검색
-
-
[신소재 신기술(70)] 칩 크기의 초소형 '티타늄 사파이어 레이저' 개발
- 미국 스탠퍼드 대학교 연구팀이 칩 크기의 초소형 티타늄 사파이어(Ti:sapphire)레이저 개발에 성공했다. 이 레이저는 기존 티타늄 이온 도핑 사파이어 크리스탈로 만든 티타늄 사파이어 또는 Ti:사파이어 레이저보다 4배 작고 비용은 3배 더 저렴하며 효율성도 크게 향상되었다고 IFL이 3일(현지시간) 전했다. 기존 티타늄 사파이어 레이저는 높은 가격과 큰 부피, 그리고 구동을 위한 여러 대의 고출력 레이저가 필요하다는 단점이 있었따. 스탠퍼드리포트는 이번에 새로 개발 티타늄-사파이어 레이저에 대해 "'타의 추종을 불허하는 성능'을 가진 것으로 간주된다"고 전했다. 이어 "레이저는 최첨단 양자 광학, 분광학, 신경 과학을 포함한 많은 뷴야에서 없어서는 안 된다. 하지만 그 성능은 엄청난 대가를 치른다"면서 "Ti:sapphire는 부피가 입방 피트9볼링 공 4개 정도의 공간을 차지함)에 달할 정도로 크고 비용도 수십만 달러에 이른다. 또한 3만 달러 이상에 달하는 다른 고출력 레이저가 있어야 작동한다"며 기존 레이저의 단점을 지적했다. 스탠퍼드대 전기공학과 교수이자 칩 크기의 Ti:사파이어 레이저 논문의 시니어 저자인 옐레나 부치코비치(Jelena Vučković)는 "이것은 기존 모델에서 완전히 벗어난 것"리하고 말했다. 그는 "크고 값비싼 레이저 한 대가 아닌, 하나의 칩에 수백대의 레이저를 탑재할 수 있는 시대가 곧 올 것"이라고 전망했다. 연구팀은 티타늄 사파이어를 이산화규소(sio2) 절연체 위에 장착하고 수백 나노미터 두께의 티타늄 사파이어 층을 정밀하게 연마하고 에칭하여 소용돌이 모양의 융기, 즉 도파관을 형성했다. 이 도파관을 통과하는 빛은 소형 히터를 사용해 가열되며 사용자가 필요에 따라 레이저 파장을 조정할 수 있도록 한다. 즉, 연구팀은 마이크로스케일 히터를 통해 방출되는 빛의 파장을 변경해 빛의 색상을 700~1000나노미터(적색에서 적외선까지) 사이에서 원하는 대로 조절할 수 있었다. 또한 레이저 크기 축소는 강도를 높여 효율성을 향상시키는 효과도 있었다. 이 소형 레이저는 양자 광학, 분광학, 신경 과학 등 다양한 분야에 활용될 수 있으며, 넓은 파장 범위에서 에너지를 방출하는 탁월한 이득 대역폭과 1000조 분의 1초마다 빛 펄스를 방출하는 초고속 특성을 가지고 있다. 이는 기존 레이저보다 약 14배 빠른 속도다. 부치코비치 교수와 공동 제1저자인 조슈아 양과 연구팀은 이 새로운 레이저가 다양한 분양에 미칠 영향에 대해 큰 기대를 걸고 있다. 양자 물리학 분야에서는 이 저렴하고 실용적인 레이저가 최첨단 양자 컴퓨터의 소형화를 획기적으로 앞당길 수 있을 것으로 예상된다. 신경 과학 분야에서는 광섬유를 통해 뇌 속 뉴런을 빛으로 조절하는 광유전적 연구에 즉각적인 활용이 가능할 것으로 보인다. 소형 레이저를 활용하면 더욱 작은 프로브(probe, 뇌 활동을 측정하고 자극하는 데 사용되는 도구)를 개발해 새로운 실험 방법을 모색할 수 있다. 안과 분야에서는 노밸상 수상 기술은 '처프 펄스 증폭(chirped pulse amplification)'을 이용한 레이저 수술에 새로운 방식으로 활용되거나, 망막 건강 평가에 사용되는 광 간섭 단층 촬영 기술을 더 저렴하고 작게 만들수 있을 것으로 기대된다. 칩 형태의 레이저는 기볍고 휴대성이 뛰어나며 저렴하고 효율적이다. 그리고 대량 생산이 가능하다. 양 연구원은 "우리는 단일 4인치 웨이퍼에 수 전개의 레이저를 놓을 수 있었다"며 그렇게 되면 레이저당 비용이 거의 0이 되기 시작한다. 이는 매우 흥미로운 일이다"고 말했다. 연구팀은 이번 연구 결과가 티타늄 사파이어 레이저의 대중화에 기여할 것으로 기대하고 있다. 이번 연구 결과는 학술지 '네이처(Nature)'에 게재됐다.
-
- 포커스온
-
[신소재 신기술(70)] 칩 크기의 초소형 '티타늄 사파이어 레이저' 개발
-
-
미국 NIST-콜로라도주립대 JILA, 역대 최고 초정밀 원자시계 개발
- 미국표준기술연구소(NIST)와 콜로라도주립대 볼더 캠퍼스가 합작해 설립한 물리학 연구소 JILA의 연구진이 아인슈타인의 일반 상대성이론이 예측한 대로 미세한 효과까지 측정할 수 있는 초정밀 빛 기반 원자시계를 개발했다고 NIST가 발표했다. NIST 홈페이지에 실린 게시글에 따르면 제작된 시계는 1초를 보다 정확하게 나타내게 되며, 심지어는 새로운 지하 광물 매장지의 발견으로까지 이어질 수도 있다고 한다. 원자시계는 일반적으로 마이크로파를 사용해 1초의 길이를 결정한다. 이번 연구는 여기에서 발전한 것으로, 가시광선으로 원자를 비추면 광파의 주파수가 마이크로파보다 훨씬 높아 초를 더욱 정확하게 계산해 낸다. 빛 기반 광학 원자시계는 마이크로파 시계에 비해 더욱 정밀해 300억 년에 1초 정도의 오차가 생길 수 있다. 다만 이 정도의 정확도에 도달하려면 시계의 정밀도 역시 높아져야 한다. 즉 극히 정밀한 초까지 측정할 수 있어야 한다. 원자시계의 정밀도 향상 JILA 연구진은 가시광선을 사용하는 대신 광학 격자로 알려진 빛의 그물을 사용해 수만 개의 원자를 동시에 측정했다. 이는 원자시계에 초를 정확하게 측정할 수 있는 더 많은 데이터를 제공했다. 과거에는 광학 격자 접근 방식이 사용됐지만, JILA 연구진은 측정을 위해 상대적으로 더 부드러운 접근 방식을 사용했다. 이로 인해 레이저 자체가 원자를 측정하거나 원자가 서로 충돌하는 효과 등 두 가지 오류 가능성을 줄일 수 있었다. 상대성과 그 이상의 효과 측정 아인슈타인의 일반 상대성 이론에 따르면 중력은 시간에 영향을 미친다. 중력장이 강할수록 시간의 흐름이 느려진다. JILA가 개발한 시계는 밀리미터 미만 규모의 시간 기록에 대한 중력의 영향을 감지할 수 있을 만큼 민감하다. JILA와 NIST의 물리학자인 준 예 교수는 이번 원자시계 제작과 관련, 시간 기록으로 가능한 한계를 돌파하고 있다면서 시계 설계가 측정을 넘어 양자 영역까지 확장됐다고 말했다. 양자 컴퓨터는 원자와 분자의 특성을 활용해 복잡한 계산을 수행한다. JILA 시계는 정밀한 측정이 가능하기 때문에, 일반 상대성이론과 양자역학 이론이 교차하는 미시적 영역에서 중력에 의한 시간 흐름의 왜곡까지 측정할 계획이다. 시계의 정확성은 과학자들이 매우 먼 거리에 떨어진 우주 공간에서도 정확한 시간을 유지하는 데 도움이 된다. 이와 관련, 예 교수는 "예컨대 정밀한 정확도로 화성에 우주선을 착륙시키려면 현재 GPS에 있는 것보다 훨씬 더 정확한 시계가 필요하다"고 덧붙였다. 보고서는 "과학은 측정 영역의 미개척지를 탐구하고 있다. 높은 수준의 정밀도로 사물을 측정할 수 있게 되면 지금까지 이론으로만 가능했던 현상이 실제로 보이기 시작한다"고 강조했다. 연구 결과는 '피지컬 리뷰 레터(Physical Review Letters)' 저널에 게재될 예정이다.
-
- IT/바이오
-
미국 NIST-콜로라도주립대 JILA, 역대 최고 초정밀 원자시계 개발
-
-
[바이오] 영양소 기반 나노의학으로 암 치료 효율 높여
- 국제 연구진이 영양소를 활용해 암세포에서 휴면 중인 대사 경로를 재활성화함으로써 암을 치료하는 새로운 방법을 개발했다고 과학 전문 매체 사이테크데일리가 전했다. 연구팀은 나노의약 형태로 전달되는, 널리 사용되는 아미노산인 티로신을 활용해 피부암의 심각한 형태인 흑색종의 신진대사를 변화시킴으로써 암 성장을 억제했다고 한다. 이 연구는 중국 상하이 소재 국립 푸단대학교의 웬보 부 교수와 호주 시드니 공과대학의 다용 진 교수가 주도해 수행했으며 연구 결과는 권위 있는 학술 저널인 '네이처 나노테크놀로지(Nature Nanotechnology)' 최신호에 게재됐다. 호주는 세계에서 피부암 발병률이 가장 높은 나라다. 이번에 개발된 새로운 접근법은 현재의 치료법과 결합해 흑색종을 더 온전하게 치료할 수 있다고 보고서는 밝혔다. 이 기술은 또한 다른 유형의 암을 치료할 가능성도 있다. 티로신 나노셀의 개발 티로신은 살아있는 유기체에서 생물학적 이용 가능성이 제한되어 있다. 그러나 연구진은 새로운 나노 기술을 사용해 티로신을 암 세포막에 유인되고 쉽게 분해돼 흡수를 촉진하는 나노미셀이라는 작은 입자로 포장했다. 연구팀은 그 후 실험실에서 쥐와 인간에서 채취한 흑색종 세포를 대상으로 개발된 치료법을 테스트했다. 그 결과 티로신 나노미셀이 휴면 대사 경로를 재활성화하고 멜라닌 합성을 유발하며 종양 성장을 억제한다는 사실을 발견했다. 진 교수는 "통제되지 않은 급속한 성장은 암세포와 정상 세포를 구별하는 핵심 특징이다. 암세포에서는 일부 대사 경로가 과활성화되고, 일부 대사 경로는 억제돼 급속한 확산에 필요한 환경이 조성된다"고 설명했다. 그는 또 "과거에 유방암에서 에스트로겐 합성을 방해하는 아로마타제 억제제와 다양한 암에서 대사 과정을 표적으로 하는 HK2 억제제 등 몇 가지 대사 기반 암 약물이 개발되었지만, 이러한 약물은 과도하게 활성화되는 대사 경로를 억제함으로써 작용한다"고 말했다. 부 교수는 "우리의 연구는 휴면 중인 대사 경로를 재활성화함으로써 암 성장을 멈출 수 있다는 사실을 처음으로 보여준 결과다. 이는 안전하고 쉽게 이용 가능하며 내약성이 좋은 아미노산, 설탕, 비타민 등 간단한 영양소를 사용해 시행할 수 있다"고 의미를 부여했다. 다양한 유형의 암은 다양한 영양소에 반응한다. 흑색종 세포는 멜라닌을 생성하는 피부 세포인 멜라닌 세포에서 발생한다. 티로신은 멜라닌 생성에 필요하며 멜라닌 생성을 자극할 수 있으므로 흑색종에 효과가 있다. 멜라닌 합성의 재활성화는 흑색종 세포가 당분을 에너지로 변환하는 과정인 대사 과정을 감소시키도록 하며, 이는 항암 효과의 메커니즘으로 여겨진다. 흑색종 세포는 또한 열 스트레스에 취약하다. 연구진은 티로신 나노미셀 치료와 근적외선 레이저 치료를 결합함으로써 테스트 6일 후에 생쥐의 흑색종을 박멸했으며, 연구 기간 동안 재발하지 않았다는 사실도 확인했다. 이번 연구 결과는 암 치료를 위한 나노의학 부문에서 새로운 진전을 이루었음을 시사한다는 평가다.
-
- IT/바이오
-
[바이오] 영양소 기반 나노의학으로 암 치료 효율 높여
-
-
소니 등 대형음반사, 저작권 침해 이유로 음악 생성AI 스타트업 제소
- 소니 등 미국 대형 음반사들이 인공지능(AI) 모델을 훈련하는 과정에서 저작권이 있는 음원들을 무단 사용하는 등 음원저작권을 침해한 혐의로 인공지능(AI) 스타트업들을 상대로 소송을 제기했다. 미국 레코드산업협회(RIAA)는 24일(현지시간) 회원사인 소니뮤직, 유니버설뮤직, 워너뮤직을 대표해 AI 스타트업인 수노(Suno)와 유디오(Udio)를 상대로 각각 매사추세츠지방법원과 뉴욕남부지방법원에 손해배상을 청구하는 소송을 제기했다고 발표했다. RIAA는 이들 스타트업들이 저작권이 있는 음원을 침해했음을 인정하고 앞으로 이와 같은 사례가 없도록 금지명령을 내려달라고 요구하는 한편 이미 발생한 저작권 침해 사례에 대한 손해 배상을 청구했다. 미국 음반사 측은 수노와 유디오 사용자들이 AI 서비스로 미국 가수 머라이어 캐리의 '올 아이 원트 포 크리스마스 이즈 유', 제임스 브라운의 '아이 갓 유' 등 노래를 그대로 재현할 수 있다고 주장했다. 또 마이클 잭슨과 브루스 스프링스틴, 아바 같은 뮤지션 음성과 구분할 수 없는 보컬도 AI로 재현한 점까지 고소 이유로 꼽았다. RIAA가 요구한 손해배상 규모는 저작권 침해 작품당 최대 15만달러로, AI 모델 훈련에 방대한 양의 음원이 투입됐음을 고려할 때 전체 손해배상 청구액은 수조원 규모에 달할 것으로 추산된다. 미치 글레이저 RIAA 최고경영자(CEO)는 "음악계는 AI를 받아들였으며 책임 있는 개발자들과 협력하고 있다"면서 "예술가의 평생 작품을 복제하고 무단으로 자신의 이익을 위해 이용하는 것이 '공정하다'고 주장하는 수노, 유디오와 같은 사례는 진정으로 모두를 위한 혁신적인 AI라는 약속을 저버리는 것"이라고 주장했다. 마이크로소프트(MS) 협력사인 수노와 유디오는 생성형 AI 음원제작 분야에서 고속 성장을 기록 중인 업체들로 손꼽힌다. 마이키 술만 수노 CEO는 이날 성명을 통해 "(AI 모델은) 기존 콘텐츠를 기억하고 되새기는 것이 아니라 완전히 새로운 출력을 생성하도록 설계됐다"면서 특정 아티스트를 참조하는 것이 아니라고 반박했다. 그는 음원사들에게 이러한 상황을 설명하고자 했으나 그들이 토론 대신 변호사 주도의 주장만 하고 있다고 덧붙였다. 유디오는 아직 별다른 입장을 공개하지 않았다.
-
- IT/바이오
-
소니 등 대형음반사, 저작권 침해 이유로 음악 생성AI 스타트업 제소
-
-
[신소재 신기술(63)] 양자 얽힘으로 지구 자전 측정 정밀도 획기적인 향상
- 오스트리아 빈 대학교(University of Vienna) 연구팀이 양자 얽힘을 이용해 지구 자전 측정의 정밀도를 획기적으로 높이는 실험에 성공했다. 이 연구는 양자 얽힘을 활용해 전례 없는 정밀도로 회전 효과를 감지하는 향상된 광학 사그낙 간섭계(Sagnac interferometer)를 사용해 양자역학과 일반 상대성 이론 모두에서 잠재적인 돌파구를 제시한다고 사이테크 데일리가 전했다. 양자 얽힘은 두 개 이상의 입자가 서로 연결되어 있어 하나의 입자를 측정하면 다른 입자의 상태도 즉시 결정되는 현상이다. 빈 대학교의 필립 빌터(Philip Walther) 박사가 이끄는 연구팀은 지구 자전이 양자 얽힘 광자에 미치는 영향을 측정하는 실험을 성공적으로 수행했다. 이번 연구는 얽힘 기반 센서의 회전 감도 한계를 뛰어넘는 중요한 성과로 평가된다. 또한, 양자 역학과 일반 상대성 이론의 교차점에서 추가 연구의 발판을 마련할 수 있을 것으로 기대된다. 연구 결과는 지난 6월 14일 '사이언스 어드밴시스(Science Advances)' 저널에 게재됐다. 사그낙 간섭게의 발전 연구팀은 거대한 광섬유 사그낙(sagnac) 간섭계를 구축하고 몇시간 동안 낮은 노이즈를 유지하며 안정적인 실험 환경을 조성했다. 이를 통해 이전의 양자 광학 사그낙 간섭계보다 회전 정밀도를 1000배 향상시키는 고품질 얽힘 광자 쌍을 충분히 감지할 수 있었다. 사그낙 광학 간섭계는 회전에 가장 민감한 장치다. 사그낙 간섭계는 빛의 간섭 현상을 이용하여 회전 운동을 감지하는 광학 장치다. 1913년 프랑스 물리학자 조르주 사그낙이 고안했으며, 지난 세기 초부터 아인슈타인의 특수 상대성 이론을 확립하는 데 기여해 기초 물리학을 이해하는 중추적인 역할을 해 왔다. 오늘날에는 광섬유 자이로스코프, 레이저 자이로스코프 등 다양한 분야에서 활용되고 있다. 이 장치는 오늘날에도 탁월한 정밀도 분석 덕분에 고전 물리학의 한계로만 제한되었던 회전 속도를 측정하는 최고의 도구로 사용되고 있다. 빈 대학교와 오스트리아 과학 아카데미가 주최하는 연구 네트워크 TURIS의 일환으로 수행된 이번 실험은 최대 얽힘 상태의 두 광자에 대한 지구 자전 효과를 성공적으로 관측했다. 연구팀은 아인슈타인의 특수 상대성 이론과 양자 역학에서 설명하는 회전 기준 시스템과 양자 얽힘 간의 상호 작용을 확인했다. 실제 실험에서 거대한 코일에 감겨진 2km 길이의 광섬유 내부에서 얽힌 광자 2개가 전파되면서 유효 면적이 700㎡가 넘는 간섭계가 구현됐다. 실험 과정에서 연구팀은 지구의 꾸준한 회전 신호를 분리하고 추출하는 데 어려움을 겪었다. 연구의 수석 저자인 라파엘레 실베스트리(Raffaele Silvestri)는 "문제의 핵심은 빛이 지구의 회전 효과에 영향을 받지 않는 측정 기준점을 설정하는 데 있다. 지구의 자전을 멈출 수 없다는 점을 고려하여 우리는 광섬유를 두 개의 동일한 길이 코일로 나누고 이를 광 스위치를 통해 연결하는 해결 방법을 고안했다"고 설명했다. 스위치를 켜고 끄는 방식으로 연구원들은 회전 신호를 마음대로 효과적으로 취소할 수 있었고, 이를 통해 대형 장치의 안정성도 확장할 수 있었다. 마리 퀴리 박사후 연구원으로 이 실험에 참여한 하오쿤 유(Haocun Yu)는 "빛으로 지구 자전을 처음 관측한 지 한 세기 만에 개별 빛의 양자의 얽힘이 마침내 동일한 감도 영역에 진입했다는 점에서 중요한 이정표가 될 것"이라고 말했다. 본 연구는 양자 얽힘 기반 센서의 회전 감도를 더욱 향상시킬 수 있는 토대를 마련했으며, 시공간 곡선을 통한 양자 얽힘의 행동을 테스트하는 미래 실험의 길을 열 것으로 기대된다. 참고 자료: '양자 얽힘을 이용한 지구 자전의 실험적 관측', Raffaele Silvestri, Haocun Yu, Teodor Strömberg, Christopher Hilweg, Robert W. Peterson 및 Philip Walther, 2024년 6월 14일, Science Advances. DOI: 10.1126/sciadv.ado0215
-
- 포커스온
-
[신소재 신기술(63)] 양자 얽힘으로 지구 자전 측정 정밀도 획기적인 향상
-
-
[신소재 신기술(59)] 질화갈륨-마그네슘 초격자, 새로운 합성법으로 탄생
- 과학자들이 질화갈륨(GaN)과 금속 마그네슘(Mg)을 가열해서 초격자가 형성되는 것을 발견했다. 일본 나고야 대학 연구팀은 질화갈륨과 마그네숨 간의 열 반응을 통해 톡특한 조격자 구조가 형성되는 것을 실험 과정 중에 우연히 발견했다고 PHYS가 보도했다. 이는 벌크 반도체에 2차원 금속층이 삽입되는 현상이 최초로 확인된 사례이다. 초격자는 인공적으로 만들어진 주기적인 구조를 가진 물질로, 고성능 트랜지스터, 레이저 다이오드, 광검출기 등 다양한 분야에 활용된다. 연구팀은 최첨단 분석 기술을 통해 물질을 정밀하게 관찰해 반도체 도핑 및 탄성 변형 공학에 대한 새로운 통찰력을 얻었으며, 연구 결과는 학술지 '네이처(Nature)'에 게재됐다. 질화갈륨(GaN)은 높은 전력 밀도와 빠른 작동 주파수를 요구하는 분야에서 기존 실리콘 반도체를 대체할 것으로 기대되는 광대역 갭 반도체 물질이다. GaN의 이러한 특징은 LED레이저 다이오드, 전력 전자 장치(전기 자동차 및 고속 충전기의 핵심 부품 포함) 등 다양한 분야에서 활용 가치가 높다. GaN 기반 장치의 성능 향상은 에너지 절약 사회 실현과 탄소 중립 미래를 실현하는 데 기여할 수 있다. 반도체에는 p형 및 n형이라는 두 가지 필수적이고 상호 보완적인 전기 전도 유형이 존재한다. p형 반도체는 주로 양전하를 운반하는 자유 캐리어인 정공을 특징으로 하며, n형 반도체는 자유 전자를 통해 전기를 전도한다. 반도체는 도핑이라는 과정을 통해 p형 또는 n형 전도성을 획득한다. 도핑은 순수 반도체 물질에 특정 불순물(도펀트)을 의도적으로 도입하여 전기적 및 광학적 특성을 크게 변화시키는 것을 의미한다. GaN 반도체 분야에서 p형 전도성을 생성하는 것으로 알려진 유일한 원소는 Mg이다. 그러나 Mg 도핑의 성공 이후 35년이나 지났음에도 불구하고, GaN에서 Mg 도핑의 전체 메커니즘, 특히 Mg의 용해도 한계 및 분리 거동은 여전히 명확하지 않다. 이러한 불확실성은 광전자 및 전자 분야에서의 최적화를 제한한다. 이 연구의 제1 저자인 지아 왕과 그의 동료들은 p형 GaN의 전도도를 개선하기 위해 GaN 웨이퍼에 증착된 금속 Mg 박막을 패턴화하고 고온에서 가열하는 어닐링이라는 기존 공정을 수행하는 실험을 진행했다. '어닐링(Annealing)'은 금속이나 유리 등의 재료를 가열한 후 천천히 식혀 내부 응집력을 제거하고 재료의 성질을 변화시키는 열처리 과정을 말한다. 금속을 가열하고 천천히 식히면 재료의 결정 구조를 변화시켜 강도, 경도, 내식성 등의 특징을 개선할 수 있다. 왕 연구원은 "GaN은 이온 결합과 공유 결합이 혼합된 광대역 갭 반도체이고 Mg는 금속 결합을 특징으로 하는 금속이지만, 이 두 이질적인 물질은 동일한 결정 구조를 가지고 있으며 육각형 GaN과 육각형 Mg의 격자 차이가 무시할 정도로 적다는 것은 놀랍도록 자연스러운 우연"이라고 말했다. 이어 "우리는 GaN과 Mg사이의 완벽한 격자 일치가 구조를 만드는 데 필요한 에너지를 크게 줄여 이러한 초격자의 자발적인 형성에 중요한 역할을 한다고 생각한다"라고 설명했다. 연구팀은 최첨단 전자 현미경 이미징을 사용해 GaN 및 Mg 층이 번갈아 나타나는 초격자의 자발적인 형성을 관찰했다. GaN과 Mg는 물리적 특성이 크게 다른 물질이므로 이처럼 초격자가 자발적으로 형성된 것은 매우 특이한 현상이다. 연구팀은 이 독특한 삽입 거동을 '틈새 삽입(interstitial intercalation)'이라고 명명하고, 이것이 모재에 압축 변형을 유발한다는 것을 밝혀냈다. 특히 Mg 층이 삽입된 GaN은 20GPa 이상의 높은 응력을 견뎌냈다. 이는 대기압의 20만배에 해당하며, 박막 물질에서 기록된 가장 높은 압축 변형이다. 이는 실리콘 필름에서 일반적으로 발견되는 압축 응력(0.1~2GPa)보다 훨씬 크다. 전자 박막은 이러한 변형으로 인해 전자 및 자기 특성에 상당한 변화를 겪을 수 있다. 연구팀은 변형된 방향을 따라 정공 수송을 통한 GaN의 전기 전도도가 크게 향상되었음을 발견했다. 한편, 이 연구는 'GaN 기술의 요람'으로 알려진 나고야 대학에서 이루어졌다는 데 의미가 있다. 이번 연구의 교신 저자인 아마노 히로시와 나고야 대학의 아카사키 이사무는 1980년대 후반에 Mg가 도핑된 GaN을 사용해 최초의 청색 LED를 개발했다. 이들의 공헌은 2014년 노벨 물리학상 수상으로 이어졌다. 이번 연구에서는 2차원 Mg 도핑의 새로운 메커니즘을 밝혀냄으로써 III-질화물 반도체 연구 분야의 잠재적으로 새로운 길을 열 것으로 기대된다. 왕 연구원은 "마그네슘이 삽입된 GaN 초격자 구조의 발견과 2D-Mg 도핑의 새로운 메커니즘 규명은 질화 3족 반도체 연구 분야의 선구적인 업적을 기릴 수 있는 어렵게 얻은 기회"라고 말했다. 노벨상 수상 후 10년 만에 Mg 도핑의 기술을 발전시킨 왕 연구원은 "이 시기적절한 발견이 이 분야의 새로운 길을 열고 더 많은 기초 연구에 영감을 줄 수 있는 '자연의 진정한 선물'"이라고 밝혔다. 이 연구에는 나고야 대학에서 지아 왕, 카이 웬타오, 순 루, 에미 카노, 비랩 사르카, 와타나베 히로타카, 이카라시 노부유키, 혼다 요시오, 아마노 히로시 등이 참여했다. 외에도 메이지 대학교의 연구진과 오사카 대학교의 나카지마 마코토 교수가 이끄는 광학 그룹이 이 연구의 다른 공저자로 참여했다.
-
- 포커스온
-
[신소재 신기술(59)] 질화갈륨-마그네슘 초격자, 새로운 합성법으로 탄생
-
-
우주정거장에서 최초로 금속 3D 프린팅 성공
- 국제우주정거장(ISS)에서 처음으로 금속 3D 프린팅에 성공했다고 ESA(유럽우주국)이 홈페이지를 통해 공개했다. 액화 스테인리스 스틸에 3D로 증착된 S-커브(사진)는 우주 궤도 내에서의 제조에 있어서 거대한 도약을 의미한다. ESA는 이것이 ESA의 콜럼버스 연구소 모듈에 탑승해 진행된 ISS에서의 최초의 금속 3D 프린팅이라고 밝혔다. ESA 기술 책임자 롭 포스테마(Rob Postema)는 "증착된 이 S-커브는 ESA의 금속 3D 프린터의 시운전을 성공적으로 마무리한 테스트 작품"이라고 말했다. 그는 "첫 번째 3D 프린팅의 성공으로 우리는 가까운 시일 내에 전체 부품을 프린팅할 수 있게 되었다”라며 “프린팅 작업을 현장에서 감독한 프랑스 카드모스(CADMOS: 프랑스 국립 우주연구센터 CNES의 R&D 센터) 내 사용자 지원 센터인 에어버스 방위 및 우주 SAS(Airbus Defense and Space SAS)의 산업 팀과 ESA 팀의 공동 노력으로 이룬 성과였다“고 설명했다. 컨소시엄을 이끈 에어버스 팀의 세바스찬 지롤트는 "ISS에서 만들어진 최초의 금속 3D 프린팅의 품질은 우리가 생각한 것 이상으로 좋았다"고 평가했다. 금속 3D 프린터 기술을 시연하기 위한 기기는 에어버스의 산업 팀에 의해 개발됐다. 에어버스는 ESA의 인간 및 로봇 탐사국과 계약을 맺고 프로젝트에 공동 자금을 지원했다. 개발된 시연기는 지난 1월 ISS에 도착했다. ESA 우주비행사 안드레아스 모겐센은 ESA의 콜럼버스 모듈의 일부인 유러피언 드로우랙 마크 II(European Draw Rack Mark II)에 약 180kg의 탑재체(페이로드)를 설치했다. 금속 3D 프린터의 디자인은 고출력 레이저에 의해 가열돼 프린팅 영역에 공급되는 스테인리스 스틸 와이어를 기반으로 한다. 고출력 레이저는 표준 레이저 포인터보다 약 100만 배 더 강력하다. 고출력에 의해 와이어 끝이 녹아서 인쇄물에 금속이 추가된다. 프린팅 과정은 전적으로 현장에서 관리 감독된다. 탑승한 승무원들이 해야 할 일은 인쇄가 시작되기 전에 질소와 배기 밸브를 여는 것뿐이다. 안전상의 이유로, 프린터는 완전히 밀봉된 상자 안에서 작동해 과도한 열이나 연기가 빠져나가는 것을 방지한다. 이후 후속 실물 크기의 3D 프린팅을 위해 네 가지 모양이 선택되었다. 이는 나중에 지구로 가져와 일반 중력 아래 지상에서 만들어진 참조 프린트물과 비교 분석을 거치게 된다. ESA의 기술, 엔지니어링 및 품질국은 프린팅된 부품 중 두 개는 네덜란드 ESTEC(유럽우주연구기술센터)의 재료 및 전기 부품 연구소로 보내져 분석을 거치게 되며, 장기간의 미세 중력이 금속 재료의 프린팅에 어떤 영향을 미치는지를 연구하게 될 것이라고 밝혔다. 나머지 두 개는 유럽 우주비행사 센터와 덴마크 기술대학교(DTU)로 보내질 예정이다. 미래 우주 개발을 위한 ESA의 목표 중 하나는 순환형 우주 경제를 창출하고 궤도에서 재료를 재활용해 새로운 도구나 구조물로 용도 변경하는 등 자원을 더 잘 활용할 수 있도록 하는 것이다. 이 금속 3D 프린터를 적절히 발전시키고 활용하면 로켓에 도구를 실어 우주로 쏘아 보낼 필요가 없어지고 우주 비행사들이 우주 궤도에서 필요한 부품을 직접 프린팅해 생산할 수 있게 될 것으로 기대된다.
-
- IT/바이오
-
우주정거장에서 최초로 금속 3D 프린팅 성공
-
-
희토류 원소 방사성 '프로메튬' 비밀 80년 만에 밝혀져
- 특수 용도로 사용되는 희토류 원소인 방사성 물질 프로메튬(promethium)이 발견된 지 80년 만에, 과학자들이 처음으로 프로메튬의 신비하고도 중요한 특성을 밝혀내 주목된다고 라이브사이언스가 전했다. 프로메튬은 주기율표의 맨 아래 15개의 란타넘족에 속해 있는 원자번호 61번의 원소다. 희토류로 알려진 프로메튬은 강한 자성과 특이한 광학 특성을 포함해 여러 가지 유용한 특성을 나타내 현대 전자 장치 소재로 중요하게 사용된다. 프로메튬은 안정된 동위원소는 없고 방사성 동위원소들만 존재한다. 프로메튬은 미국 오크리지 국립연구소(ORNL: Oak Ridge National Laboratory)가 지난 1945년 처음으로 발견했다. ORNL 연구원들이 발견한 프로메튬 자체는 원자 배터리 및 암 진단 분야에서 적용됐다. 그러나 이 원소의 화학적 성질은 지극히 일부만 알려졌고, 이 때문에 더 널리 사용되는 것은 지금까지 불가능했다. 방사성 원소를 연구하는 것 자체가 적합한 샘플 확보의 어려움으로 인해 수십 년 동안 높은 장벽으로 작용했던 것. 연구팀인 ORNL의 알렉산더 이바노프는 "프로메튬에는 안정된 동위원소가 없고 모두가 방사성이기 때문에 시간이 지남에 따라 다른 원소로 붕괴된다. 프로메튬은 핵분열 과정을 통해 얻어지기 때문에 특히 희소하고 연구하기 어렵다"고 말했다. 그런데 작년에 개발된 프로메튬 생산 방법을 사용, ORNL 연구팀은 이 동위원소를 원자로 폐기물로부터 분리, 연구를 위한 가장 순수한 샘플을 만들어내는 데 성공했다. 그 후 연구팀은 이 샘플을 금속 원자를 가두기 위해 특별히 고안된 분자인 리간드(수용체에 결합하는 항체·호르몬·약제 등의 분자)와 결합해 물속에서 안정적인 복합체를 형성했다. PyDGA로 알려진 배위 분자(리간드 배위 결합을 통해 형성된 분자)는 9개의 프로메튬-산소 결합을 형성했다. 이 결합은 연구팀에 프로메튬 복합체의 결합 특성을 분석할 수 있는 기회를 처음으로 제공했다. 그러나 분석하는 일도 쉽지는 않았다. 프로메튬이 방사성이었기 때문에 일단 붕괴되면, 주기율표상 인접 원소인 사마륨으로 변환된다. 사마륨 형태로 소량의 오염이 발생하게 됐던 것이다. 이를 해결하기 위해 연구팀은 ‘싱크로트론 기반 X선 흡수 분광법’이라는 극도로 전문화된 기술을 사용했다. 입자 가속기에 의해 생성된 고에너지 광자는 프로메튬 복합체에 충격을 가해 원자의 위치와 결합 길이의 그림을 만들었다. 금속-산소 결합 길이의 미묘한 차이를 통해 팀은 오염된 사마륨과 관계없이 주요 프로메튬-산소 결합 분석에 집중할 수 있었다. 결국 이런 방식을 통해 연구팀은 처음으로 프로메튬의 특성을 다른 희토류 복합체와 비교할 수 있었다. 리간드는 모든 란타넘족 원소에 안정적인 복합체를 형성할 수 있는 방법을 제공했다. 동일한 원소 비율과 동일한 종류의 기하학적 구조를 가질 수 있게 된 것이다. 이로써 복합체의 기본적인 물리적 화학적 특성을 연구할 수 있었다. 란타넘족은 자연적인 원소들의 혼합물로 발견되므로, 결합 길이 및 복합체 형성과 같은 주기적인 경향을 이해하는 것은 과학자들이 금속을 분리하는 새롭고 보다 효율적인 방법을 개발하는 데 도움이 된다. ORNL의 연구원이자 '네이처' 지에 발표된 새로운 연구를 이끈 일자 포포브스는 라이브사이언스와의 인터뷰에서 "프로메튬은 레이저에 사용되며 스마트폰 화면에도 일부 들어간다. 또한 풍력 발전을 위한 풍력터빈과 전기자동차의 자석에도 쓰인다"고 말하고, 프로메튬에 대한 추가 연구가 이루어지면 응용을 대폭 확대할 수 있다고 설명했다. 현재 ORNL 연구팀은 프로메튬 원소의 화학적 움직임과 배위 환경에 대한 보다 명확한 그림을 만들기 위해 물속의 프로메튬 연구를 확대하고 있다. 포포브스는 "우리의 연구가 다른 과학자들에게 더 나은 분리 기술을 설계하는 방법을 알려주고, 다른 응용 분야 연구에 더 많은 관심을 불러일으킬 수 있기를 바란다"고 말했다.
-
- 경제
-
희토류 원소 방사성 '프로메튬' 비밀 80년 만에 밝혀져
-
-
[신소재 신기술(47)] ETH 취리히, 그래핀 내 전자 소용돌이 최초 감지
- 스위스 연방 공과대학교(ETH 취리히)의 연구팀이 최초로 고해상도 자기장 센서를 사용해 그래핀에서 전자 소용돌이를 직접 검출하는 데 성공했다고 과학 웹사이트 phys.org가 지난 14일(현지시간) 보도했다. 금속 와이어와 같은 일반적인 전기 도체를 배터리에 연결하면 도체 내의 전자는 배터리가 생성하는 전기장에 의해 가속된다. 전자는 이동하는 동안 전선의 불순물 원자 또는 결정 격자의 빈 공간과 자주 충돌해 운동 에너지의 일부를 격자 진동으로 변환한다. 이 과정에서 손실되는 에너지는 예를 들어 백열전구를 만질 때 느낄 수 있는 열로 변환된다. 격자 불순물과의 충돌은 자주 발생하지만 전자 간의 충돌은 훨씬 드물다. 그러나 벌집 모양 격자로 배열된 탄소 원자 단일층인 그래핀을 일반적인 철 또는 구리 와이어 대신 사용하면 상황이 달라진다. 그래핀에서 불순물 충돌은 드물고 전자 간 충돌이 주요 역할을 한다. 이 경우 전자는 점성 액체처럼 행동한다. 따라서 잘 알려진 흐름 현상인 소용돌이(와류)가 그래핀 층에서 발생해야 한다. ETH 취리히의 크리스티안 데겐(Christian Degen) 연구원은 고해상도 자기장 센서를 사용해 그래핀의 전자 소용돌이를 처음으로 직접 감지하는 데 성공했다고 '사이언스(Science)' 저널에 보고했다. 고감도 양자 감지 현미경 데겐과 그의 동료 연구원들은 제작 과정에서 폭 1㎛(마이크로미터) 너비의 전도성 그래핀 스트립에 부착한 작은 원형 디스크에 형성된 소용돌이를 연구했다. 디스크의 직경은 1.2㎛에서 3㎛사이였다. 이론적 계산에 따르면 작은 디스크에서는 전자 소용돌이가 형성되지만 큰 디스크에서는 형성되지 않아야 한다. 소용돌이를 가시화하기 위해 연구팀은 그래핀 내부에 흐르는 전자가 생성하는 미세한 자기장을 측정했다. 이를 위해 연구팀은 다이아몬드 바늘 끝에 질소-공동 센터(Nitrogen-vacancy center, NV 센터)가 내장된 양자 자기장 센서를 사용했다. 원자 결함인 NV 센터는 외부 자기장에 따라 에너지 레벨이 변하는 양자 물체처럼 작동한다. 레이저 빔과 마이크로웨이브 펄스를 사용하면 센터의 양자 상태를 자기장에 최대 감도를 갖도록 준비할 수 있다. 연구원들은 레이저를 사용해 양자 상태를 판독함으로써 이러한 자기장의 세기를 매우 정확하게 측정할 수 있었다. 데겐 연구팀의 박사 과정 학생이었던 마리우스 팜은 "다이아몬드 바늘의 크기가 작고 그래핀 층과의 거리가 약 70나노미터에 불과하기 때문에 100나노미터 미만의 해상도로 전자 전류를 볼 수 있었다"고 말했다. 이 분해능은 소용돌이를 관찰하기에 충분하다. 소용돌이 흐름 방향 반전 관찰 연구팀은 측정에서 더 작은 디스크에서 예상되는 소용돌이의 특징적인 징후, 즉 흐름 방향의 반전을 관찰했다. 일반(확산) 전자 수송에서는 스트립과 디스크의 전자가 같은 방향으로 흐르지만, 소용돌이의 경우 디스크 내부의 흐름 방향이 반전된다. 계산에서 예측한 대로 더 큰 디스크에서는 소용돌이가 관찰되지 않았다. 팜은 "매우 민감한 센서와 높은 공간 분해능 덕분에 그래핀을 냉각할 필요도 없었고 상온에서 실험을 수행할 수 있었다"고 말했다. 또한, 연구팀은 전자 와류뿐만 아니라 정공 캐리어에 의해 형성된 와류도 감지했다. 그래핀 아래에서 전압을 가함으로써, 연구원들은 전류 흐름이 더 이상 전자가 아닌 정공이라고도 하는 누락된 전자에 의해 전달되도록 자유 전자의 수를 변경했다. 전자와 정공이 모두 작고 균형 잡힌 농도가 있는 전하 중립점에서만 와류가 완전히 사라졌다. 팜은 "현재 전자 소용돌이의 탐지는 기초 연구이며 아직 미해결 과제가 많이 남아 있다"고 말했다. 연구팀은 전자와 그래핀의 경계면과의 충돌이 흐름 패턴에 어떤 영향을 미치는지, 더 작은 구조에서 어떤 효과가 발생하는지 추가 연구를 진행할 계획이다. 출처: Marius L. Palm 외, '상온에서 그래핀의 전류 소용돌이 관찰', Science (2024). DOI: 10.1126/science.adj2167
-
- IT/바이오
-
[신소재 신기술(47)] ETH 취리히, 그래핀 내 전자 소용돌이 최초 감지
-
-
[신소재 신기술(43)] 투명 소재로 광전지 새로운 가능성 열어
- 독일 라이프치히 물리학자들이 빛이 반투명 물질에서도 전기를 생성한다는 것을 증명했다. 반투명 소재는 빛에 노출되면 빛의 흡수량이 매우 적더라도 전기를 생성할 수 있는 것으로 알려져 있다. 일부 물질은 특정 주파수의 빛에 투명하다. 이러한 물질에 빛을 비추면 이전의 가정과는 달리 전류가 생성될 수 있다. 라이프치히 대학교와 싱가포르 난양공과대학교의 과학자들이 이를 증명하는 데 성공했다고 오일프라이스가 전했다. 이 연구 결과는 '피지컬 리뷰 레터스(Physical Review Letters)' 저널에 발표됐다. 이번 발견은 광전자 및 광전지 분야에 혁명을 일으킬 잠재력을 가지고 있다. 라이프치히 대학교 이론물리연구소의 인티 소데만 빌라디에고 교수는 "이는 광 증폭기, 센서, 태양전지와 같은 광전자 및 광전소자를 구성하는 데 새로운 패러다임을 열었다"고 말했다. 그의 동료인 시 리쿤은 "물질의 빛 흡수량이 매우 작은 경우에도 빛으로 전류를 구동하는 것이 가능하다. 이것은 중요한 새로운 통찰력이다"라고 전했다. 플로케 페르미 액체 인티 소데만 빌라디에고와 그의 동료들은 '플로케 페르미 액체(Floquet Fermi liquid)' 상태를 조사했다. 페르미 액체는 많은 양자 역학적 입자의 특수한 상태로, 일반적인 고전적인 입자와는 매우 다른 특성을 가지고 있다. 즉, 페르미 액체는 금이나 은과 같은 금속 속 전자의 전기 유체와 같은 일반적인 물질부터 저온에서 헬륨-3 원자의 유체와 같은 보다 이색적인 상황에 이르기까지 다양한 상황에서 발생할 수 있다. 이러한 액체는 저온에서 전기의 초전도체가 되는 등 '놀라운 특성'을 나타낼 수 있다. 플로케 페르미 액체는 시간 주기적으로 변화하는 외부 힘에 의해 영향을 받는 특수한 유형의 금속 상태다. 페르미 액체는 낮은 온도에서 전자들이 마치 자유롭게 움직이는 액체처럼 행동하는 금속 상태이다. 전자 상호작용은 약하며, 전자들은 페르미 에너지로 알려진 특정 에너지 수준에 집중된다. 플로케 페르미 액체는 시간 주기적으로 변화하는 외부 힘에 의해 페르미 액체가 영향을 받는 상태이다. 이러한 힘은 전자의 운동에 영향을 미치고 새로운 에너지 상태를 생성할 수 있다. 외부 힘은 특정 주기로 진동하며, 이를 '시간 주기성'이라고 한다. 예를 들면 레이저 빛, 자기장, 전기장 등이 외부의 힘에 해당된다. 또한 외부 힘은 전자의 에너지 스펙트럼에 새로운 에너지 상태를 생성한다. 이러한 새로운 상태는 '플로케 밴드'라고 불린다. 플로케 페르미 액체는 외부 힘에 비선형적으로 응답한다. 다시 말하면, 외부 힘의 크기에 따라 응답의 크기가 비례하지 않다. 외부 힘의 강도에 따라 플로케 페르미 액체는 절연체 또는 초전도 상태 등 다른 물질 상태로 변화할 수 있다. 플로케 페르미 액체의 응용 분야 플로케 페르미 액체는 광전자 소자, 예를 들어 태양 전지 및 LED의 성능 향상에 사용될 수 있다. 또 양자 컴퓨터 구현에 사용될 수 있는 새로운 유형의 큐비트를 제공할 수 있다. 아울러 고온 초전도 현상을 이해하는 데 도움이 될 수 있다. 플로케 페르미 액체는 아직 연구 초기 단계이지만, 다양한 분야에서 혁신적인 응용 가능성을 가지고 있는 흥미로운 물질 상태이다. 소데만 빌라디에고 교수는 "우리 논문에서는 이러한 유체 상태의 몇 가지 특성을 설명한다"면서 "이를 연구하기 위해서는 빛에 의해 흔들리는 전자의 복잡한 상태에 대한 상세한 이론적 모델을 개발해야 했는데, 이는 결코 쉬운 일이 아니다"고 말했다.
-
- 포커스온
-
[신소재 신기술(43)] 투명 소재로 광전지 새로운 가능성 열어
-
-
[퓨처 Eyes(34)] 펭귄처럼 헤엄치는 수중 로봇, 쿼드로인 2세대 출시
- 인간 형태를 닮은 휴머노이드 로봇, 하늘을 나는 드론이 농업에 활용되며 속속 출시되는 가운데, 펭귄의 유영 방식을 모방한 수중 로봇이 공개됐다. 독일 수중 기술 기업 에보로직스(EvoLogics)는 최근 펭귄의 유영 방식을 모방한 개선된 수중 자율 운항체(AUV) 쿼드로인(Quadroin) 2세대를 출시했다고 뉴아틀라스가 보도했다. 에보로직스는 독일 베를린에 본사를 둔 수중 로봇 공학 기업으로, 혁신적이고 고성능의 수중 로봇, 데이터 네트워크, 센서 기술 개발에 주력하고 있다. 2005년 설립된 이 회사는 해양 연구, 오프쇼어 산업, 국방 분야에서 활용되는 다양한 제품과 솔루션을 제공하며 전 세계적인 명성을 얻었다. 쿼드로인은 2020년 에볼로지스가 헬름홀츠 센터 헤레온(Helmholtz-Zentrum Hereon) 연구소의 부르카르트 바셰크(Burkard Baschek) 교수와 협력하여 개발한 핑귄(PingGuin) 실험 AUV의 후속 제품이다. 핑귄의 디자인은 이 회사의 창업자인 루돌프 바나쉬(Rudolf Bannasch) 박사의 아델리(Adelie) 펭귄 운동 연구를 기반으로 구현됐다. 저항을 최소화하도록 설계된 쿼드로인은 최대 10노트(Knot)의 속도를 달성해 에너지 효율성을 극대화하고 다양한 현장 배치를 가능하게 한다. 노트는 해양에서 배의 속도를 나타내는 단위로, 1시간에 1해리(1.85km)를 가는 속도를 의미한다. 따라서 10노트는 1시간에 18.5km의 거리를 이동하는 속도에 해당한다. 일반적으로 선박의 느린 속도는 5노트 미만이며, 보통 속도는 5~10노트, 빠른 속도는 10노트 이상으로 분류된다. 물론 선박의 종류, 엔진 성능, 해양 환경 등에 따라 10노트의 속도는 느리거나 빠르게 느껴질 수 있다. 예를 들어 소형 요트의 경우 10노트는 상당히 빠른 속도이지만, 대형 컨테이너 선의 경우 10노트는 비교적 느린 속도에 해당한다. 펭귄 모방 수중 로봇 퀘드로인 사실 펭귄 모방 수중 로봇의 개념은 2009년까지 거슬러 올라간다. 당시 에보로직스는 독일 전기 자동화 기업 페스토(Festo)와 협력하여 펭귄과 유사한 아쿠아펭귄(AquaPenguin) 시연용 모델을 개발했다. 실제 쿼드로인은 2021년 5월 처음 공개되었는데, 펭귄의 유영 방식을 모방하여 제작되었으며, 헬름홀츠 센터 헤레온 연구소의 MUM(Modifiable Underwater Mothership) 프로젝트에 활용되고 있다. 이 프로젝트에서 쿼드로인은 다양한 센서를 탑재하고 무리를 지어 해류 데이터를 수집했다. 탑재된 센서는 수심별 온도, 압력, 용존 산소량, 전기 전도도, 형광 등을 정밀하게 측정할 수 있다. 다른 AUV와 마찬가지로 쿼드로인은 선박이나 해안에서 투입된 후 사전 프로그래밍된 수중 경로를 따라 자율적으로 이동하며 데이터를 수집한다. 수집된 데이터는 쿼드로인이 수면으로 올라갈 때 무선 전송되거나 기지로 돌아와 직접 다운로드받을 수 있다. 쿼드로인은 데이터를 와이파이(Wi-Fi) 또는 옵션인 이리듐 위성 모듈을 통해 전송한다. 이 두 시스템과 탑재된 글로벌 네비게이션 위성 시스템(GNSS)은 쿼드로인이 수면에 올라올 때 자동으로 뒤집히는 아치형 다기능 안테나를 사용한다. 추가적인 장점으로 안테나에는 빨간색과 초록색 LED 점멸등이 장착되어 사용자가 로봇을 회수할 때 쉽게 찾을 수 있도록 한다. 에보로직스 대표는 "새로운 쿼드로인이 올해 4분기에 양산에 돌입할 예정이며, 상업 고객들에게는 요청 시 가격 정보를 제공한다"고 밝혔다. 쿼드로인 활용 방안 쿼드로인은 다양한 해양 생물의 행동과 서식지를 관찰하고 데이터를 수집하는 데 활용될 수 있다. 이를 통해 해양 생태계에 대한 이해를 높이고 효과적인 보호 전략을 수립하는 데 기여할 수 있다. 또한, 해양 환경을 효과적으로 모니터링하는 데에도 활용될 수 있다. 쿼드로인은 수온, 염도, 용존 산소량 등 해양 환경 변수를 정밀하게 측정하고 실시간으로 데이터를 전송할 수 있다. 이를 통해 해양 오염, 기후 변화 등 해양 환경 문제를 파악하고 해결책을 모색하는 데 도움이 될 수 있다. 쿼드로인은 해저 지형을 정밀하게 측량하고 3D 모델을 구축하는 데 활용될 수 있다. 그로 인해 해양 자원 탐사, 해저 케이블 및 파이프라인 설치, 해양 구조 작업 등에 크게 활용될 수 있다. 또한, 쿼드로인은 해저 석유 및 가스 매장지를 효율적으로 탐색하고 개발 계획을 수립하는 데 활용될 수 있으며, 이를 통해 오프쇼어 에너지 개발의 효율성을 높이고 환경 영향을 최소화하는 데 도움이 될 수 있다. 뿐만 아니라, 쿼드로인은 해저 사고 현장을 탐사하고 생존자를 구조하는 데 활용될 수 있으며, 해저 침몰선 및 잔해물을 탐색하고 인양하는 데에도 활용될 수 있다. 해양 국방 분야에도 활용 쿼드로인은 적군 함정 및 해양 활동을 정밀하게 정찰하고 정보를 수집하는 데 활용될 수 있으며, 이는 해상 작전의 효율성을 획기적으로 높이고 적의 위협을 사전에 예측하는 데 크게 기여할 수 있다. 또한, 쿼드로인은 해저 지뢰를 효과적으로 탐지하고 제거하는 데 활용될 수 있으며, 이를 통해 해상 통로의 안전을 확보하고 군함 및 상선의 안전을 보호하는 데 도움이 될 수 있다. 뿐만 아니라, 쿼드로인은 해저 침몰선을 탐색하고 인양하는 데 활용될 수 있으며, 이를 통해 해양 역사 연구를 체계적으로 수행하고 침몰선에서 귀중한 유물을 발견하는 데 기여할 수 있다. 최근 미국 농업 분야에서는 드론과 인공지능(AI) 로봇 등 첨단 기술 도입이 활발하게 이루어지고 있다. 드론, 레이저 제초기, 로봇 손 등은 농작물 재배 및 가공 과정의 일부를 자동화할 수 있으며, AI 기반 시스템의 활용은 미래 농업의 새로운 가능성을 열어주고 있다. 수중 로봇 기술의 발전과 더불어 쿼드로인 또한 다양한 분야에서 활용될 것으로 전망된다. 하늘을 나는 드론이 다방면에서 활용되고 있는 것처럼, 쿼드로인 2세대는 아직 개발 초기 단계이지만, 앞으로 해양 분야뿐만 아니라 국방, 농업, 과학 연구, 레저 및 관광, 교육 등 다양한 분야에 새로운 변화를 가져올 것으로 기대된다. 한편 해양 강국인 한국은 한국해양과학기술원(KIOST), 한국해양연구원(KORDI), 한국과학기술원(KAIST), 포항공과대학교(POSTECH), 한화오션, HD현대중공업, 삼성중공업 등을 중심으로 자율 운항, 인공지능, 센서 기술, 통신기술, 로봇 공학 등의 핵심기술을 보유하고 있다. 특히 정부는 '해양 4.0' 산업 육성을 위해 수중 로봇 개발을 핵심 전략 분야로 지정하고 적극적으로 지원하고 있다.
-
- 포커스온
-
[퓨처 Eyes(34)] 펭귄처럼 헤엄치는 수중 로봇, 쿼드로인 2세대 출시
-
-
중국, 인류 최초 달 뒷면 샘플 수집해 지구 귀환 미션 나선다
- 중국이 최초로 달 뒷면의 샘플을 수집해 지구로 가져오는 우주 미션에 나선다고 스페이스뉴스가 전했다. 중국은 이를 위해 임무를 수행할 달 착륙선 창어 6호를 공개했다. 우주선을 실어 나를 로켓 창정 5호는 지난달 말 하이난도 원창 위성발사센터 기지로 이동됐다. 창어 6호의 임무는 지구에서는 직접 볼 수 없는 달 뒷면에 착륙해 최대 2kg의 달 샘플을 수집, 이를 지구로 가져오는 것이다. 이 임무는 과거에 시도된 적이 없는 세계에서 첫 번째 미션이다. 이를 중계하기 위한 Queqiao-2 중계 위성은 이미 지난 3월 19일 발사됐다. 이 중계 위성은 달 뒷면에 있는 창어 6호와 지구의 지상국 사이의 통신을 위해 달 궤도에 머무른다. 중국은 아직 창어 6호의 발사 시기를 공개하지 않았지만 현재까지의 정보를 종합하면 발사는 5월 3일 금요일로 예상된다. 창어 6호는 달 뒷면의 서쪽 150~158도, 남쪽 41~45도에 위치한 아폴로 분화구의 남쪽을 착륙 목표로 삼고 있다. 아폴로는 수많은 달의 미스터리를 풀어줄 일부 실마리를 갖고 있을 것으로 기대되는 거대한 남극-에이컨(SPA) 분지 내에 있다. 중국 국가우주국(CNSA) 산하 달탐사우주공학센터(LESEC)는 "창어 6호는 달 역행 궤도 설계 및 제어 기술, 지능형 샘플링, 이륙 및 상승 기술, 달 뒷면의 자동 샘플 채취 등의 목표를 성공적으로 달성할 것“이라고 밝혔다. 또한 창정 5호 로켓과 창어 6호 탐사선의 상태는 양호하며 발사를 위한 모든 준비는 정상적으로 진행되고 있다고 부연했다. 창정 5호는 액체수소와 산소를 동력으로 하는 직경 5m, 높이 57m의 로켓이다. 또한 4개의 등유-액체산소 사이드 부스터를 사용한다. 이 로켓은 중국에서 가장 크고 가장 강력한 발사체로 알려져 있다. 창어 6호는 목표를 달성하기 위해 총 8200kg에 달하는 4개의 우주선 복합체를 사용할 예정이다. 서비스 모듈은 달 궤도에 진입하는 데 필요한 추진력을 제공한다. 착륙선은 달 뒷면에 착륙해 샘플을 수집할 예정이다. 이들은 상승체에 의해 달 궤도로 다시 발사될 것이며, 서비스 모듈과 랑데부해 도킹하게 된다. 서비스 모듈은 지구를 향해 되돌아가고 지구에 재진입해 샘플을 안전하게 전달할 재진입 캡슐을 방출하게 된다. 미션에 성공하면 달의 역사와 태양계에 대한 지식을 깊이 해 줄 샘플이 수집될 것이다. 이 샘플은 왜 가까운 쪽과 먼 쪽 달 암석의 구성에 차이가 있는지를 설명헤 즐 것으로 기대된다. 이 임무에는 프랑스, 스웨덴, 이탈리아, 파키스탄 큐브위성의 국제 과학 탑재체도 포함될 예정이다. 이 협력은 우주 탐사 분야에서 국제 협력을 강화하려는 중국의 노력을 반영한다는 설명이다. 프랑스는 달 지각에서 나오는 라돈 가스 방출을 감지하는 가스 탐지(DORN: Detection of Outgassing RadoN) 장비를 제공한다. 스웨덴은 ESA의 지원을 받아 NILS(달 표면의 음이온) 탑재체를 제공한다. 이탈리아로부터는 패시브 레이저 역반사경을 지원받아 탑재한다. 큐브위성은 파키스탄 국립우주국 SUPARCO와 중국 상하이 자오퉁 대학교가 공동으로 제작했다. 창어 6호는 2030년까지 유인 달 탐사를 포함하는 중국의 우주 미션의 일부다. 중국은 2030년대에 국제 달 연구기지(ILRS) 프로그램을 통해 영구 달 기지를 구축하는 것을 목표로 하고 있다. 많은 국가와 기관들이 이 프로젝트에 동참했다.
-
- IT/바이오
-
중국, 인류 최초 달 뒷면 샘플 수집해 지구 귀환 미션 나선다
-
-
[신소재 신기술(37)] 레이저로 구동되는 초고속 잠수함 개발
- 중국 하얼빈 공업대학 연구팀은 레이저를 사용해 잠수함을 제트 엔진과 거의 동등한 속력으로 추진하는 기술을 개발 중이라고 주장했다. 하얼빈은 중국 최초의 실험 잠수함 개발 지역이다. 홍콩 매체 사우스 차이나 모닝 포스트(SCMP) 보도에 따르면, 하얼빈 공대 연구팀은 중국의 군사력이 이 획기적인 기술 개발에 임박했다고 밝혔다. 레이저 추진 잠수함 기술의 핵심 원리는 독창적이다. 레이저가 수중에서 플라즈마를 생성해 소위 '폭발 파(detonation wave)'를 만들어 잠수함을 앞으로 나아가게 하는 아이디어가 이 기술의 핵심이다. SCMP에 따르면 일본 연구팀은 20년 전 처음으로 이러한 레이저 추진 방식을 제안했다. 이후 중국에서는 과학자들이 최소 10년 이상 이 기술을 실용화하기 위해 노력해 왔다. 지금까지 레이저 추진 기술의 시도는 대부분 실패했다. 과학자들은 잠수함을 특정 방향으로 밀 수 있는 레이저 출력 실현이 거의 불가능하다는 것을 알게됐다. 하지만 하얼빈 공대 연구팀은 이제 해답을 찾았다고 말했다. SCMP는 이 기술을 사용하는 잠수함은 레이저 출력을 방출하는 아주 얇은 광섬유(머리카락 한 가닥보다 얇은 광섬유)로 코팅되어 있다고 전했다. 연구팀은 중국 광학회에서 발간하는 영문 학술지 '중국 광학학보(Acta Optica Sinica)'의 최근 논문에서 이같이 밝혔다. 연구팀은 코팅 광섬유를 사용하면 단 2메가와트의 레이저 출력만으로 상업용 제트 엔진보다 약간 적은 수치인 최대 7만 뉴턴의 추력을 생성할 수 있다고 주장했다. 추진력 제공 외에도 지향성 레이저 에너지는 수중 투사체 표면을 기포로 덮어 속도를 높이는 '슈퍼 캐비테이션(supercavitation, 고속으로 움직이는 물체 주변에 형성되는 기포로 가득찬 공간)' 현상을 유발할 수 있다. 이론적으로 이를 통해 잠수함은 음속보다 빠르게 이동하고 소나(음파탐지기·SONAR)에 감지되지 않게 할 수 있다. 기계 동력이 없기 때문에 기계적인 소음 진동도 발생하지 않기 때문이다. 소나(SONAR)는 'Sound Navigation And Ranging'의 약자로, 음파탐지기, 음향탐지기 혹은 음탐기라고도 불리며, 음파를 이용해 수중 목표의 방위와 거리를 측정하는 장비이다. 이 소식은 미국이 새로운 수중 무기 기술 연구에 막대한 투자를 하고 있는 중국에게 잠수함 군비 경쟁에서 밀릴 것을 우려하고 있다는 지난해 보도 이후 나온 것이다. 레이저 추진 잠수함이라는 개념은 SF 영화를 떠올리게 하지만, 이러한 기술의 군사적 활용은 주목할 만한 가치가 있다. 퓨처리즘은 이러한 이론적 발전 소식은 미국이 잠수함 개발 경쟁에서 중국에 뒤쳐질 수 있다는 우려를 낳고 있다고 전했다. 중국은 최근 새로운 수중 무기 기술 연구에 많은 투자를 하고 있다. 논문의 프로젝트 리더인 게 양(Ge Yang)은 SCMP가 인용한 논문에서 "이 방법은 수중 무기에도 적용할 수 있으며, 슈퍼 캐비테이션 현상을 일으켜 수중 투사체, 수중 미사일 또는 어뢰의 수중 사거리를 크게 향상시킬 수 있다"고 밝혔다.
-
- 포커스온
-
[신소재 신기술(37)] 레이저로 구동되는 초고속 잠수함 개발
-
-
[퓨처 Eyes(31)] 드론·AI 로봇, 미국 대규모 농장에 투입⋯미래 농업의 새로운 지평
- 미국에서 최근 농업 분야에 드론과 인공지능(AI) 로봇 등 첨단 기술 도입이 활발하다. 드론이나 레이저 제초기, 로봇 손 등은 농작물 재배와 가공 과정의 일부를 대체할 수 있으며, AI를 탑재한 시스템도 활용되고 있다. 농장주들은 비용 절감을 가져다 주는 이러한 로봇 도입을 환영하고 있지만, 농장 현장 작업자들은 로봇에게 자신의 일자리를 빼앗길까 우려하고 있다. 텍사스주 휴스턴 소재 드론 제조업체 하이리오(Hylio)는 지난 3월 하순 미국 연방항공국(FAA)로부터 단일 조종사가 무거운 드론을 여러 대 동시에 운영할 수 있는 면허를 취득해 농업 분야 혁신을 향한 중요한 발걸음을 내딛었다. FAA의 새로운 규정은 단일 조종사가 3대의 드론을 동시에 운영할 수 있도록 허용해 드론 농업의 효율성을 크게 향상시켰다. 기존 규정에서는 단일 드론 운영시 조종사 1명과 감시원 1명이 필요했다. 드론을 여러 대 운영하기 위해서는 복수의 라이선스 소지 운영자가 필요했기 때문에 비용이 많이 들었다. 또 비행 중량 제한으로 넓은 농지를 경작하는 데 많은 시간이 들었다. 하지만 1명의 조종사가 3대의 드론을 동시에 작동시키면 1시간에 150에이커(약 60만7000㎡)에 농약을 살포할 수 있다. 폭스비즈니스에 따르면 하이리오는 55파운드(약 25kg) 이상의 무게를 가진 여러 대의 드론을 동시에 비행할 수 있는 최초의 면허를 획득했다. 이는 상당한 하중을 운반할 수 있는 드론 사용에 대한 획기적인 허가이며, 드론을 기존 트랙터나 파종기에 버금가는 경쟁력 있는 농업 기계로 급부상시키는 계기가 될 것으로 보인다. 이 드론은 배터리로 작동하며 최대 400파운드(약 181kg)까지 운반할 수 있다. 3대의 드론을 동시에 작동시켜 밭에 비료와 살충제를 살포하는 작업을 수행할 수 있다. 이는 기존 농장 노동자나 농약 살포 비행기가 수행하던 작업을 대체할 수 있으며, 농업 생산의 효율성을 획기적으로 향상시킬 것으로 기대된다. 아서 에릭슨 (Arthur Erickson) 하이리오의 최고경영자(CEO)는 "기존 농업 기계에 비해 초기 투자 비용과 운영 비용이 각각 4분의 1에서 3분의 1 수준으로 저렴하다"고 밝혔다. 실제로 3대의 드론 세트는 단일 트랙터보다 훨씬 저렴하며, 농약 살포 시 불필요한 물 사용을 줄이고 환경 오염을 예방할 수 있다. 또한 씨앗을 뿌리기 적당하게 갈아 놓은 토양을 딱딱하게 압축하지 않아 토양 건강을 유지한다. 현장에서 드론 배터리를 충전하기 위한 발전기 사용량이 적어 연료를 절감한다. 네브래스카 주 농업 기업인 인피니티 프리시즌 Ag(Infinity Precision Ag)의 앤디 크라이케미어는 약 6개월 전부터 주로 접근하기 어려운 곳에서 드론을 사용하기 시작했다. 그는 조종사와 감시원 외에도 드론을 재충전하는 작업 인원 1명이 더 필요하다고 말했다. 크라이케미어는 "이번 FAA의 새 면허 덕분에 이제 2인만으로 3대의 드론을 운영할 수 있다. 3대의 드론을 사용해 작업 범위를 늘릴 수 있을 뿐만 아니라 현장에 필요한 인원 수도 줄일 수 있다"고 말했다. 또 다른 조종사와 추적 장치를 추가하여 최대 6대의 드론을 동시에 운영한다면 농작물을 짓밟거나 토양을 뭉그러뜨리지 않고 더 넓은 지역을 작업할 수 있다. 하이리오에 따르면 드론은 기종당 약 5만 달러(약 6817만원)~8만달러(약 1억원)에 구입할 수 있다. 기존 트랙터는 30만 달러(약 4억원) 이상이며 고급 모델은 70만 달러(약 9억5000만원) 이상에 이른다. 에릭슨은 "최근 코로나바이러스 사태와 공급망 문제로 인해 새로운 트랙터는 엄청나게 비싸다"라고 말했다. 에릭슨 CEO는 "이번 드론 3대 작동 면허 취득은 선례가 되는 중요한 사건이다. 우리 고객과 다른 기업들은 이 사례를 근거로 유사한 허가를 받을 수 있다"고 말했다. 로봇 손·레이저 제초기 등 선봬 2024년 2월 캘리포니아 중앙 골짜기의 툴레에서 열린 세계 농업 엑스포에는 농작물 살포용 자율주행 로봇과 실리콘 '손'으로 부드럽게 딸기를 따는 AI 로봇 등 다양한 첨단 농업 기계들을 선보였다. 농업용 전기 미니 트랙터인 아미가(Amiga)를 개발한 팜-응(farm-ng)의 이선 루블리는 "미래에는 모든 농부들이 코더(컴퓨터 프로그래밍 언어를 사용해 소프트웨어, 웹사이트, 앱 등을 만드는 사람)가 될 것"이라고 말했다. 아미가는 AI 부품을 사용해 장비 운반, 파종, 경운 및 퇴비 퍼뜨리기 등의 작업을 수행하도록 프로그램할 수 있으며, 한 번 충전으로 몇 시간 동안 작동한다. 산호세에서 약 1시간 거리인 와트슨빌에 위치한 팜-응은 실리콘 밸리 투자자들의 주목을 받고 있으며, 지금까지 총 1600만 달러(약 218억원)의 투자를 유치했다. 폴 마이크셀 카본 로보틱스(Carbon Robotics)의 CEO는 자사의 제품인 레이저 제초기(Laser Weeder)를 공개했다. 레이저 제초기는 강력한 적외선 레이저와 고속 카메라를 사용해 잡초를 식별하고 순식간에 제거한다. 이 제초기는 1시간당 약 10만개의 잡초를 제거할 수 있다. 마이크셀은 "레이저 제초기가 나오기 전에는 사람들이 손 도구를 사용하여 농약을 뿌리며 잡초를 제거해야 했다"고 말했다. 에릭신은 드론의 활용 분야는 다양하다고 말했다. 농지 살포 및 파종 외에도 산불로 인해 타버린 지역에 나무씨앗을 뿌리는 데 사용되기도 하고, 수산업 종사자들은 드론을 이용하여 수중으로 조개를 방류하는 데에도 활용하고 있다는 설명이다. 노동력 부족 해결책? 첨단 기술 개발자들은 이러한 발명품이 수십 년 동안 미국 농업 산업을 괴롭혀온 노동력 부족 문제를 완화하는 데 도움이 될 수 있다고 말했다. 미국 농무부 자료에 따르면 1950년과 2000년 사이에 고용된 농장 노동자 수는 50% 이상 감소했다. 2020년대에도 농장 운영자들은 채용 문제에 어려움을 겪고 있다. 드론이나 로봇 손 등 자동화로 전환하는 것은 노동력 부족을 해결하고 농장 노동자들의 힘들고 지루하며 때로는 위험한 작업 일부를 대체할 수 있다. 하지만 농장 노동자 룰루 카르데나스(61·여성)는 농업용 AI 로봇이 자신의 일자리를 빼앗을까봐 걱정하고 있다. 카르데나스는 "뭔가 대체될 것 같은 느낌이 든다"며 "가족을 부양하는 데 어려움을 겪을 것 같다"고 우려했다. 그녀는 20년 전 멕시코에서 이민 온 이후 캘리포니아 센트럴 밸리에서 밭일을 해왔다. CBS 뉴스에서 새로운 종류의 농장 로봇에 대해 설명했을 때, 카르데나스는 인간과 식물 사이의 정신적 교감을 언급하며 실망감을 감추지 못했다. 룰루는 "차가운 기계로 인간의 열을 대체할 수는 없다"고 말했다. 36년 전 멕시코시티 남쪽에 있는 같은 마을에서 온 카르데나스의 친구 아순시온 폰세도 농장 로봇의 새로운 이미지를 보고 화를 냈다. 얼마 전 미국 시민권자가 된 폰세는 "농부들은 이 로봇의 혜택을 받지만 우리로부터 많은 일을 빼앗아가고 있다"고 말했다. 그는 과거에도 농장에서 장비가 일부 작업을 대신하는 것을 본 적이 있지만, '생각하는' 새로운 기계는 이번이 처음이었다. 폰세는 "양파, 마늘, 양상추, 브로콜리를 수확하는 기계가 많이 있다"며 "기계가 많은 인력을 대체헤 이제 겨우 세 사람이 일하고 있다"고 밝혔다. 불법 이민 노동자, 설자리 잃어 일부 대규모 농장과 옹호 단체는 농장 노동자들이 새로운 기술에 적응하고 드론 운영자나 프로그래머로서 새로운 역할을 맡을 수 있는 기술을 개발할 수 있도록 교육 프로그램을 도입했다. 현재 대규모 농장을 경영하는 멕시코 이민자이자 퇴역 군인인 아드리안 미라몬테스는 "우리는 기계를 사용하면서도 사람들을 돌볼 수 있다고 생각한다"면서 "그들은 기꺼이 배우려고 하고 자신과 가족을 위해 더 나은 일을 하려고 한다"고 말했다. 그러나 AI 로봇을 농장에 투입하는 계획은 미국에서 불법 이민자들의 실직으로 이어질 수 있다. 미국 노동부도 이 문제를 모니터링하고 있다. 대변인은 다음 달 노동부가 바이든 대통령에게 AI로 실직한 농장 노동자들을 도울 수 있는 원조 프로그램 추천 목록을 보낼 것이라고 CBS 뉴스에 말했다. CBS는 "새로운 원조 프로그램은 의회의 승인이 필요하다"면서 "이러한 지원 프로그램이 미국 농장에서 일하는 수십만 명의 서류 미비 이민자에게 도움이 될지는 불분명하다"고 전했다.
-
- 포커스온
-
[퓨처 Eyes(31)] 드론·AI 로봇, 미국 대규모 농장에 투입⋯미래 농업의 새로운 지평
-
-
[퓨처 Eyes(30)] 한국형 인공태양, 1억도 플라즈마 세계 신기록 수립
- 한국 핵융합에너지연구원(핵융합연·KFE) 연구팀은 인공태양 연구에서 획기적인 성과를 달성하며 과학 역사에 찬란한 족적을 남겼다. 바로 1억도 플라즈마를 48초간 유지하는 놀라운 기록을 세운 것이다. 이는 핵융합 에너지 실현이라는 꿈에 한 발짝 더 다가선 뜻깊은 성과이다. KSTAR(한국 초전도 토카막 핵융합 연구장치)라는 인공태양 핵융합로를 활용한 이번 연구는 한국 과학자들의 탁월한 기술력을 여실히 보여준다. 1억도라는 극한의 온도를 48초간 유지하는 것은 쉬운 일이 아니다. 이는 핵융합 에너지 개발 분야에서 세계 최고 수준의 기술력을 자랑하는 한국 과학의 위상을 더욱 굳건히 하는 계기가 되었다. 토카막(Tokamak)은 태양처럼 핵융합 반응이 일어나는 환경을 만들기 위해 초고온의 플라즈마를 자기장을 이용해 가두는 핵융합장치다. 플라즈마를 구속하는 D자 모양의 초전도 자석으로 자기장을 만들어 플라즈마가 도넛 모양의 진공용기 내에서 안정적인 상태를 유지하도록 제어한다. 1억도 플라즈마 48초간 유지 KFE는 한국의 '인공태양'으로 불리는 KSTAR가 최근 실험에서 핵심 부품을 업그레이드해 태양 중심핵 온도의 7배에 해당하는 1억도의 플라즈마를 48초 동안 연속 운전하는데 성공했다고 지난 3월 27일 밝혔다. 이는 2022년 기록했던 30초를 크게 뛰어넘는 놀라운 발전이며, 핵융합 기술의 지속적인 진보를 보여주는 명확한 증거이다. 플라즈마는 높은 온도에서 전자와 양이온이 분리되어 형성되는, 전기적으로 중성인 기체 상태이다. 이는 태양과 별의 뜨거운 심장부에서 발견되는 특별한 물질 상태이며, 핵융합 반응의 필수적인 요소이다. KSTAR는 한국 초전도 토카막 첨단연구의 정식 명칭으로, 2022년에 1억도 플라즈마를 30초간 유지하는 기록을 세웠다. 텅스텐 디버터로 안정성 향상 2023년 12월 31일부터 3개월간 진행된 최근 테스트에서 KSTAR은 텅스텐 디버터를 사용해 플라즈마의 안정성을 크게 향상시키고 유지 시간을 48초까지 늘리는 데 성공했다. 이는 이전 기록 30초를 크게 뛰어넘는 성과다. 또한 저감속 모드보다 안정적인 고성능 플라즈마 운전 모드인 'H 모드(H-mode)'를 102초 동안 장시간 유지하며 기록을 경신했다. H-모드는 토카막형 핵융합 장치 운전시 특정 조건 하에서 플라즈마의 가둠 성능이 약 2배 증가하는 현상이다. 이는 핵융합 연구 분야에서 획기적인 진보를 의미하며, 미래 에너지 문제 해결에 중요한 기여를 할 것으로 기대된다. 1억도 운전을 추진한 고성능시나리오연구팀 한현선 박사는 "1억도 초고온 이온 플라즈마(High-Ti shot) 운전을 기존 30초에서 48초간 유지 달성하며 우리의 운전 방식이 40초대에서도 유효함을 확인했다. 지난해에는 플라즈마를 충분히 가열하고 유지할 파워가 부족해 실험이 어려웠다. 이번에는 중성자빔 가열장치의 성능 향상이 48초 유지의 바탕이 됐다"며 1억도 플라즈마의 장시간 운전은 초고온 플라즈마에 대한 이해를 높일 수 있는 자료이자 향후 핵융합 발전로에 쓰일 새로운 운전 모드 연구의 기반이 된다고 말했다. 텅스텐 재질 디버터(divertor)의 도입이 이러한 획기적인 성과를 가능하게 했다. 디버터는 핵융합 반응에서 발생하는 열과 불순물을 제거해 플라즈마 오염을 최소화하고 주변 장벽을 보호하는 역할을 한다. 텅스텐은 기존 탄소 재질보다 녹는점이 훨씬 높아 열 부하에 대한 내구성이 뛰어나다. 실험 결과, 텅스텐 디버터는 동일한 열 부하 상황에서 표면 온도 상승률이 25% 감소했다. KSTAR 연구 본부 고성능시나리오팀 김현석 선임연구원은 "디버터는 플라즈마의 열속이 집중되는 부분이다. 이번 테스트를 준비하면서 KSTAR처럼 토카막 내벽을 텅스텐으로 교체한 해외 융합 장치들의 사례를 토대로 KSTAR의 새로은 텅스텐 환경이 기본 카본 환경과 크게 다르지 않을 것으로 에상했다. 하지만 초기 실험에서 무언가 달랐다"고 전했다. 김 연구원은 "초기에 토카막 내벽 온도가 잘 안 올라갔다. 디버터는 소재만 바뀐 게 아니라 아랫부분의 구조(형상)도 기존 직선형에서 고래꼬리 형태로 바뀌었다. 형상과 소재 두 가지 요인이 복합적으로 작용해서 플라즈마 성질이 바뀌었는데, 바뀐 형태에서 어떻게 해야 좋은 성능을 발휘할 수 있을지 고민했다. 샷이 발생하면 과거의 형상을 만드는 것에서 시작해서 플라즈마 성능을 잠시 유지하고 안정이 되면 바뀐 디버터 형상으로 바꾸어 유리하는 전략으로 운전하며 기존 성능을 재현할 수 있엇다"고 설명했다. 핵융합은 두 개의 가벼운 원자핵이 합쳐져 더 무거운 원자핵을 만들면서 엄청난 양의 에너지를 방출하는 과정이다. 모든 금속 중 가장 높은 녹는점(3422°C)을 자랑하는 텅스텐은 핵융합 반응의 극한 환경에서도 흔들림 없이 자리한다. 또한 낮은 불순물 형성은 플라즈마 오염을 최소화하여 핵융합 반응의 순도를 높이는 데 기여한다. 프랑스에 건설 중인 ITER 실험로는 핵융합 에너지의 실현 가능성을 검증하는 국제 핵융합 연구의 중심 무대이다. 텅스텐 다이버터를 사용하는 ITER 실험로는 내년 첫 플라즈마 생성을 목표로 하고 있다. KSTAR의 이번 성과는 ITER 실험로의 성공적인 운영에 중요한 데이터를 제공할 것으로 기대된다. 한국핵융합연구소 소장은 이번 성과가 미래 핵융합 발전 시설 개발에 필요한 핵심 기술 확보에 중요한 발걸음이라고 강조했다. 연구팀은 앞으로 ITER 운영 및 미래 핵융합 발전 시설에 필수적인 핵심 기술 확보에 집중할 계획이다. 연구팀은 '토카막'이라 불리는 도넛 모양의 핵융합로 안에 뜨거운 플라즈마를 가두어 물을 가열하고 터빈과 발전기를 사용하여 생성된 증기를 전기로 전환함으로써 반응에서 순 양의 에너지를 획득할 수 있기를 희망한다. 토카막 융합로의 다양한 성과 한편, 전 세계 다른 토카막 핵융합로 또한 최근 몇 년 동안 중대한 성과를 거두었다. 지난해에는 중국 과학자들이 실험용 첨단 초전도 토카막 내부에 플라즈마를 403초 동안 유지하는 데 성공했다. 또한 영국은 JET(Joint European Torus) 장치를 사용해 핵융합 에너지 세계 기록을 수립했다. 뉴사이언티스트에 따르면 단 5초 동안이지만 약 1만 2000가구에 전력을 공급할 수 있는 69메가줄의 에너지를 생산했다. 미국 로렌스 리버모어 국립 연구소는 재래형 토카막 설계와는 크게 다른 레이저 기반 핵융합로인 내셔널 이그니션 퍼실리티(National Ignition Facility)에서 투입한 에너지의 두 배를 얻었다고 주장했다. 하지만 이러한 모든 연구 결과가 핵분열 원자로를 완전히 대체할 수 있는 핵융합 에너지 혁명으로 이어질지 여부는 아직 불확실하다. 위에서 언급한 것처럼 프랑스 남부 생폴레즈듀랑스 카다라쉬에 다국적 거대 핵융합 연구 시설 'ITER(국제핵융합실험로·International Thermonuclear Experimental Reactor)'가 건설되고 있다. ITER 총 사업 기간은 2007~2042년으로 건설과 운영, 방사능감쇄, 해체 등 4단계를 포함한다. 총건설비는 약 117.7억유 한국을 비롯해 중국, 인도, 일본, 유럽연합(EU·29개국) 등 35개국이 참여하는 이 프로젝트는 핵융합 에너지 상용화의 가능성을 판단하는 중요한 단계이며, 현재까지 건설된 토카막 핵융합로 중 가장 큰 규모를 자랑한다. 2007년 설립된 ITER는 2025년 완공 예정이다. 현재 우리가 사용하는 화석 연료 대신 안전하고 지속 가능한 에너지원 개발 가능성을 가진 ITER는 완공 후 핵융합 실험을 통해 핵융합 에너지의 실현 가능성을 평가할 계획이다. 프랑스의 ITER 시설이 완공되면 인공태양으로 불리는 핵융합에너지에 대한 실용성과 타당성 등에 대한 중요한 답변을 얻을 수 있을 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(30)] 한국형 인공태양, 1억도 플라즈마 세계 신기록 수립
-
-
[신소재 신기술(16)] 휴머노이드 로봇, 달리기 신기록 수립
- 중국 로봇 회사 유니트리(Unitree)의 새 휴머노이드 로봇 H1이 달리기 신기록을 수립했다. '인간의 외모를 지닌 것'이라는 뜻을 가진 '휴머노이드(humanoid)'는 로봇 따위를 통틀어 이르는 말로 인간형 로봇을 의미한다. 지난 14일(현지시간) 영국 데일리 메일에 따르면 유니트리의 휴머노이드 로봇 H1 에볼루션 V3.0의 최대 속도는 11mph(초당 3.3미터)에 달한다. 이는 마라톤 경기로 따지면 2시간 23분만에 완주할 수 있는 속도다. 참고로 올림픽 남자 마라톤 신기록은 2008년 베이징 올림픽에서 케냐의 사무엘 완지루가 세운 2시간 06분 32초다. 유니트리가 최근 공개한 영상에는 H1 로봇의 주목할 만한 달리기 성능이 담겨 있다. 영상 속 H1 로봇은 넓은 공간을 가로질러 달리기 시작했다. 강력한 점프와 다양한 움직임을 보여 민첩성과 균형 감각을 과시하기도 했다. 신장 180cm에 달하는 이 거대한 로봇은 개발 중인 다른 대부분의 휴머노이드 로봇보다 크기가 돋보인다. 또한 성인 남성이 옆에서 공격해도 넘어지지 않고 걷는 속도를 유지했다. 유니트리는 영상 내에서 이 로봇의 속도가 시속 12.1km/h(3.3m/s)에 달한다고 주장했다. 유니트리 웹사이트에 따르면 H1의 최대 속도는 시속 17.7km/h(5m/s)에 도달할 수 있다. 이 속도대로라면 마라톤 경기를 2시간 23분이라는 인상적인 기록으로 완주할 수 있다. 이러한 속도는 다른 풀사이즈 휴머노이드 로봇 대비 우위를 확보한다. 파쿠르와 백 플립 기술로 유명한 보스톤 다이내믹스의 아틀라스는 최고 속도가 시속 9.7km/h (2.5m/s)에 불과하다. 뛰어난 민첩성을 자랑하는 아지리티 로보틱스의 캐시 로봇은 시속 16.1km/h (4m/s)의 속도를 보여 H1과 비슷한 수준이다. 하지만 캐시는 모터가 달린 다리 두 개만으로 구성되어 있어 풀사이즈 휴머노이드 로봇으로 분류하기는 어렵다. 유니트리에 따르면 로봇의 허리와 무릎 관절에서 생성되는 강력한 토크가 속도에 영향을 미친다. 각 무릎 관절은 360 뉴턴 미터의 토크를 생성할 수 있어 다리를 더 빠르게 앞뒤로 휘두를 수 있다. 덕분에 H1은 사람만큼 높이 뛰어오를 수도 있다. 유니트리는 웹사이트에서 "최첨단 동력계는 최고 수준의 속도, 출력, 기동성 및 유연성을 제공한다"라고 밝혔다. 이 휴머노이드 로봇 H1은 신장 1.8m, 무게 47kg으로 크기에 비해 상당히 가볍다. 반면, 보스톤 다이내믹스의 아틀라스는 신장은 1.5m에 불과하지만 무게는 89kg에 달한다. H1 로봇의 기능은 직선 달리기만 가능한 것이 아니다. 영상 속 H1은 뛰어난 협응력과 균형 감각을 필요로 하는 다양한 기술을 산보였다. 한 영상에서는 세 대의 로봇이 함께 군무를 추고, 다른 영상에서는 로봇이 넘어지지 않고 계단을 오르 내리는 모습이 나온다. 또 다른 영상에서는 H1이 개와 비슷한 다른 로봇 뒤에서 바구니를 성공적으로 집어 테이블 위에 놓는 모습도 확인할 수 있다. H1은 머리에 장착된 카메라와 라이다(LiDAR, 빛 감지 및 거리 측정) 센서의 조합 덕분에 주변 환경을 탐색할 수 있다. H1은 LiDAR를 사용해 주변 환경에 대한 정보를 구축하기 위해 지속적으로 레이저 펄스를 발사한다. 한편, 유니트리는 휴머노이드 로봇 H1의 공식적인 가격이나 출시 날짜를 아직 발표하지 않았다. 다만, 이전 영상 제목에는 '9만 달러(약 1억 2000만원) 미만의 구현된 인공지능(AI) 가격'이라고 한다. 보스톤 다이내믹스의 사족 보행 로봇 스팟(Spot)은 최저가 7만 5000달러에 시작하며, 적재 및 하역에 사용되는 스트레치(Stretch)는 대당 30만 달러(약 4억원)에서 50만 달러(약 6억 6700만원) 사이다. 일론 머스크는 테슬라의 휴머노이드 로봇 옵티머스(Potimus)의 가격을 2만 달러(약 2665만원) 이하로 유지하고 싶다고 밝힌 바 있다. 하지만 옵티머스는 아직 양산 단계에 진입하지 않았으므로 실제 가격은 아직 확정되지 않았다. 앱트로닉이 개발한 휴머노이드 로봇 아폴로(APOLLO)는 좀더 인간과 비슷한 모습이다. 아폴로는 팔과 다리, 눈이 각각 두 개이며, 키는 약 172cm(5피트 8인치)로 무게는 72.5kg이다. 25kg의 물체를 들어 올릴 수 있으며 배터리는 4시간 지속된다. 앱트로닉은 2024년 말 아폴로 출시를 목표로 하고 있으며 가격은 아직 공개되지 않았다. 2022년 골드만삭스 보고서는 휴머노이드 로봇이 2025~2028년에는 공장에서, 2030~2035년에는 가정에서 사용할 수 있을 것으로 예측했다.
-
- 포커스온
-
[신소재 신기술(16)] 휴머노이드 로봇, 달리기 신기록 수립
-
-
[신소재 신기술(5)] 미국 스타트업 H2MOF, 상온 수소 저장 솔루션 개발
- 캘리포니아 스타트업이 인공지능(AI)을 활용해 상온 수소 저장 솔루션을 개발했다. 세계 각지에서 전 세계 수소 생산 능력 확대를 위한 투자가 이루어지고 있다. 특히 탄소 배출 없는 재생 에너지 사용을 통해 생산되는 녹색 수소에 대한 관심이 높아지고 있다. 하지만 수소 활용의 주요한 어려움 중 하나는 저장 과정에 있다. 수소는 기체 또는 액체 상태로 저장할 수 있으며, 기존 저장 방법에는 많은 문제점들이 있다. 미국 과학 기술 전문매체 오일프라이스는 지난 24일(현지시간) 캘리포니아 스타트업 H2MOF가 AI와 첨단 연구를 활용하여 효율적인 상온 수소 저장 솔루션을 개발함으로써 다양한 산업에 혁신을 불러일으키고 있다고 전했다. 대표적인 수소 저장 기술 수소 저장 기술의 발전은 수소 및 연료전지 기술의 발전에 필수적이다. 수소는 모든 연료 중에서 질량당 에너지 밀도가 가장 높지만, 이를 연료나 가스로서 효율적으로 활용하기 위해서는 고도의 저장 기술이 요구된다. 먼저 압축 수소 저장은 현재 가장 널리 사용되는 수소 저장 방식 중 하나다. 이 방식은 수소를 높은 압력에서 저장하는 방법으로, 주로 수소 연료 전지 차량에 적용되고 있다. 액체 수소 저장 기술은 수소를 극저온에서 액화하여 저장하는 방식이다. 이 기술은 높은 에너지 밀도를 가지며 우주항공 분야 등에서 활용된다. 고체 수소 저장 기술은 금속 수소화물, 화학 수소 저장 매체 등을 활용하여 수소를 고체 형태로 저장하는 방법이다. 이 기술은 상대적으로 낮은 압력과 온도에서 수소를 저장할 수 있어 안전성이 높고, 수소 탱크의 크기를 줄일 수 있는 장점이 있다. 미국에서는 수소 및 연료전지 기술 사무소(HFTO)가 바이든 행정부의 2022 인플레이션 감축법(IRA)으로부터 자금을 지원 받아 수소 저장 시스템 기술 발전을 위한 연구 개발 활동을 진행하고 있다. 현재까지 수소 저장 기술 개발은 다양한 도전으로 인해 진전이 더디게 이루어지고 있다. 수소 저장 기술의 중요성 수소 연료 셀 기술 발전을 위해서는 효과적인 수소 저장 기술 개발이 필수적이다. 수소는 단위 질량당 가장 높은 에너지를 가지고 있지만, 에너지 손실 없이 연료를 효과적으로 활용하기 위해서는 첨단 저장 기술이 필요하다. 앞서 밝혔듯이 수소는 기체 또는 액체로 저장할 수 있다. 기체 상태에서는 고압 탱크에 저장할 수 있고, 액체 상태에서는 기체로 다시 끓는 것을 방지하기 위해 극저온(약 -252.8°C)에 저장할 수 있다. 또한 흡수 과정을 통해 고체 물질에 저장할 수도 있다. 그러나 실제 사용을 위한 수소 저장과 관련된 몇 가지 과제가 있다. 예를 들어, 현재 수소를 사용하는 운송수단은 장거리 이동에 필요한 대량의 압축 연료를 저장할 수 없다. 또한 현재의 저장 기술은 매우 비효율적이어서 이 과정에서 많은 양의 에너지가 손실된다. 상온 수소 저장 기술 2021년 설립된 캘리포니아의 스타트업 H2MOF는 이러한 문제를 해결한 상온 수소 저장이라는 혁신적인 수소 저장 기술을 개발했다고 발표했다. 이 기술은 고압 또는 저온을 사용하지 않고 압축 상태의 수소를 저온에서 안정적으로 저장하는 것을 목표로 하고 있다. 상용화에 성공한다면 차량 연료 공급 등 다양한 분야에서 수소를 실온 보관할 수 있게 된다. H2MOF는 인공지능과 컴퓨터 생성 모델을 활용하여 연구 속도를 가속화했다. 이 회사는 수소를 녹색 전환의 핵심 기술로 보고 있으며, 전기와 달리 수소는 산업 운영, 조리 및 난방과 같은 분야에서 연료로 사용될 수 있다고 강조했다. 또한 실온 저장 수소는 대용량 전지를 필요로 하는 선박이나 항공기와 같은 대형 운송 수단의 전기 동력 대체에도 사용될 것으로 기대된다. H2MOF 기술은 친환경 에너지원으로서 수소 활용을 확대하고 탄소 배출 감소에 기여할 것으로 보인다. 또한, 수소 연료 셀 자동차 보급을 촉진하고 새로운 에너지 시장을 창출할 수 있다. 그러나 H2MOF만이 유일한 수소 저장 혁신 사례는 아니다. 2023년 네덜란드의 에인트호벤 공과대학 학생 그룹은 철 펠렛(작은 철구)을 이용한 수소 저장 방법을 제안했다. 연구팀은 이를 실현하기 위해 스팀 다리미 공정을 개발했다. 이 방법은 수소와 철 산화물을 생성하는 증기 철 공정을 기반으로 한다. 생성된 철 산화물은 다시 수소와 결합하여 철로 재생되고, 이 과정을 통해 수소를 반복적으로 저장 및 방출할 수 있다. 현재 수소 저장 기술은 아직 초기 개발 단계에 있으며, 실제 산업 규모로 적용하기 위한 과제들이 남아 있다. 하지만 전 세계적인 투자 및 연구 개발 활동을 통해 수소 활용의 장애물을 극복하고 미래 에너지 전환에 기여할 것으로 기대된다. 2016년 노벨 화학상 수상자이자 H2MOF의 공동 설립자인 프레이저 스토다트는 상온 수소 저장 기술에 대해 "내가 아는 한 수소 생산은 이미 해결된 문제"라고 말했다. 그는 "수소를 생산할 수 있는 효율적인 방법은 충분히 많다. 남은 큰 과제는 저압과 상온에서 많은 양을 저장하는 방식으로 수소를 저장하는 것이다"라면서 "어떤 식으로든 우리는 당연히 거기에 도달할 것이라고 확신한다"라고 말했다.
-
- 포커스온
-
[신소재 신기술(5)] 미국 스타트업 H2MOF, 상온 수소 저장 솔루션 개발
-
-
미국 "민간 탐사선, 달 착륙 성공"…52년만에 달 귀환
- 미국의 민간 기업이 개발한 달 탐사선이 달에 성공적으로 착륙했다고 해당 회사가 발표했다. 미국의 우주 기업 인튜이티브 머신스상업용 달 탑재체 서비스 프로그램을 통해 NASA와 계약을 맺고 우주선을 개발한 휴스턴에 본사를 둔 인튜이티브 머신스에 따르면 로켓은 지난 15일 시속 2만4600마일(초속 11킬로미터)의 속도로 오디세우스를 지구 궤도에 성공적으로 발사했다. 이번 오디세우스의 달 착륙은 정부 기관이 아닌 민간 업체로는 세계 최초로 달에 연착륙하는 기록을 세웠다. 이번 달 탐사선 발사는 미국의 달 착륙 임무가 지난 1월 실패한 뒤 이뤄진 후속 조치다. NASA는 민간 파트너와 협력해 로봇 우주선 개발을 추진함으로써 달의 환경을 탐사하고 중요 자원을 조사하고자 한다. 이는 향후 10년 내에 우주 비행사를 달에 다시 보내기 위한 준비 작업의 일환이다. 즉, 오디세우스의 달 여행은 오는 2026년 말 아르테미스 프로그램을 통해 달에 유인 탐사선을 보내려는 NASA의 현재 계획에 앞서 달 환경을 평가하기 위한 일종의 정찰 임무로 볼 수 있다. 달의 남극은 물 얼음이 매장된 것으로 추정되는 지역으로, 새로운 국제 우주 경쟁이 벌어지고 있는 가운데 많은 관심을 받고있는 지역이다. 달 남극의 물은 우주비행사를 위한 식수나 더 깊은 우주 탐사를 위한 로켓 연료로 전환될 수 있기 때문이다. 이번 달 착륙선 오디세우스에는 6개의 NASA 과학 및 기술 탑재물이 장착되어 있다. 여기에는 달 표면에 쏟아지는 태양풍과 기타 하전 입자에 의해 생성되는 달 플라즈마를 연구할 라디오 수신기 시스템이 포함된다. 또한 정밀 착륙을 유도하는 데 도움이 될 수 있는 새로운 센서 등이 탑재돼 향후 달 착륙 임무에 사용될 수 있는 기술을 테스트할 예정이다. 더 힐은 22일 "오디세우스는 달에 착륙한 최초의 민간 우주선이 되었다"며 우주 날씨를 조사하는 것이 이번 임무 중 하나라고 전했다. 오디세우스에는 NASA가 달 탐사 작업을 진행하면서 '과학 테스트 기술을 수행하고 능력을 입증'하는 데 도움이 되는 과학 장비가 탑재되어 있다. NASA에 따르면 달로 가는 동안 착륙선의 기기는 연료량을 측정하고 플룸-표면 상호작용에 대한 데이터를 수집하는 데 도움이 될 것이라고 한다. 달에 도착한 후에는 우주 날씨와 달 표면의 상호작용, 전파 천문학 등을 조사할 예정이라고 NASA는 밝혔다. 그러나 달로 향하는 여정에서 몇 가지 문제에 직면해 예상 착륙 시간이 지연됐다. AP 통신에 따르면 착륙 몇 시간 전에 우주선의 레이저 내비게이션 시스템이 고장났다. 따라서 인튜이티브 머신스의 비행 제어 팀은 실험적인 NASA 레이저 시스템에 의존해야 했다. 오디세우스는 향후 인류의 달 탐사를 준비하는 데 도움이 될 것으로 평가된다. NASA는 이날 "무인 달 착륙선이 동부 표준시 오후 6시 23분(UTC 2323)에 착륙하여 달 표면에 NASA 과학을 가져왔다"고 게시했다. 또한 "이 장비들은 #아르테미스(#Artemis)를 통해 향후 인류의 달 탐사를 준비할 것"이라고 전했다.
-
- 산업
-
미국 "민간 탐사선, 달 착륙 성공"…52년만에 달 귀환
-
-
천문학자, 하와이 상공에 '인공 별' 만들다⋯우주 망원경 성능 보정
- 인공적으로 만들어진 별을 통해 우주 망원경의 성능을 향상시킬 수 있게 됐다. 반짝이는 별들은 망원경 관측을 방해할 수 있다. 이에 하와이 마우나케아 정상에 위치한 제미니 노스 천문대는 레이저로 '인공 별'을 만들어 망원경의 성능을 보정하고 있다. 제미니 천문대는 하와이와 칠레의 세로 파콘 정상에 각각 위치한 두 개의 8.1미터(26.6피트) 망원경인 제미니 노스(Gemini North)와 제미니 사우스(Gemini South)로 구성되어 있다. 18일(현지시간) 과학 전문매체 라이브사이언스(livescience)에 따르면, 반짝이는 별들을 큰 망원경을 사용해 연구하는 것은 좋은 방법이 아니다. 그러한 반짝임은 지구의 난기류 대기의 여러 층을 통과하는 빛에서 발생하며, 이로 인해 망원경에서 흐릿하고 불안정한 이미지가 생성된다. 즉 지구 대기는 빛을 굴절시켜 망원경 이미지의 선명도를 떨어뜨리는 것이다. 천문학자들은 이러한 현상을 두고 "'보는 것'이 좋지 않다"고 부르며, 천문학을 방해할 수 있다고 지적해 왔다. 그러나 이제는 제미니 노스 망원경과 같은 많은 최신 지상 망원경들도 적응 광학을 사용하여 지구 대기에 의해 만들어지는 왜곡을 수정할 수 있다. 제미니 노스의 꼭대기에서 톱티카(TOPTICA)라는 노란색 레이저를 사용해 지구의 80킬로미터(약 50마일) 높이에 있는 나트륨 가스 흔적에 인공적인 별을 만든 것. 그런 다음 컴퓨터는 왜곡을 수정하기 위해 망원경의 거울을 약간 변형시켰다. 인공별을 관찰함으로써 천문학자들은 망원경의 광학적 오차를 측정하고, 보정할 수 있게 됐다. 특히, 레이저와 컴퓨팅 성능의 이러한 조합은 지상 망원경이 허블 우주 망원경과 제임스 웹 우주 망원경(JWST)과 같은 강력한 우주 망원경과 동등하거나 때로는 선명도를 더욱 높여 정확하고 상세한 전체 관측을 가능하게 해준다. 지구 대기의 흐림 효과가 극복되면서, 지상에 있는 제미니 노스는 더 큰 거울을 사용하여 별, 행성 및 은하의 고해상도 이미지를 얻을 수 있다. 지구 대기의 흐림 효과가 극복되면서, 제미니 노스와 같은 지상 망원경은 더 큰 거울을 사용해 별과 행성, 은하의 고해상도 이미지를 얻을 수 있다. 제미니 노스의 거울은 직경이 26.6피트(8.1m)이며, 반면 JWST의 거울은 6.5m(21.3 피트)다. 천문학자들은 이러한 적응 광학 장치를 통해 지상 망원경이 외계 행성을 직접 촬영할 수 있기를 기대하고 있다. 그러나 다른 각도에서 찍은 이미지는 약간 오해의 소지가 있다. 보여지는 오렌지색 톱티카(TOPTICA) 레이저는 실제로 육안에서는 그렇게 밝지 않다. 이는 별의 흔적이 오랫동안 노출된 이미지로서 보이는 것이므로 주의가 필요하다. 한편, 제미니 망원경은 현재 운영 중인 단일 광학 망원경 중 스바루 망원경과 함께 세계 최대 규모를 자랑하며, 뛰어난 관측 성능으로 다양한 천문학 연구에 활용되고 있다. 주로 외계 행성, 별과 은하의 탄생과 진화, 암흑 에너지와 암흑 물질 등을 연구하는 목적으로 쓰이고 있다.
-
- 산업
-
천문학자, 하와이 상공에 '인공 별' 만들다⋯우주 망원경 성능 보정
-
-
NASA 망원경, 빠른 라디오 버스트의 놀라운 비밀 포착!
- 우주에서 전파 폭발이 일어나고 있는 가운데 과학자들은 이 놀라운 현상의 원인을 찾고 있다. 지난 15일(현지시간) 미국 과학전문 매체 싸이테크 데일리에 따르면 최근 미 항공우주국(NASA·나사)의 두 개의 X선 망원경이 빠른 우주 전파 폭발이 발생하기 몇 분 전과 후의 관찰에 성공했다. 이번 관찰은 과학자들이 이러한 전파 폭발을 더 잘 이해하는 데 도움이 될 것으로 기대된다. 빠른 라디오 버스트(FRB)는 1초 미만의 짧은 순간에 태양 1년치 에너지를 방출하는 우주 현상이다. 눈 깜짝할 사이에 거대한 불꽃놀이가 펼쳐지는 것과 비슷하다. 레이저처럼 좁은 방향으로 에너지를 방출하는 빠른 라디오 버스트는 2007년 처음 발견되었지만, 아직 그 원인은 밝혀지지 않았다. 과학자들은 짧은 폭발 시간과 뚜렷한 방향성 때문에 빠른 라디오 버스트의 위치를 정확히 파악하기 어려워 연구에 어려움을 겪고 있다. 2020년 이전에는 먼 은하에서만 관측되었던 빠른 라디오 버스트가 최근 우리 은하계 안에서도 발견됐다. 마그네타라는 강력한 자기장을 가진 별에서 빠른 라디오 버스트가 발생하는 것으로 밝혀졌다. 빠른 라디오 버스트가 마그네타에서 발생하는 이유는 아직 밝혀지지 않았지만 과학자들은 마그네타 표면에서 발생하는 강력한 자기장 재결합, 마그네타 내부의 초유체 붕괴, 마그네타 주변의 플라즈마 와동 등의 가능성을 예상하고 있다. 마그네타는 초신성 폭발 후 남은 죽은 별의 잔해로 이들은 엄청나게 강력한 자기장을 가지고 있다. 이는 태양보다 약 10억 배 이상 강력하다. 마치 거대한 자석과 같은 이 자기장은 주변 환경에 영향을 미치고 심지어 빠른 라디오 버스트를 발생시킬 수도 있다고 과학자들은 지적했다. 2022년 10월, 과학자들은 SGR 1935+2154라는 마그네타에서 또 다른 빠른 라디오 버스트를 관찰했다. 이번 관찰은 국제 우주 정거장(ISS)에 있는 NASA의 니서(Neutron Interior Composition Explorer) 망원경과 낮은 지구 궤도에 있는 뉴스타(Nuclear Spectroscopic Telescope Array/NuSTAR) 망원경의 협력을 통해 자세히 관찰됐다. 이들 망원경은 몇 시간 동안 마그네타를 관찰하해 빠른 라디오 버스트 전후에 소스 물체의 표면과 바로 주변에서 무슨 일이 일어나는지 볼 수 있었다. 연구 결과, 폭발은 마그네타가 갑자기 더 빠르게 회전하기 시작했을 때 두 개의 '글리치(마그네타가 갑작스럽게 회전 속도를 변화시키는 현상)' 사이에서 발생했다는 것을 알게 되었다. SGR 1935+2154는 지름이 약 20km에 불과하며, 초당 3.2회라는 놀라운 속도로 회전하는 마그네타로 이는 표면이 약 11,000km/h의 속도로 움직이고 있는 것과 같다. 이는 서울에서 부산까지 1시간 만에 이동하는 것과 비슷한 속도라고 볼 수 있다. 하지만 2022년 10월 폭발 이후 SGR 1935+2154는 단 9시간 만에 이전 속도보다 느려졌고, 이는 마그네타가 이전보다 약 10배 더 빠르게 속도를 감소시키는 것과 같다. 마치 자동차가 110km/h로 달리다가 9시간 만에 1km/h까지 속도를 줄이는 것과 비슷하다. 연구원들은 이러한 현상이 빠른 라디오 버스트의 생성과 관련이 있을 수 있다고 예상했다. 빠른 라디오 버스트를 생성하는 방법은 아직 밝혀지지 않았지만 과학자들은 여러 가지 가능성을 고려하고 있다. 첫번째로 마그네타가 갑자기 회전 속도를 변화시키는 현상으로, 이 과정에서 에너지가 방출되어 빠른 라디오 버스트를 발생시킬 수 있다. 두번째로 초기 결함으로 인해 마그네타 표면에 균열이 발생하여 화산 폭발처럼 별 내부의 물질이 우주로 방출되었을 수도 있다. 질량을 잃으면 회전하는 물체의 속도가 느려지기 때문에 연구자들은 이것이 마그네타의 급격한 감속을 설명할 수 있다고 생각한다. 세번째로 마그네타의 강력한 자기장 또한 빠른 라디오 버스트의 생성에 영향을 미칠 수 있다. 자기장은 주변 환경에 영향을 미치고, 심지어 입자를 가속하여 에너지 빔을 형성할 수도 있다. 이러한 빔이 다른 물체와 충돌하면 빠른 라디오 버스트를 생성할 수 있다. 그러나 이러한 사건 중 하나만 실시간으로 관찰한 후에도 팀은 이러한 요인(또는 마그네타의 강력한 자기장과 같은 다른 요인) 중 어떤 요인이 빠른 라디오 버스트를 일으킬 수 있는지 확실히 말할 수 없다. 일부는 버스트에 전혀 연결되지 않을 수도 있다. 고다드 우주 비행 센터(Goddard Space Flight Center)의 연구원이자 마그네타 전문 중성자 내부 구성 탐사기(Neutron Interior Composition Explorer) 과학팀의 일원인 조지 유네스(George Younes)는 "빠른 라디오 버스트를 이해하는 데 중요한 것을 의심할 여지 없이 관찰했다"라고 말했다. 그러면서 그는 "하지만 미스터리를 완성하려면 아직 더 많은 데이터가 필요하다고 생각한다"라고 덧붙였다. NASA 망원경은 신비한 심우주 신호 뒤에 숨은 비밀을 밝히는 데 한 걸음 더 다가갔다. 하지만 여전히 많은 미스터리가 남아 있다. 앞으로 더 많은 연구를 통해 빠른 라디오 버스트의 정확한 원인과 메커니즘을 밝혀낼 수 있을 것으로 기대된다.
-
- 산업
-
NASA 망원경, 빠른 라디오 버스트의 놀라운 비밀 포착!