나 화장품, 의약품, 식품 첨가물 등 다양한 분야에 활용된다. 그러나 기존의 에스테르 환원 방법은 높은 비용과 환경 문제를 야기했다. 공동 교신 저자인 NINS의 분자과학연구소(IMS) 산타로 오쿠무라 조교수는 "지난 10년 동안 광촉매 반응은 유기 합성 분야에서 자속 가능한 개발 목표(SDG)에 적합한 방법으로 큰 주목을 받았다"고 말했다. 오쿠무라 조교수눈 "광촉매는 금속 환원제가 없을 때 가사광선을 에너지원으로 사용해 산화와 완원 반응을 촉진한다. 하지만 다중 전자 전달 과정을 통한 광촉매 반응은 개발이 미흡해 전자가 4개 필요한 에스테르이 광촉매 환원을 통한 알코올 형성은 아직 미개발상태다"라고 설명했다. 이어 "에스테르를 광촉매로 환원하여 알코올을 만드는 것은 전례 없는 연속적인 4중 SET 공정이 필요하기 때문에 엄청난 도전"이라고 말했다. NINS 연구팀은 지속 가능한 광촉매를 사용해 에스테르를 환원하는 방법을 연구했다. 광촉매는 빛에 의해 활성화되는 촉매로, 반응성이 높은 금속 환원제 없이 촉매와 유기 화합물 사이의 전자 이동 과정을 촉진하는 것으로 알려져 있다. 그러나 기존의 광촉매는 고가의 비재생 금속을 사용하며, 제한적인 유기 화학물만 환원할 수 있었다. 또한 일반적으로 한 번에 한 개의 전자만 화합물에 추가하는 단일 전자 이동(SET)방식을 사용하여 원하는 수준의 환원을 달성하기 위해 여러 번의 반복 과정이 필요했다. 4중 SET 공정을 달성하기 위해 연구팀은 'N-BAP'라는 새로운 광촉매를 개발했다. 파란색 빛(청색광)을 받으면 활성화되는 N-BAP광촉매는 물과 다른 탄소 기반 화학 그룹과 반응하는 화학 그룹을 생성하며, 옥살산염과 함께 사옹하면 빠른 속도로 4개의 전자를 연속적으로 추가해 원하는 알코올을 생성할 수 있다. 오쿠무라는 N-BAP 촉매와 미량 환원제인 옥살산염의 조합은 카르비놀 음이온을 생성하기 위한 에스테르의 급속한 연속적인 4-전자 환원을 가능하게 하고, 이어서 양성자화되어 알코올을 생성하게 한다고 말했다. 그는 "이 연구는 에스테르의 새로운 변환 가능성을 열 수 있으며 지속 가능한 개발 목표(SDGs)에 적합한 녹색 유기합성으로서 지속가능한 사회에 기여할 것으로 기대된다"고 밝혔다.
-
- 포커스온
-
[신소재 신기술(61)] 에스테르 환원, 새로운 광촉매로 청색광 활용해 효율성 극대화
-
-
[신소재 신기술(57)] 영국 스타트업, AI로 희토류 없는 영구자석 개발
- 영국의 한 스타트업이 인공지능(AI)을 활용해 희토류를 사용하지 않고도 영구 자석을 제작했다. 런던에 본사를 둔 스타트업 머티리얼스 넥서스(Materials Nexus)는 영국 헨리 로이스 연구소 및 셰필드 대학교와 협력해 AI 기반 소재 발굴 플랫폼을 활용해 희토류 원소를 사용하지 않고 새로운 영구 자석인 '마그넥스(MagNex)'를 개발했다고 인터레스팅엔지니어링(IE)이 11일(현지시간) 보도했다. 영구 자석은 외부 에너지 공급 없이도 자기장을 유지할 수 있는 자석이다. 전자레인지 문이나 스피커, 하드디스크 드라이브뿐만 아니라 풍력 터빈 로터, 첨단 로봇, 전기자동차(EV)에 이르기까지 다양한 분야에서 사용된다. 현재 사용되는 영구 자석은 네오디뮴과 디스프로슘 등과 같은 희토류 광물을 사용해서 만들어진다. 이들은 매우 희귀하며 공급망 문제에 매우 취약한 광물이다. 머티리얼스 넥서스는 강력한 인공지능 모델을 활용해 기존 재료를 대체하거나 프로세스를 줄이는 새로운 재료를 설계해 산업생산 과정의 여러 문제를 해결하고자 했다. 새로 개발된 영구 자석 제작은 기존 프로세스보다 200배나 빨랐고, 탄소 배출량은 70%나 절감됐다. 조나단 빈(Jonathan Bean) 머티리얼스 넥서스 공동 설립자 겸 CEO는 "이 AI 기반 플랫폼은 원하는 물성을 지닌 원소 조합을 빠르고 체계적으로 주기율표에서 검색한다. 모든 데이터는 자체 양자역학 계산을 통해 생성되기 때문에 실험 데이터 세트보다 정확성과 범위가 넓다. 이 데이터는 기계 학습 알고리즘을 통해 입력되고 최적의 공식을 생성한다"고 설명했다. 1억개 이상 후보 물질 조성 연구팀은 이 기술을 희토류를 사용하지 않는 영구 자석 개발에 적용하여 1억 개 이상의 후보 물질 조성을 분석해 새로운 유형의 영구 자석을 제작했다. 보도자료에 따르면 연구팀은 3개월간의 설계 및 테스트를 거쳐 기존 방식 대비 20% 저렴한 소재 비용으로 마그넥스를 개발하는데 성공했다. 개발 속도는 기존 방식의 200배나 빨랐다. 셰필드 대학의 야금 및 재료 가공교수인 이안 토드(Iain Todd)는 "머티리얼스 넥서스와의 첫번째 협력이 이처럼 긍정적인 결과를 낳게 되어 매우 기쁘다"고 말했다. 토드 교수는 "재료 발견을 위해 AI를 사용하는 머티리얼스 넥서스의 접근 방식과 셰필드의 헨리 로이스 연구소에서 고급 합금을 제조하기 위해 보유하고 있는 세계적인 시설이 결합되어 새로운 자성 재료를 놀라운 속도로 개발할 수 있었다. 이 접근 방식의 추가적인 이점은 현재 사용 가능한 희토류 재료에 비해 탄소 배출량이 70% 감소한다는 것이다"라고 강조했다. 탄소 배출량 70% 감소 빈 CEO는 "AI 기반 재료 설계는 자기 뿐만 아니라 재료 과학 전체 분야에도 영향을 미칠 것"이라면서 "이제 우리는 모든 종류의 산업 요구에 맞는 새로운 재료를 설계할 수 있는 확장 가능한 방법을 확인했다"고 말했다. 그는 "마그넥스에 대한 소재 발굴 재료 검색에 3개월이 걸렸다. 데이터 세트와 기능을 확장함에 따라 검색 속도도 더욱 빨라질 것"이라고 IE와의 인터뷰에서 밝혔다. 빈은 또한 "이미 반도체, 촉매제, 코팅 등 다양한 제품 분야에 대한 광범위한 관심을 불러일으켰다. 점점 더 시급해지는 공급망과 환경 문제 해결을 위한 새로운 소재 개발에 시장 수요를 충족시키는데 우리 플랫폼이 어떤 역할을 할지 기대된다"고 덧붙였다. 마그넥스의 개발은 희토류 없는 영구 자석 제조 기술의 발전을 가속화하고 미래 청정 에너지 개발에 기여할 것으로 잔망된다.
-
- 포커스온
-
[신소재 신기술(57)] 영국 스타트업, AI로 희토류 없는 영구자석 개발
-
-
[신소재 신기술(38)] 한국 과학자팀, 상온 상압에서 다이아몬드 최초 합성
- 한국 기초과학연구원 연구원들이 새로운 액체 금속 합금 시스템을 사용해 상온 상압에서 다이아몬드 합성에 성공했다. 기초과학연구원(IBS)은 다차원탄소재료연구단 로드니 루오프 연구단장 팀이 갈륨, 철, 니켈, 실리콘으로 구성된 액체 금속 합금을 이용해 1기압과 1025°C의 상온 상압 조건에서 다이아몬드를 합성하는 데 세계 최초로 성공했다고 25일 밝혔다. 이 연구는 기존의 다이아몬드 합성 방법을 획기적으로 발전시킬 수 있는 성과라고 사이언스얼럿과 과학기술 웹사이트 Phsy 등에서도 비중있게 다뤘다. 기존의 다이아몬드 합성은 고온 고압(HPHT) 방법을 사용하며, 고온고압 조건을 유지하기 위한 압력 셀 제한 크기 때문에 다이아몬드 크기도 작아서 약 1㎠로 제한된다. 일반적으로 다이아몬드는 액체 금속 촉매를 사용해 '기가파스칼 압력 범위'(일반적으로 5~6GPa, 1GPa는 약 1만 기압)와 1300~1600°C의 고온에서만 다이아몬드를 생산할 수 있다. 천연 다이아몬드는 지하 깊은 곳의 극식한 압력과 온도에서 형성되는 데 수십억년이 걸린다. 합성 다이아몬드는 최대 몃 주 동안 강력한 압착이 필요하다. IBS 연구팀이 이번에 개발한 액체 금속 혼합을 기반으로 한 새로운 방법은 기존 다이아몬드 합성 패러다임을 깨고,1025도 온도 및 1기압 압력 조건에서 처음으로 다이아몬드를 합성했다. 이는 우리가 해수면에서 느끼는 압력과 동일하며 일반적으로 요구되는 압력보다 수만 배 더 낮다. 연구팀은 빠르게 가열과 냉각이 가능한 'RSR-S'라는 냉벽 진공 장치를 자체 제작해 통상 3시간 걸리는 기존 장치들과 달리, 15분이면 끝날 수 있게 했다. RSR-S는 온도와 압력을 빠르게 조절해 액체 금속 합금을 만드는 장치다. 연구팀은 메탄과 수소에서 갈륨 77.75%, 니켈 11.00%, 철 11.00%, 실리콘 0.25%로 구성된 액체 금속 합금을 만들어 하부 표면에서 다이아몬드 구성 물질인 탄소가 성장하는 것을 확인했다. 이 연구는 '네이처(Nature)' 저널 온라인에 게재됐다. 현재 다양한 산업 공정, 전자 제품, 심지어 양자 컴퓨터에 사용되는 대부분의 합성 다이아몬드를 만드는 데 사용되는 공정은 며칠이 걸리며 훨씬 더 많은 압력이 필요하다. 이 새로운 기술이 그 잠재력을 발휘한다면 다이아몬드 제작은 훨씬 더 빠르고 쉬워질 것이다. UNIST 석좌교수이기도 한 루오프 소장은 "이 선구적인 돌파구는 인간의 독창성과 끊임없는 노력, 그리고 많은 공동 연구자들의 협력이 만들어낸 결과"라고 말했다. 연구팀은 "액체 금속을 사용하는 일반적인 접근 방식은 다양한 표면에서 다이아몬드의 성장을 가속화하고 발전시킬 수 있으며 아마도 작은 다이아몬드(씨앗) 입자에서 다이아몬드의 성장을 촉진할 수 있다"라고 썼다. 루오프 소장은 "우리는 대형 챔버(내부 용적이 100리터인 RSR-A 챔버)에서 파라미터 연구를 진행했는데, 공기를 펌핑(약 3분)하고 불활성 가스로 퍼지(90분)한 다음 다시 진공 수준으로 펌프 다운(3분)하여 챔버를 1기압의 매우 순수한 수소/메탄 혼합물로 채우고(다시 90분) 실험을 시작하는 데 3시간 이상 소요되는 시간 때문에 다이아몬드 성장을 위한 파라미터 탐색이 더뎠다!"고 밝혔다. 이어 성원경 박사는 "메탄과 수소의 혼합물에 노출된 액체 금속으로 실험을 시작하고 완료하는 데 필요한 시간을 크게 줄이기 위해 훨씬 더 작은 챔버를 설계하고 제작하도록 요청했다"고 말했다. 성 박사는 "우리가 새로 제작한 시스템 즉, 내부 용적이 9리터에 불과한 RSR-S은 총 15분 만에 메탄/수소 혼합물을 펌핑, 퍼지, 배출, 채우기까지 완료할 수 있다. 매개변수 연구가 크게 가속화되었고, 이를 통해 액체 금속에서 다이아몬드가 성장하는 매개변수를 발견할 수 있었다"라고 설명했다. 제1저자인 얀 공 UNIST 대학원생은 "어느 날 RSR-S 시스템으로 실험을 진행한 후 흑연 도가니를 식혀 액체 금속을 고형화한 후 고형화된 액체 금속 조각을 제거했을 때, 이 조각의 바닥면에 수 밀리미터에 걸쳐 '무지개 무늬'가 퍼진 것을 발견했다. 그 무지개 색이 다이아몬드 때문이라는 사실을 알게 되었다! 이를 통해 다이아몬드의 재현 가능한 성장에 유리한 매개변수를 파악할 수 있었다"라고 말했다. 연구팀은 또 '광 발광 분광법' 실험으로 물질에 빛을 쏘아 방출되는 파장 빛을 준석해 다이아몬드 내 '실리콘 공극 컬러 센터' 구조도 발견했다. 이 구조는 액체 금속 합성 구성요소 중 하나인 실리콘이 탄소로만 이루어진 다이아몬드 결정 사이에 끼어들어 있는 것이다. 실리콘 공극 컬러 센터 구조는 양자 크기의 자성을 가져 자기 민감도가 높고, 양자 현상(양자적인 특성)을 보인다. 그로 인해 향후 나노 크기의 자기 센서 개발과 양자 컴퓨팅 분야의 응용이 기대된다. 논문 공동 저자인 메이후이 왕 박사는 "실리콘 공극 컬러 중심을 가진 이 합성 다이아몬드는 자기 감지 및 양자 컴퓨팅에 응용될 수 있을 것"이라고 말했다. 연구팀은 이러한 새로운 조건에서 다이아몬드가 핵을 형성하고 성장할 수 있는 메커니즘에 대해 심도 있게 연구했다. 시료의 단면을 고해상도 투과전자현미경(TEM)으로 촬영한 결과 다이아몬드와 직접 접촉한 고체 액체 금속에 약 30~40nm 두께의 비정질 표면 영역이 존재하는 것으로 나타났다. 공동 저자인 최명기 박사는 "이 비정질 영역의 상부 표면에 존재하는 원자의 약 27%가 탄소 원자였으며, 탄소 농도는 깊이에 따라 감소하는 것으로 나타났다"고 말했다. 연구팀은 또한 실리콘이 다이아몬드의 새로운 성장에 중요한 역할을 한다는 사실도 발견했다. 합금의 실리콘 농도가 최적 값보다 증가함에 따라 성장한 다이아몬드의 크기는 작아지고 밀도는 높아진다. 실리콘을 첨가하지 않으면 다이아몬드를 전혀 성장시킬 수 없었으며, 이는 실리콘이 다이아몬드의 초기 핵 형성에 관여할 수 있음을 시사한다. 루오프 소장은 "이 액체 금속에서 다이아몬드의 핵 형성과 성장에 대한 우리의 발견은 매우 흥미롭고 기초 과학을 위한 많은 흥미로운 기회를 제공한다. 이제 우리는 핵 형성과 그에 따른 다이아몬드의 빠른 성장이 언제 일어나는지 탐구하고 있다. 또한 탄소와 기타 필요한 원소의 과포화를 먼저 달성한 다음 온도를 빠르게 낮춰 핵 생성을 촉발하는 '온도 강하' 실험도 유망한 연구"라고 말했다.
-
- 포커스온
-
[신소재 신기술(38)] 한국 과학자팀, 상온 상압에서 다이아몬드 최초 합성
-
-
[신소재 신기술(33)] 원자 1개 두께의 이상한 형태의 금
- 스웨덴 과학자들은 단일 원자층으로 구성된 아주 얇은 박막의 금 소재를 개발했다. 이 새로운 물질은 '골덴'이라고 명명되었으며 반도체 특성을 지니고 있다. 과학 전문매체 사이언스 얼럿은 스웨덴 린쇼핑 대학교(Linköping University) 연구원들은 금을 더 이상 얇아질 수 없는 원자 1개 두께의 납작한 박막 시트 형태로 만들어내는 새로운 방법을 개발했다며 지난 16일(현지시간) 이같이 보도했다. 재료 과학의 명명 관습에 따라 연구팀은 이 새로운 2차원 물질에 '골덴(goldene)'이라는 이름을 붙였다. 골덴은 3차원 형태의 금에서는 볼 수 없는 몇 가지 흥미로운 특성을 가지고 있다. 스웨덴 린쇼핑 대학교의 재료 과학자 슌 카시와야는 "그래핀처럼 물질을 매우 얇게 만들면 놀라운 일이 일어난다"며 "금도 마찬가지다. 아시다시피 금은 보통 금속이지만, 단일 원자층 두께로 만들면 금이 반도체가 될 수 있다"라고 설명했다. 금은 서로 뭉치는 경향이 있기 때문에 2차원 구조로 동축하는 것은 매우 어렵다. 이전의 시도는 몇 원자 두께의 얇은 시트를 만들거나 다른 물질 사이에 또는 그 위에 단층을 끼워 분리할 수 없는 결과를 낳았다. 카시와야와 연구팀은 금을 만들려고 시작한 것이 아니라 우연히 공정의 첫 단계를 발견하게 됐다고 전했다. 린쇼핑 대학교의 나노 공학 분야의 연구를 이끌고 있는 재료 물리학자 라르스 튈트만(Lars Hultman)은 "우리는 완전히 다른 응용 분야를 염두에 두고 기본 재료를 만들었다"면서 "우리는 실리콘이 얇은 층으로 이루어진 티타늄 실리콘 카바이드라는 전기 전도성 세라믹으로 시작했다. 그런 다음 이 소재를 금으로 코팅해 접촉을 만드는 것이 아이디어였다. 하지만 부품을 고온에 노출시켰을 때 실리콘 층이 기본 재료 내부의 금으로 대체됐다"라고 설명했다. 튈트만 교수는 금속 나노구조의 합성 및 특성 연구에 선구자적인 역할을 했다. 특히, 금속 나노입자, 나노선, 나노막 등 다양한 금속 나노구조를 합성하고, 그들의 광학적, 전기적, 촉매적 특성을 연구해 다양한 응용 분야에 활용 가능한 새로운 재료를 개발하는 데 기여했다. 앞서 연구팀은 단층 금을 만들려는 시도에서 중요한 단계에서 한계에 도달해 연구 과정이 중단됐다. 몇 년 동안 연구팀이 만든 인터칼레이티드 티타늄 금 카바이드는 티타늄과 탄소 층 사이에 있는 초박막 금 층을 추출할 방법이 없어 그냥 그 상태로 남아있었다. 이에 연구팀은 무라카미 시약이라는 에칭 용액에 기반한 기술을 사용해 지난 연구의 한계를 돌파했다. 무라카미 시약은 금속 가공에 사용되는 화학 물질의 혼합물로, 탄소를 에칭하고 강철을 얼룩지게 하여 일부 일본 칼에서 볼 수 있는 무늬를 만들어낸다. 연구팀은 혼합물의 농도와 에칭 공정이 금을 둘러싼 티타늄과 탄소를 부식시키는 시간대를 다르게 시도했다. 무라카미 시약의 에칭 효과는 페로시아나이드 칼륨이라는 부산물을 생성한다. 이 화합물은 빛에 노출되면 시안화물을 방출하여 금을 녹이기 때문에 연구팀은 에칭 공정을 완전히 어둠 속에서 진행해야 했다. 게다가 얇은 금 시트는 말리거나 뭉치는 경향이 있었다. 이에 연구팀은 층이 접히거나 달라붙는 것을 방지하는 계면활성제를 추가해 금의 단일 원자층의 무결성을 유지했다. 연구팀은 이론적 시뮬레이션에서 예측한 대로 이 까다로운 단계를 거쳐 마침내 안정적인 금을 형성하는 데 성공했다. 이번 연구는 학술지 '네이처 신티시스(Nature Synthesis)'에 게재됐다. 일반적으로 금은 우수한 전기 전도성 물질이다. 원소가 2차원 시트 형태를 취할 때 원자는 두 개의 자유 결합을 가지며 도체와 절연체 사이의 전도 특성을 가진 반도체로 변모한다. 이는 전도도를 조절할 수 있기 때문에 유용하다. 다시 말하면, 전기 전도성이 우수하고 부식에 강한 금은 반도체 소자의 접점, 연결 부품, 패키징 등에 사용된다. 금은 나노 크기의 입자로 제조될 수 있으며, 이러한 금 나노 입자는 차세대 반도체 소자의 제작에 활용될 수 있다. 예를 들어, 금 나노 입자는 트랜지스터의 게이트 전극, 메모리 소자의 저장 매질, 광전자 소자의 광 감지 소자 등으로 사용될 수 있다. 게다가 금은 생체 적합성이 우수하고 전기 전도성이 높기 때문에 생체 의료 분야에서 사용되는 뇌-컴퓨터 인터페이스, 심장 박동기 리드, 인공 근육 등의 전극 소재로 활용될 수 있다. 그러나 금은 높은 비용과 가공의 어려움, 제한된 반도체 특성 등의 단점도 존재한다. 금은 반도체 특성이 제한적이기 때문에 고성능 트랜지스터 제작에는 적합하지 않다.
-
- 포커스온
-
[신소재 신기술(33)] 원자 1개 두께의 이상한 형태의 금
-
-
[신소재 신기술(32)] 획기적인 '종이 기반' 배터리 개발⋯"식물에서 영감 얻어"
- 일본에서 희귀 금속이 필요 없는 종이 기반의 물로 활성화되는 배터리가 개발됐다. 일본 도호쿠대학(東北大學)의 재료연구소(AIMR) 연구진은 GPS 센서나 맥박 산소 측정기 센서에 사용할 수 있는 종이 기반의 고성능 마그네슘-공기(Mg-air) 배터리를 개발했다고 오일 프라이스가 14일(현지시간) 보도했다. 이변 연구는 종이의 재활용성과 가벼운 특성을 활용해 보다 환경 친화적인 에너지원으로 발전할 수 있는 가능성을 제시했다. 연구 보고서 논문 '희귀 금속이 없는 고성능 물 활성화 종이 배터리: 웨어러블 센싱 장치를 위한 일회용 에너지원'은 'RSC 인터페이스 응용(RSC Applied Interfaces)' 저널에 게재됐다. 종이는 지난 2000년 동안 인류 문명의 필수품이었다. 종이는 일반적으로 중국 후한 시대 105년 경에 채륜이 발명했다고 알려져 있다. 하지만 최근 중국에서 기원전 2세기 경으로 거슬러 올라가는 종이가 발견되기도 해 종이의 정확한 기원은 알 수가 없다. 글 쓰기를 통해 그동안 인류 역사를 기록해온 종이가 이제는 배터리에 활용돼 친환경적인 미래를 여는 중요한 역할을 하게 됐다. 가볍고 얇은 종이 기반 디바이스는 금속이나 플라스틱 소재에 대한 의존도를 낮추는 동시에 폐기하기도 더 쉽다. 이 연구의 교신 저자인 히로시 야부(Hiroshi Yabu) 교수는 "우리는 식물의 호흡 메커니즘에서 이 장치에 대한 영감을 얻었다"고 말했다. 야부 교수는 "광합성은 배터리의 충전 및 방전 과정과 유사하다. 식물이 태양 에너지를 이용해 땅의 물에서 설탕을, 공기에서 이산화탄소를 합성하는 것처럼, 우리 배터리는 마그네슘을 기질로 활용해 산소와 물에서 전력을 생성한다"고 설명했다. 연구팀은 배터리를 제작하기 위해 마그네슘 호일을 종이에 접착하고 음극 촉매와 가스 확산층을 종이 반대편에 직접 추가했다. 종이 배터리는 1.8V(볼트)의 개방 회로 전압, 100mA/cm²의 1.0V 전류 밀도, 103mA/cm²의 최대 출력을 달성했다. 야부 교수는 " 이 배터리는 인상적인 성능 결과를 보여줬을 뿐 아니라 독성 물질을 사용하지 않고 엄격한 평가를 통과한 탄소 음극과 안료 전기 촉매를 사용해서 작동한다"라고 덧붙였다. 연구팀은 맥박 산소 측정기 센서와 GPS 센서에서 이 배터리를 테스트해 웨어러블 디바이스에 대한 다용도성을 입증했다.
-
- 포커스온
-
[신소재 신기술(32)] 획기적인 '종이 기반' 배터리 개발⋯"식물에서 영감 얻어"
-
-
[신소재 신기술(26)] 암석의 혁신, '지질학적 수소' 생산 가능
- 지속 가능한 에너지 환경에 획기적인 변화를 가져올 암석 기반 수소 생산 연구가 활발하게 진행되고 있다. 미국 텍사스 대학교 오스틴 캠퍼스 연구팀은 철분이 풍부한 암석에서 이산화탄소 배출 없이 수소 가스를 생산하는 천연 촉매 개발에 힘쓰고 있다고 과학 전문매체 사이테크데일리가 전했다. 기존 방식에 비해 저탄소 대안을 제공하는 이 기술은 미래 에너지 시장의 주역으로 주목받고 있다. 이 프로젝트가 성공한다면 '지질학적 수소'라는 새로운 산업 분야를 창출하며 에너지 전환에 혁신을 가져올 것으로 기대된다. UT 잭슨 지구과학대학 경제지질학국의 연구 부교수이자 이 프로젝트의 수석 연구원 토티 라슨 박사는 "우리는 암석에서 수소를 생산하고 있다"고 말했다. 라슨은 "철분이 풍부한 암석에서 수소를 비화석 연료로 생산하는 것은 산업적 규모로 시도된 적이 없는 일종의 비화석 연료 생산이다"라고 설명했다. 수소는 연료로 연소할 때 이산화탄소 가스를 배출하지 않기 때문에 에너지 전환에서 중요한 역할을 한다. 유일한 부산물은 물뿐이다. 그러나 오늘날 대부분의 수소는 천연가스에서 생산되며 이 과정에서 CO₂도 배출한다. 라슨은 철분이 풍부한 암석에서 지질학적 수소를 생산하면 탄소 배출량이 적기 때문에 에너지 전환에 큰 변화를 가져올 수 있다고 지적했다. 이 과정은 지질학적 현상인 '사문석화'를 촉진하는 원리다. 사문석화 과정에서 철분이 풍부한 암석은 화학 반응의 부산물로 수소를 생성한다. 사문석화는 일반적으로 고온에서 일어난다. 연구팀은 현재 기술로 쉽게 접근할 수 있는 낮은 온도와 심도에서 수소 생산을 촉진하기 위해 니켈과 백금족 원소 등을 포함하는 천연 촉매 물질을 활용하고 있다. 즉, 철이 풍부한 암석에서 천연 촉매를 사용해 수소를 생산하면 전 세계적으로 수소 생산량을 크게 늘릴 수 있는 잠재력이 있다. 기존의 대부분 수소 생산 방식은 천연가스를 이용하며 이산화탄소를 배출한다. 지질학적 수소 생산은 저탄소 배출 특징을 지니고 있어 에너지 전환에 획기적인 진전을 가져올 수 있다. 잭슨 스쿨의 연구 부교수이자 이 프로젝트의 공동 연구자인 에스티 우카르 박사는 "전 세계에서 지질학적 수소의 자연 축적이 발견되고 있다. 탐사가 계속되고 있지만 대부분의 경우 규모가 작고 경제성이 없다"며 "자연에서 수백만 년이 걸리는 반응을 유도해 이러한 암석에서 더 많은 양의 수소를 생산할 수 있다면 지질학적 수소는 정말 획기적인 기술이 될 수 있다고 생각한다"고 말했다.
-
- 포커스온
-
[신소재 신기술(26)] 암석의 혁신, '지질학적 수소' 생산 가능
-
-
[신소재 신기술(21)] 홍게껍질로 반도체 및 에너지 저장 기능 갖춘 나노시트 개발
- 일본 과학자들이 홍게의 껍질에 포함된 키토산으로 만든 나노섬유에서 반도체와 에너지 저장 특성을 발견했다. 26일(이하 현지시간) 뉴스마이네비에 따르면 일본 도호쿠대학(東北大學) 연구팀은 홍게 껍질에 포함된 불용성 식이섬유의 일종인 '키토산'으로 만든 나노섬유(ChNF) 조직을 제어해 만든 나노미터 두께의 시트 소재에서 반도체 특성과 에너지 저장 특성을 나타내는 것을 발견했다고 25일 밝혔다. 이번 성과는 도호쿠대 미래과학기술공동연구센터 후쿠하라 미키오 학술연구원, 동 대학 하시타 토시유키 특임교수, 도쿄대 이소카이 아키라 특임교수 등의 공동연구팀에 의해 이루어졌다. 연구 결과는 미국 물리학 협회에서 발행하는 학술지 'AIP-Advances'에 게재됐다. 이번 연구는 친환경적인 반도체와 에너지 저장 소재 개발에 기여할 것으로 기대된다. 반도체는 실리콘으로 대표되는 원소 반도체와 갈륨비소(GaAs) 및 '파이(π) 공액 고분자'와 같은 화합물 반도체로 크게 두 가지로 분류된다. 두 반도체 모두 광물이나 인공 화합물에서 금속을 정제해 만드는데, 생산 과정에서 많은 양의 에너지가 필요하고 환경에 미치는 영향이 크다. 연구팀은 절연체로 인식되는 종이와 셀룰로오스의 나노 크기 미세 구조체인 케나프 식물에서 추출한 셀룰로오스 나노섬유(Cellulose Nanofibers·CNF)를 이용해 전하 분포와 전자 이동을 측정했다. 그 결과, '템포 산화 CNF(TEMPO-oxidized CNF, TEMPO 촉매를 사용해 산화 처리된 셀룰로오스 나노섬유)'는 고전압 단시간 충전 특성을, CNF는 n형 음의 저항을 나타내는 n형 반도체의 다양한 특성을 발견했다. 이 연구에서는 식물 셀룰로오스와 분자 구조가 유사하고 지구상에서 두 번째로 풍부한 바이오매스 화합물인 동물성 키토산에 초점을 맞췄다. 연구팀에 따르면, 키토산에는 케나프(CNF)에서 발현되지 못했던 고속 충전 특성이 발견됨과 동시에 액체 누출 등의 문제를 극복할 수 있는 고체형 축전지를 제공할 수 있는 잠재력을 가지고 있는 것으로 밝혀졌다. 또한 키토산과 같은 자연 유래의 해양 바이오매스 소재를 반도체, 에너지 저장 분야에 활용할 수 있다면 폐기물을 줄여 자원순환형 사회 조성에 기여할 수 있다. 이번 연구에서는 홍게 껍질로 만든 키토산 나노섬유(ChNF)를 대표적인 동물성 소재로 활용하고, 섬유 길이를 300nm 이하로 제어한 ChNF 시트에 Al 전극을 부착한 소자를 제작했다. ChNF 시트 소자의 I(전류)-V(전압) 특성, AC(교류) 임피던스, 주파수 분석, 축전성을 측정한 결과, 전압 제어에 의한 전압 유도 반도체와 같은 특성이 나타나는 것을 확인했다. 또한, ChNF 시트의 -210~+80V 범위에서 동작 속도 1.24V/s의 승강 전압에 대한 I-V 특성에서 음전압 영역에서 전류의 전압 의존성이 역전되는 거동, 이른바 n형 반도체 특성을 보였다. 즉, I-V 특성은 옴의 법칙을 따르지 않고, 전압 상승에 따라 일정 전압 이상에서 전류가 감소하는 음극 저항이 발현된 것이다. 반면, R(저항)-V(전압) 특성을 분석한 결과, 승압 -1V~0V, 강압 +2V~0V 사이에서 3자리 스위칭 효과를 보이는 특성이 관찰됐다. 또한 10~500V에서 2mA의 전류로 5초간 충전한 후 1μA의 정전류로 방전했을 때 충전 전압 대비 저장 용량의 변화를 조사한 결과, 전압 증가에 따라 저장 용량이 선형적으로 증가하며 450V부터 급격히 증가하는 것으로 나타났다. 다음으로 ChNF 시트의 AC 임피던스 특성을 측정한 결과, 저저항과 고저항의 두 개의 반원을 가진 나이키스트 선도(The Nyquist diagram)를 얻었다. 두 개의 반원은 원자간력 현미경 이미지 관찰을 통해 각각 120~350nm의 바늘 모양과 구형으로 이루어진 갑각류 외골격과 세포벽 조직의 기여하는 것으로 추론했다, 이 나이키스트 선도의 특성으로부터 ChNF 시트는 직류와 교류 영역에서 동일한 회로를 가질수 있음을 시사했다. 연구팀은 또한, 반도체 특성의 전자의 기원을 규명하기 위해 ESR 분석을 시도했다. 전자의 기원을 결정하는 단수 대칭의 피크를 관찰했고, 스펙트럼 강도의 선도가 횡축과 교차하는 자기장의 g값을 통해 키토산의 생성 전자는 비정질 키토산에서 발생하는 아미닐 라디칼(NH¯₂)에서 생성된 전자임을 확인했다. 연구팀은 이번 성과에 대해 "저밀도 경량 반도체 및 에너지 저장 장치 제작을 통해 천연 유래의 바이오 소재 자원을 활용함으로써 지구의 생물 순환 시스템을 활용한 바이오 일렉트로닉스가 발전할 수 있을 것으로 기대한다"고 밝혔다.
-
- 포커스온
-
[신소재 신기술(21)] 홍게껍질로 반도체 및 에너지 저장 기능 갖춘 나노시트 개발
-
-
의료용 그래핀 센서 개발 기업 MCK테크, 버사리엔 한국자산 60만4000파운드에 매입
- 영국 서부 포레스트 오브 딘(Forest of Dean)의 첨단 소재 엔지니어링 그룹 버사리엔(Versarien)이 한국에 있는 그룹의 공장과 장비를 매각한다. 11일(현지시간) 영국 비즈니스 전문매체 펀치라인에 따르면 버사리엔은 의료용 그래핀 센서 개발 기업 MCK테크(주)와 총 60만4000만 파운드(약 10억1525만원)에 그룹의 한국 공장 및 장비를 매각하고, 그룹 소유의 특허 5건에 대한 독점 라이선스 계약과 함께 추가 비용을 지불하는 계약을 체결했다. 버사리엔은 회사 재건 전략의 일환으로 주요 사업 이외의 자산 처분을 추진하고 있으며, 2020년 한화 에어로스페이스로부터 인수한 한국 공장과 설비는 주요 사업과 연관이 없다고 판단되어 매각 대상으로 선정됐다고 이 매체는 전했다. 현재 버사리엔은 첨단 소재 회사인 고성능 나노복합소재를 개발·제조하는 에에에이씨 시로마(AAC Cyroma)와 고성능 텅스텐 카바이드 소재를 개발·제조하는 토탈 카바이드(Total Carbide) 등 성숙한 사업 부문도 매각을 위해 논의를 진행하고 있다. 추가 자산 매각 시기와 인수 자금의 규모는 아직 확실하지 않은 것으로 알려졌다. 매각 수익금은 기업 운영 및 워킹 캐피탈 충당에 사용될 예정이며, 버사리엔은 회사 재건 전략 지원을 위한 단기 및 장기 자금 조달을 계속 추진할 것으로 예상된다. 2023년 3월 31일 기준 한국 공장의 총 자산 가치는 84만4151 파운드(약 14억 3587만원)였으며, 2022년 9월 30일까지 18개월 동안 버사리엔 코리아의 순손실은 77만1690 파운드(약 13억 원)에 달했다. 버사리엔의 스티븐 홋지 최고경영자(CEO)는 "앞서 언급했던 바와 같이, 버사리엔의 전략은 영국에서 제조 부분을 최소화하고 특허, 기술 노하우 및 기타 지식재산권을 주요 파트너에게 라이센싱하는 것이다. 이 전략에 따라 한국산 CVD 그래핀 생산 장비 매각과 5건의 특허를 MCK Tech에 라이센싱하게 되어 기쁘다. MCK Tech는 의료 분야용 그래핀 센서 개발을 하는 우수한 기업이다"라고 밝혔다. 이어 홋지 CEO는 "MCK테크의 조승민 대표는 삼성테크윈과 한화에어로스페이스에서 그룹장을 역임한 후 2017년 대전의 첨단메타소재센터(CAMM)와 합작법인인 MCK테크를 설립한 국내 CVD 그래핀의 선구자 중 한 명이다. 앞으로도 CVD 그래핀 소재에 대한 접근성을 유지하고 협업을 통해 MCK테크의 성장을 지원할 수 있기를 기대한다"고 말했다. MCK테크 조승민 CEO는 "CVD 그래핀 생산 장비 인수는 CVD 그래핀 제조 및 응용 분야 개발을 위한 전략적 투자다. 삼성테크윈과 한화 에어로스페이스의 기술을 계승하여 그래핀 산업에서 선두 기업으로 자리 잡을 수 있게 됐다. 또한 저명한 그래핀 기업인 버사리엔과의 협력 관계 구축을 통해 향후 수년간 CVD 그래핀과 그래핀 플레이크 상용화에 공동 노력할 수 있게 되어 기쁘다"라고 말했다. 한편, CVD 그래핀은 화학기상증착(Chemical Vapor Deposition) 방법으로 합성된 그래핀을 말한다. 이 방법은 고순도의 그래핀을 대면적으로 생산할 수 있어 산업적으로 매우 중요하다. 화학기상증착 과정에서는 탄소를 함유한 가스(예: 메탄)가 높은 온도에서 촉매 금속 표면(주로 구리나 니켈) 위에 흘러가며 탄소 원자가 분리되어 촉매 표면 위에 그래핀층을 형성하게 된다. '대면적'은 그래핀이 넓은 면적에 걸쳐 균일하게 합성되었음을 의미한다. 대면적 그래핀 생산은 고기능성 전자기기, 대형 투명 전도성 필름 등 큰 규모의 응용을 가능하게 하는 중요한 기술적 달성이다. 또한 CVD 그래핀의 생산 방법은 고도로 제어 가능하여, 높은 품질의 그래핀을 일관되게 생산할 수 있는 장점이 있다. 이렇게 생산된 그래핀은 투명 전도 필름, 전자기기, 에너지 저장 장치, 각종 센서 등 다양한 고기능성 소재로의 응용이 가능하다.
-
- IT/바이오
-
의료용 그래핀 센서 개발 기업 MCK테크, 버사리엔 한국자산 60만4000파운드에 매입
-
-
美 파월 연준 의장 "올해 중 금리 인하할 것"
- 미국 중앙은행인 연방준비제도의 제롬 파월 의장은 6일(현지시간) 올해 어느 시점에 금리를 인하할 것이라고 말했다. 파월 의장은 이날 미 연방 하원 금융서비스위원회 청문회에 출석해 정책 입안자들은 인플레이션이 야기하는 위험에 계속 주의를 기울이고 있으며 (정책 기조를) 너무 빨리 완화하기를 원하지 않는다고 말했다. 파월은 "경제가 예상 경로로 움직인다면 올해 어느 시점에 현 긴축적인 통화정책을 되돌리는 완화책을 시작하는 게 적절할 것"이라고 밝혔다. 그러면서 파월 의장은 금리 인하에 나서기 전 물가가 잡혔다는 더 큰 확신이 필요하다고 강조했다. 그는 "연방공개시장위원회(FOMC)는 인플레이션이 2%를 향해 지속적으로 움직일 것이라는 더 큰 확신이 들 때까지 기준금리 인하가 적절하지 않다고 기대한다"고 전했다. 파월 의장의 이러한 발언은 지난 1월 31일 끝난 가장 최근 회의 이후 연방공개시장위원회의 성명에서 그대로 따온 것이다. 1월 FOMC 의사록에 따르면 대부분 연준 위원은 정책 기조를 너무 빨리 완화할 경우의 위험성을 지적하고, 인플레이션이 2%로 지속 가능하게 하락하고 있는지 판단할 때 향후 경제 데이터를 신중하게 평가하는 게 중요하다고 강조했다. 파월 의장은 하원 금융서비스위원회 위원들과의 질의응답 세션에서 금리를 인상하기 전에 "조금 더 많은 데이터를 봐야 한다"고 답변했다. 파월은 "경제가 예상대로 전반적으로 발전한다면 올해 어느 시점에서 정책 제한 완화를 시작하는 것이 적절할 것"이라고 말했다. 그는 "우리는 경제의 힘과 노동 시장의 힘, 그리고 우리가 이룩한 진전 때문에 우리는 그 단계에 신중하고 신중하며 더 큰 자신감을 가지고 접근할 수 있다고 생각한다"고 말했다. 이어 "우리가 그 자신감에 도달하면 올해 언젠가 그렇게 될 것으로 기대된다. 그런 다음 우리 정책에 대한 제한을 다시 시작할 수 있다"라며 기준금리 인하에 거듭 신중한 입장을 보였다. 한편, 파월 의장의 이같은 발언 후 6일 미국 증시는 상승세를 보였다. 특히 기술 주식은 급격한 하락세 후 급등했다. 이는 투자자들이 제롬 파월 연준 의장의 금리 인하 가능성 시사에 긍정적인 반응을 보였기 때문으로 풀이된다. 파월은 의원들에게 "2024년 '어느 시점'에 금리 인하가 필요할 수 있다"고 말했다. 기술 주식이 많은 나스닥 종합 지수는 전날 전체 증시 하락을 주도한 후 거의 0.6% 상승했다. 스탠더드 앤드 푸어스(S&P) 500 지수와 다우존스 산업 평균 지수 또한 각각 0.5%와 0.2% 상승했다. 이는 모두 전날 1% 이상 하락했던 수치를 벗어난 것이다. 파월 의장의 의회 증언은 '매그니피센트 세븐'의 강자인 애플과 테슬라가 버블 공포를 불러일으키면서 이틀간 하락세를 기록한 증시에 촉매제가 될 수 있다고 야후는 전했다. 개별 주식으로는 뉴욕 커뮤니티뱅코프(NYCB) 주식이 급등락한 후 7% 이상 상승으로 장을 마감했다. NYCB가 투자자 유치를 위해 주식 매입 의사를 가진 투자자를 찾고 있다는 보고서가 나오면서 주가는 처음에 급락했다. 하지만 은행이 새로운 CEO를 발표하고 전 재무부 장관 스티븐 므누친을 포함한 그룹으로부터 10억 달러의 투자를 받겠다고 발표한 후 주가는 회복했다.
-
- 경제
-
美 파월 연준 의장 "올해 중 금리 인하할 것"
-
-
[신소재 신기술(2)] 박테리아, 극한 환경서 이산화탄소 암석화 가속
- 일부 박테리아가 극한 조건에서 이산화탄소를 암석으로 변환하는 데 기여할 수 있다는 연구 결과가 발표됐다. 미국의 과학 전문 매체 뉴스사이언티스트는 지난 14일(이하 현지시간) 미국 사우스다코타 연구팀의 박테리아 연구 결과를 인용, 이산화탄소를 신속하게 암석으로 전환시킬 수 있는 미생물이 폐유정이나 버려진 가스 저장소와 같은 깊은 지하 공간에 온실가스를 저장하는 데 활용될 수 있다고 전했다. IFL사이언스는 지하 1250미터 깊이에서 발견된 특정 박테리아가 이산화탄소를 결정 형태로 변환할 수 있으며, 이러한 탄소 포집 기능을 가진 박테리아를 사용해 버려진 화석 연료 저장소에 온실가스를 안정적으로 저장할 수 있다고 지난 15일 보도했다. 미국 사우스다코타 광업기술대학의 고크체 우스투니식(Gokce Ustunisik) 교수와 그의 동료들은 워싱턴주의 퇴비 더미에서 고온과 고압을 견디는 것으로 알려진 지오바실러스 박테리아 종을 분리했다. 연구팀에 따르면 극한 환경에서 작동하는 박테리아를 활용해 이산화탄소의 광물화 과정을 가속화함으로써, 포집된 이산화탄소를 지하에 주입하고 이를 통해 온실가스를 장기간 안정적으로 저장할 수 있는 가능성이 제시됐다. 사우스다코타의 블랙힐스 지역 깊숙한 곳에는 CO₂를 고체 광물로 신속하게 변환할 수 있는 잠재력을 지닌 박테리아가 서식하고 있다. 과학자들이 이 독특한 미생물을 활용하는 방법을 개발한다면, 고갈된 화석 연료 저장소에서 온실가스를 포집하는 새로운 접근법을 제안할 수 있게 될 것으로 전망된다. 이번 연구는 이러한 박테리아가 이산화탄소를 암석으로 전환하는 과정에서 중요한 역할을 할 수 있음을 시사한다. 미생물, 단 10일 만에 고체 탄산염 변환 실험실 실험에서 연구팀은 해당 미생물이 존재하는 경우와 그렇지 않은 경우에 이산화탄소가 물에 용해됐을 때의 광물화 속도를 비교했다. 연구팀은 CO₂가 저장될 수 있는 지하 깊은 곳에서 발견될 수 있는 극한의 조건, 즉 다양한 온도, 압력, 그리고 염분 조건에서 이 과정을 시험했다. 이와 함께, 여러 종류의 현무암을 사용하여 이 과정을 검증했다. 이들 미생물이 없을 경우, 연구팀은 CO₂의 광물화 과정을 관찰하지 못했다. 우스투니식 교수는 이 과정이 이상적인 지질학적 조건에서조차 보통 수년이 소요될 수 있다며, "실질적으로 영원히 걸릴 수도 있다"고 말했다. 그러나 미생물이 있을 때는 상황이 달라졌다. 우스투니식 교수에 따르면, 80°C(176°F)의 온도와 해수면 압력의 약 500배에 해당하는 극한의 조건에서 CO₂가 광물 결정 형태를 이루는 데 단 10일이 걸렸다고 한다. 유망한 미생물 후보 3 종류 소더 지오사이언스 LLC와 사우스다코타 광업기술대학의 연구팀은 최근 유전의 극심한 온도와 압력을 견딜 수 있는 탄소 격리용 미생물을 탐색하는 데 주력했다. 이 과정에서 세 가지 유망한 후보 미생물을 발견했다. 이들 중 하나는 미국 내에서 가장 깊은 곳에 위치한 사우스다코타 블랙힐스의 샌포드 지하 연구 시설의 지하 1250미터(4100피트)에서 발견된 바실러스 박테리아 종이다. 다른 두 종은 각각 고온과 고압 조건을 견딜 수 있는 지오바실러스 종과, 최대 110°C(230°F)의 고온과 바닷물의 염분 그리고 고압을 견뎌낼 수 있는 태평양 열수구에서 발견된 고온성 페르세포넬라 마리나(Persephonella marina)이다. 이들 박테리아는 압력, 온도, 산도의 극한 조건을 다루는 일련의 실험실 실험을 성공적으로 견뎌냈다. 위에서 지적했듯이 예비 연구 결과에 따르면, 이 미생물이 CO₂를 방해석 결정으로 전환하는데 최적의 조건은 해수면 압력의 약 500배 높은 압력과 80°C(178°F)온도였다. 이러한 극한의 환경에서, 해당 박테리아는 10일 이내에 CO₂를 탄산염 결정으로 변환할 수 있었다. 이 박테리아가 CO₂와 물과의 반응을 촉매하는 데에는 탄산탈수효소라는 효소가 핵심 역할을 했다. 이 효소 덕분에 박테리아는 CO₂를 효과적으로 광물화할 수 있었다. 이 연구는 작년 말 샌프란시스코에서 열린 미국 지구물리연합 회의(American Geophysical Union conference)에서 발표됐다. 폐유전·가스전, CO₂ 저장에 이상적 장소 폐유전이나 고갈된 가스전에 남겨진 공간은 포집된 CO₂를 저장하는 데 이상적인 장소로 여겨지며, 이 방법을 통해 CO₂가 대기 중으로 방출되어 온실가스로 작용하고 기후 변화를 촉진하는 것을 방지할 수 있다. 이러한 박테리아는 고갈된 유전이나 가스전의 까다로운 조건에서도 CO₂를 안정적으로 격리하고, 지하 공간에 효과적으로 저장함으로써 영구적인 탄소 격리의 가능성을 제시한다. 또한 고체 탄산염은 버려진 유정에 남아 있는 액체와 가스가 새어 나오는 것을 막는 '플러그' 역할을 효과적으로 수행할 수 있다. 현재 이러한 탄소 포집 기술은 여전히 가설적인 단계에 있지만, 이 기술의 발전은 기후 위기 대응에 있어 중요한 역할을 할 수 있다. 하지만 이 기술만으로는 기후 변화 문제를 해결할 수 없으며, 화석 연료 사용 감소를 위한 노력과 함께 지속 가능한 에너지 시스템 구축을 위해 노력이 필요하다.
-
- 포커스온
-
[신소재 신기술(2)] 박테리아, 극한 환경서 이산화탄소 암석화 가속
-
-
중앙대, 그린수소 생산 혁명 루테늄 촉매 개발
- 수소경제 시대를 앞두고 친환경적인 수소 생산 기술 개발이 지속적으로 이루어지고 있다. 이 가운데 최근 중앙대학교 첨단재료공학과 연구팀이 차세대 수소 전극 촉매로 주목받는 루테늄 촉매의 성능을 획기적으로 향상시킨 연구 결과를 발표했다. 미국 과학 전문 매체 사이테크데일리(SciTechDaily)는 중앙대학교 첨단재료공학과 장해성 교수 연구팀이 아연으로 도핑한 루테늄 산화물(SA Zn-RuO2) 촉매를 개발했다고 지난 21일(현지시간) 자세히 소개했다. 아연으로 도핑한 루테늄 산화물 촉매는 기존 루테늄 산화물 촉매에 비해 안정성과 반응성이 향상된 것이다. 수소는 화석연료 대체 에너지원으로 각광받고 있지만, 현재까지 주로 천연가스 개질을 통해 생산되는 '회색 수소'는 환경오염 문제를 해결하지 못하고 있다. 반면, 물과 전기를 이용하여 생산되는 '녹색 수소'는 온실가스 배출 없이 순수한 수소를 확보할 수 있는 친환경 에너지원으로 각국 정부와 기업들의 핵심 투자 분야로 떠오르고 있다. 하지만 현재 녹색 수소 생산 기술은 아직 초기 단계에 머물러 있다. 가장 큰 걸림돌은 산성 전해수를 이용하는 '양극 산화반응(OER)' 촉매의 효율성과 안정성이 부족하기 때문이다. 이 때문에 경제적인 녹색 수소 생산량을 늘리기 어려운 상황이다. 루테늄 촉매로 획기적인 성능 향상 연구팀은 기존 상용 루테늄 촉매에 아연(Zn) 원자를 도핑하는 기술을 개발하여 기존 촉매에 비해 훨씬 높은 반응성과 안정성을 확보했다. 기존 루테늄 촉매는 전류밀도를 높이면 빠르게 성능이 저하되는 반면, 연구팀이 개발한 촉매는 높은 전류밀도에서도 지속적으로 안정적인 수소 생산을 가능하게 한다. 뿐만 아니라, 이 신소재 촉매는 이리듐(Ir)과 같은 귀금속 대신 상대적으로 저렴한 루테늄을 사용함으로써 녹색 수소 생산 비용을 크게 낮출 수 있는 장점도 지니고 있다. 결과적으로 연구팀의 성과는 녹색 수소 경제 실현에 한 걸음 더 다가선 중요한 결과라 할 수 있다. 차세대 전극 촉매의 길을 여는 돌파구 연구팀은 이번 연구 결과를 바탕으로 더욱 효율적이고 안정적인 차세대 촉매 개발에 힘을 쏟을 계획이다. 이를 통해 친환경 수소 생산 기술 발전을 촉진하고 우리나라 수소경제 선두 국가 진출에 밑바탕을 마련할 것으로 기대된다. 연구팀은 기존 루테늄(RuO2) 촉매에 단일 아연(Zn) 원자를 도핑하고 산소 공백을 도입하는 이중 기술을 개발하여 안정성과 활성을 동시에 높이는 데 성공했다. 'SA Zn-RuO2(단일 아연 도핑 루테늄 산화물)' 촉매라고 명명한 신소재는 산소 공백과 Zn-O-Ru(아연 산소 루테늄) 결합을 통해 기존 촉매의 한계를 효과적으로 극복했다. SA Zn-RuO2 촉매는 유기 골격 구조물을 루테늄과 아연 원자로 가열하여 합성하는데, 이 과정에서 산소 공백과 Zn-O-Ru 결합이 형성된다. 이러한 결합은 두 가지 방식으로 촉매를 안정화한다. 첫째, Ru-O 결합을 강화하여 촉매 구조를 지탱한다. 루테늄-산소 결함은 촉매의 구조적 안정성을 높이는 데 중요한 역할을 한다. 루테늄-산소 결합이 강하면 촉매가 쉽게 분해되는 것을 방지할 수 있다. 둘째, 아연 원자로부터 전자를 공급하여 산화 과정에서 루테늄의 과도한 산화를 막는다. 또한 향상된 전자 환경은 반응 물질이 촉매 표면에 흡착하는 데 필요한 에너지를 낮춰 반응 속도를 증진시킨다. 장 교수는 연구 배경에 대해 "산성 전해수를 이용하는 수소 생산 기술에서 효율적이고 저렴한 대체 촉매 개발 필요성에 따라 연구를 시작했다"고 밝혔다. 그는 "이번 연구를 통해 단일 아연 도핑과 산소 공백 도입이라는 이중 기술을 통해 산성 환경에서 안정성과 활성을 균형 있게 높이는 전략을 제안한다"고 덧붙였다. 수소 생산 비용 절감 장 교수 연구팀의 실험 결과 아연으로 도핑한 루테늄 산화물 촉매는 기존 루테늄 산화물 촉매에 비해 과전위가 57mV 낮고, 43시간 동안 안정적으로 작동하는 것으로 나타났다. 과전위는 촉매가 반응을 일으키는 데 필요한 전기 에너지의 양으로, 과전위가 낮을수록 효율이 높아진다. 즉, 아연 도핑 루테늄 산화물 촉매는 기존 루테늄 산화물 촉매에 비해 더 적은 에너지를 사용하여 수소를 생산할 수 있다는 의미이다. 또한, 아연 도핑 루테늄 산화물 촉매는 43시간 동안 안정적으로 작동하는 것으로 나타났는데, 이는 기존 루테늄 산화물 촉매의 수명에 비해 크게 향상된 것이다. 연구팀은 "아연으로 도핑한 루테늄 산화물 촉매는 비용 효율적이고 활성 및 내산성 전기 촉매의 개발에 영향을 미칠 가능성이 있다"며 "이는 수소 생산 비용을 절감하고 녹색 수소 생산을 향상시켜 청정 에너지원으로의 전환과 지속 가능한 기술의 발전에 도움이 될 것"이라고 기대했다. 아연으로 도핑한 루테늄 산화물 촉매의 개발은 지속 가능한 수소 생산에 새로운 돌파구를 마련했다는 평가를 받고 있다. 기존 루테늄 산화물 촉매는 안정성 문제가 있어 실용화 가능성이 낮다는 지적을 받아왔다. 하지만 이번에 개발된 아연으로 도핑한 루테늄 산화물 촉매는 안정성과 반응성이 모두 향상돼 상용화에 한 걸음 더 가까워졌다. 연구팀은 "향후 아연으로 도핑한 루테늄 산화물 촉매의 성능을 개선하고 대량 생산 기술을 개발해 실용화를 앞당길 계획"이라고 밝혔다. 이 연구는 지난 1월 '에너지 화학 저널(Journal of Energy Chemistry)' 88권에 발표됐다.
-
- 산업
-
중앙대, 그린수소 생산 혁명 루테늄 촉매 개발
-
-
비트코인, 4만5000달러 돌파…2022년 4월 이후 최고치
- 가상화폐(암호화폐) 대장격인 비트코인이 새해들어 4만5000달러를 돌파했다. 암호화폐 전문매체 코인데스크는 2일 비트코인(BTC) 가격은 2022년 4월 초 이후 처음으로 주요 4만5000달러를 돌파하면서 새해 첫날 6% 이상 급등했다고 전했다. 이 매체는 미국 증권거래위원회(SEC)가 여러 현물 비트코인 ETF(상장지수펀드)의 출시를 승인할 것이라는 기대감과 비트코인 반감기가 상승의 촉매제가 된 것으로 보인다고 전했다. 암호화폐 전문매체 코인텔레그래프는 1일(현지시간) 비트코인 현물 ETF 승인 마감일이 다가오면서 비트코인 가격이 급등했다면서 이번 주 비트코인 채굴 난이도는 1.5% 증가해 사상 최고치를 기록했다고 전했다. SEC는 비트코인 현물 ETF를 오는 10일까지 승인 여부를 결정해야 한다. 비트코인 가격은 2021년 11월 약 6만9000달러로 사상 최고치를 기록한 뒤 급락했다. 비트코인은 2021년 5월 가상화폐 루나-테라 붕괴와 2021년 11월 미국 대형 가상화폐 거래소 FTX의 몰락 등으로 가격이 2022년 11월 1만5000 달러 수준까지 떨어졌다. 비트코인 가격은 2022년 1만6600달러에서 시작해 150% 넘게 오른 가운데, 암호화폐 업계 일각에서는 올해도 반감기와 현물 상ETF 승인을 바탕으로 랠리를 이어갈 것이라고 전망했다. 2일 포브스에 따르면 트레이딩 애널리스트 스콧 멜커는 "비트코인이 곧 ETF가 승인될 것처럼 거래되고 있다"라고 X(구 '트위터')에 게재했다. 2일 한국시간 오후 2시 43분[미국 뉴욕시간 2일 자정(12시) 43분] 현재 비트코인 가격은 코인마켓캡 기준 24시간 전 대비 7.06% 급등해 4만5288.72달러를 기록했다. 시가총액은 8870억달러에 달했다. 비트코인 가격 급등은 더 넓은 암호화폐 시장에 영향을 미쳤다. 두 번째로 큰 암호화폐 이더리움(ETH)은 4.74% 상승해 2387.06달러를 기록했다. 시총 4위인 솔라나(SOL)는 무려 9.97% 폭등해 112.50달러에 거래됐다. 바이낸스 코인(BNB)은 2.88% 올라 318.60달러였다. 시총 5위인 BNB 코인은 지난 7일 동안 19.93% 상승했다. 시총 9위 아발란체(AVAX)는 10.61% 급등해 42.58달러에 거래됐다. 비트코인 강세론자들은 비트코인 채굴량이 4년마다 절반씩 줄어드는 이른바 반감기가 오는 4∼5월 중으로 예상되는 만큼 공급 감소로 가격이 오를 것으로 보고 있다. 비트코인 가격은 그동안 3차례 있었던 반감기 때마다 급등했다. 반감기는 비트코인 채굴로 주어지는 공급량이 4년마다 절반씩 줄어드는 시기로, 2012년 11월 28일 최초의 반감기가 있었다. 반감기는 채굴자가 생산한 블록이 21만 개가 쌓일 때마다 찾아온다. 이후 2016년과 2020년에 각각 한 번씩 총 3차례 반감기를 지났으며, 반감기 때마다 비트코인 가격은 사상 최고치를 경신했다. 특히 세 번째 반감기 후 약 1년 만인 지난 2021년 11월 비트코인은 약 6만9000달러로 사상 최고치를 기록했다. 게다가 올해 치러질 미국 대선과 기준금리 인하 등도 비트코인 가격에 영향을 끼칠 변수로 꼽히고 있다. 모비우스캐피털 파트너스 창업자이자 유명 투자자인 마크 모비우스는 비트코인 가격이 연말까지 6만 달러에 이를 수 있다면서도 "(현물 ETF 승인 이외에) 이러한 전망의 근거는 없다"고 말했다. 스탠다드차타드를 비롯해 가상화폐 거래소 넥소의 공동창업자 안토니 트렌체프, 영국 서식스대학교 금융학 교수 캐럴 알렉산더 등은 10만 달러 가능성을 언급하기도 했다. 골드만삭스의 디지털 자산 책임자인 매튜 맥더멋은 폭스 비즈니스와의 인터뷰에서 "본격적인 비트코인 ETF가 승인되면 시장의 유동성이 더 넓어지고 깊어질 것"이라고 말했다.
-
- IT/바이오
-
비트코인, 4만5000달러 돌파…2022년 4월 이후 최고치