검색
-
-
NASA 프시케, 8주간 성공적 임무 수행
- 미국항공우주국(NASA)의 프시케(Psyche) 탐사선이 순항 중이다. 지난 2023년 10월 13일 지구를 떠난 후 8주 동안 과학 장비의 전원을 켜고 데이터를 지구로 전송하고 전기 추진기로 심우주 기록을 세우는 등 성공적인 작업을 차례로 수행했다. 프시케는 이미 지구에서 2,600만km 떨어져 있으며 2029년에 화성과 목성 사이에 있는 주 소행성대에 있는 소행성 프시케(Psyche)에 도착할 예정이라고 학술지 사이언스 어드밴스(Science Advances)가 보도했다. 이미지 장비, 정상 작동 확인 프시케의 이미지 장비는 물고기자리 별자리의 별장 내에서 총 68개의 이미지를 캡처했다. 이미지 팀은 데이터를 사용해 적절한 명령, 원격 측정 분석 및 이미지 보정을 확인했다. 애리조나 주립대학교의 프시케 이미지 장비 책임자인 짐 벨(Jim Bell) 교수는 "이 초기 이미지는 단지 시작을 알리는 것일 뿐"이라며 "이 정교한 장비를 설계하고 운영하는 팀에게 첫 번째 빛은 스릴이다"라고 밝혔다. 이어 "우리는 이와 같은 별 이미지가 포함된 카메라를 확인하기 시작해 2026년에 탐사선이 비행하는 동안 화성의 테스트 이미지를 촬영할 것"이라며 "마지막으로 2029년에 우리는 목표 소행성 프시케(Psyche)의 가장 흥미로운 이미지를 얻게 될 것이며, 이 모든 영상을 대중과 공유하기를 기대한다"고 말했다. 이미지는 여러 색상 필터를 통해 사진을 찍으며, 이 필터는 모두 초기 관찰에서 테스트됐다. 필터를 통해 팀은 인간의 눈에 보이는 빛과 보이지 않는 빛의 파장의 사진을 사용해 금속이 풍부한 소행성 프시케의 구성을 결정하는 데 도움을 줄 것으로 보인다. 자력계, 소행성 형성 과정 규명에 기여할 듯 프시케는 임무 초기인 10월 말에 자력계의 전원을 켰다. 자력계는 소행성이 어떻게 형성되었는지 결정하는 데 도움이 되는 중요한 데이터를 제공할 것으로 기대된다. 프시케는 태양 폭발을 감지하는 등 예상치 못한 선물도 안겼다. 팀은 탐사선이 소행성으로 이동하는 동안 우주 날씨를 계속 모니터링할 예정이다. 자력계 데이터를 통해 팀은 소행성의 자기장이 매우 작지만 정확하게 감지할 수 있음을 확인했다. 또한 탐사선이 자기적으로 ‘조용함’을 확인했다. 전기 추진기, 심우주 기록 세우다 프시케는 11월 8일 과학 장비를 사용한 모든 작업 중에 4개의 전기 추진기 중 2개를 발사해 깊은 우주에서 홀 효과 추진기를 최초로 사용하는 기록을 세웠다. 또한 일주일도 채 지나지 않은 11월 14일에는 심우주 광학 통신(DSOC)이라는 실험인 탐사선에 내장된 기술 시연을 자체적으로 하는 기록도 세웠다. DSOC는 달 너머 멀리서 광학 데이터를 주고받아 최초의 빛을 얻었다. 이 장비는 거의 1,600만km 떨어진 곳에서 테스트 데이터로 인코딩된 근적외선 레이저를 발사했는데, 이는 광통신의 가장 먼 시연이기도 했다. 중성자 감지센서, 소행성 표면 물질 구성 규명에 기여 프시케 팀은 또한 세 번째 과학 장비인 감마선 및 중성자 분광계의 감마선 감지 구성 요소를 성공적으로 가동했다. 다음으로, 장비의 중성자 감지 센서는 12월 11일 주에 켜질 것으로 예상된다. 이 기능은 팀이 소행성 표면 물질을 구성하는 화학 원소를 결정하는 데 도움이 될 전망이다. 프시케 팀은 "모든 과학 장비가 예상대로 작동하고 있다는 사실에 매우 기쁘다"라며 "이러한 성공은 프시케가 소행성 프시케에 대한 중요한 발견을 할 수 있는 잠재력을 보여준다"고 말했다.
-
- 산업
-
NASA 프시케, 8주간 성공적 임무 수행
-
-
IBM·메타 등 50개사, 챗GPT 대항 AI 오픈소스 동맹
- 페이스북 모회사 메타와 IBM을 비롯해 50개 이상 인공지능(AI) 관련 기업과 기관이 챗GPT에 대항해 'AI 동맹'을 결성했다. 5일(현지시간) 월스트리트저널(WSJ)에 따르면 메타와 IBM은 개방형 AI 모델을 추진하는 AI 기업과 연구기관 등 50개 사와 함께 'AI 동맹'(AI Alliance)을 결성해 출범하기로 했다. 이들 기업들은 오픈AI가 개발한 챗GPT가 출시 1년 만에 생성형 AI 개발 열풍을 불러일으키자 이에 대응해 대규모 언어모델(LLM)을 오픈 소스로 제공해 챗GPT를 따라잡겠다는 계획이다. 'AI 동맹'에는 미국 반도체기업 인텔, AMD, 오라클 등 기업과 스타트업 사일로 AI, 스태빌리티 AI 등도 이름을 올렸다. 예일대, 코넬대 등 대학과 항공우주국(NASA), 국립과학재단(NSF) 등 미국 정부 기관도 참여했다. 이 동맹은 AI 분야의 '개방형 혁신과 개방형 과학'을 지지하는 자원을 모으고 있으며, 빅테크와 학계 등이 기술을 무료로 공유하는 오픈 소스를 지원한다. WSJ은 'AI 동맹'에 참여한 기업 등이 자체 AI 기술을 보유하고 있지만, 오픈AI와 마이크로소프트(MS)를 따라잡기 위해 노력하는 기업들이라고 분석했다. 다리오 길 IBM 수석 부사장은 "메타와 함께 올해 8월부터 오픈AI처럼 주목받지 못한 기업을 모으기 위해 노력해왔다"며 "지난 1년간 AI에 대한 논의가 생태계의 다양성을 반영하지 못했다"며 AI 동맹 구축 이유를 설명했다. 메타의 경우 오픈AI와 MS, 구글 등과 달리 지난 7월 자체 LLM인 '라마(Llama)2'를 공개하면서 관련 기술을 상업적으로 활용할 수 있도록 모두 공개했다. 'AI 칩' 선두 주자인 엔비디아의 대항마로 평가받는 AMD는 "하드웨어로 개방형 AI 생태계를 지원하고, 다른 회원사들과 함께 우리 칩을 사용할 수 있는 소프트웨어를 구축할 것"이라고 강조했다. AI 동맹은 우선 규제와 안전 등 6개 분야에 집중하고 있으며, 조만간 AI 안전 및 모델 검증을 위한 도구를 출시한다는 계획이다.
-
- IT/바이오
-
IBM·메타 등 50개사, 챗GPT 대항 AI 오픈소스 동맹
-
-
3D 프린팅 드론, 최대 마하7 속도로 우주 궤도 진입 전망
- 최근 3D 프린팅 기술로 제작된 드론이 극도로 빠른 속도로 비행할 수 있어, 우주 궤도에 곧 진입할 수 있을 것이라는 전망이 나왔다. 에너지 관련 전문매체 '인터레스팅 엔지니어링'에 따르면, 발사 서비스 및 우주 시스템 분야의 선두주자인 로켓 랩 유에스에이(Rocket Lab USA, Inc, RKLB)社가 3D 프린팅 드론인 다트 에이이(DART AE) 개발에 착수했다고 보도했다. RKLB의 이 연구는 단순히 별에 도달하는 것을 넘어서, 전례 없는 속도의 발사체 개발에 초점을 맞추고 있다. 이 회사는 마하 7의 속도에 도달할 수 있는 극초음속 차량을 개발하는 HASTE(초음속 가속기 준궤도 테스트) 임무를 위해 미국 국방혁신부(DIU)와 새로운 계약을 체결했다고 발표했다. 이 임무는 하이퍼소닉(Hypersonix)이라는 스크램제트 구동 초음속 차량을 이용한 DART AE를 배치하는 것을 목표로 하며, 올해 로켓 랩이 체결한 7번째 준궤도 발사 계약을 의미한다. DART AE는 최대 마하 7(시속 약 8350km 또는 5320마일)의 놀라운 속도로 비탄도 비행 패턴을 탐색할 수 있다는 것이 특징이다. 로켓 랩의 이번 임무, '극초음속 및 고주율 공중 테스트 역량(HyCat) 프로젝트'로 명명되었으며, 지구 대기 내 상승하는 동안 하이퍼소닉의 페이로드를 배치하는 것을 포함해 HASTE 임무의 '직접 주입' 기능을 시연할 예정이다. 이 회사의 HASTE 준궤도 발사체는 단순히 이전에 성공적이었던 '일렉트론' 로켓의 변형된 버전이 아니라, 극초음속 페이로드 배치 방식에서의 패러다임 변화를 상징하는 새로운 혁신으로 평가된다. 2006년 설립된 로켓 랩은 엔드 투 엔드 우주 서비스를 제공하는 인상적인 실적을 가진 회사로서, 우주 산업 분야에서 높은 명성을 얻고 있다. 캘리포니아주 롱비치에 본사를 두고 있는 이 회사는 일렉트론 소형 궤도 발사체인 '포턴(Photon) 위성 플랫폼'을 설계 및 제조했으며, 현재는 대형 '뉴트론(Neutron)' 발사체를 개발하고 있다. 일렉트론은 전 세계에서 가장 빈번하게 출시되는 상업용 소형 발사체 중 하나로, 그 장점은 비용 효율적인 진정한 상업적 테스트 기능을 제공한다는 점이다. HASTE 준궤도 발사체는 우주 탐사의 새로운 지평을 여는 동시에 우주 탐사를 더 빠르고, 쉽고, 경제적으로 만들겠다는 로켓 랩의 목표와 약속을 잘 보여주는 예이다. 로켓 랩이 전액 출자한 자회사인 로켓 랩 내셔널 시큐어리티(Rocket Lab National Security, RLNS)가 주관하는 HASTE 임무는 미국 국방 및 정보 커뮤니티의 자체 요구 사항을 충족하기 위한 회사의 지속적인 노력을 대변한다. DIU는 하이퍼소닉스와의 협력을 통해 RLNS를 HyCat 프로젝트의 핵심 파트너로 선정했다. 이는 로켓 랩이 극초음속 기술 및 개념 개발을 가속화하는 데 중요한 역할을 하며, 국방 및 정보 부문의 엄격한 요구 사항을 충족하는 능력을 인정받는 것을 의미한다. 2018년 첫 궤도 발사 이후, 로켓 랩의 일렉트론 발사체는 국방뿐만 아니라 연구 및 통신 분야에서도 활약하며 공공 및 민간 부문 조직을 위해 171개의 위성을 궤도에 성공적으로 배치했다. 이러한 성공을 바탕으로, 로켓 랩의 포턴 우주선 플랫폼은 NASA의 달과 화성 탐사 임무에 기여하고, 금성에 대한 최초의 민간 상업 임무에서 중요한 역할을 수행할 것으로 기대된다. 한편, 로켓 랩은 올해 3분기에 6800만 달러(한화 약 883억3200만원)의 수익을 기록했으며, 이 중 4630만 달러(한화 약 601억4370만원)는 우주 시스템 부문의 성과로 이루어진 것으로, 전년 동기 대비 17% 증가한 수치를 보여준다. 우주 시스템 사업부는 스타 트랙커, 리액션 바퀴, 태양 전지판 등의 부품 판매뿐만 아니라 우주선 전체 및 바르다 스페이스, 나사 등의 고객에게 포톤 위성 버스를 포함한 다양한 제품을 제공하고 있다.
-
- 산업
-
3D 프린팅 드론, 최대 마하7 속도로 우주 궤도 진입 전망
-
-
스페이스X 대형우주선 '스타십' 두 번째 발사도 실패⋯머스크 "축하" 트윗
- 일론 머스크가 이끄는 우주 개발 기업 스페이스X는 18일(현지시간) 대형 우주선 '스타십'(Starship)의 두 번째 지구궤도 시험비행이 실패했다고 발표했다. 이날 오전 7시 3분, 미국 텍사스주 보카 치카의 스타베이스 발사시설에서 스타십이 발사됐다. AP 통신과 다른 뉴스 소스에 따르면, 발사 3분 후, 스타십은 수직으로 상승하며 2단 로켓의 아랫부분인 '슈퍼 헤비'가 분리되었다. 이후 스타십은 90km(55마일) 상공으로 치솟아 우주 궤도 진입을 시도했다. 그러나 '슈퍼 헤비' 로켓은 분리 직후 멕시코만 상공에서 폭발했다. 우주선 부스터는 분리 후 우주에 도달하여 궤도 진입을 시도하는 도중, 발사 8분 만에 통신이 두절됐다. 스페이스X의 존 인스프러커 수석 통합 엔지니어는 "두 번째 단계의 데이터를 잃어버렸다"며 부스터와의 통신이 단절된 것으로 보인다고 밝혔다. 이에 따라 스페이스X는 스타십의 자폭 기능(self-destruct)을 활성화시켰다. 이 기능은 스타십이 예정된 경로를 벗어나지 않도록 하기 위한 조치다. 스타십은 원래 240km 상공 지구 궤도에 진입한 후, 약 1시간 반 만에 하와이 인근 태평양에 착륙할 예정이었다. 이번 실패로 스페이스X는 다시 한 번 중대한 도전에 직면하게 되었다. 스페이스X는 최근 스타십의 지구궤도 시험 비행과 관련하여, "슈퍼 헤비 부스터와 우주선이 계획보다 빠르게 분리됐다"고 분석하며, 이러한 상황에도 불구하고 "믿을 수 없을 정도로 성공적인 날이었다"고 평가했다. 이는 기술적인 난관에도 불구하고 이루어낸 진전을 강조하는 발언으로 보인다. 일론 머스크는 발사 현장에서 직접 스타십의 발사를 지켜보며, 발사 후 자신의 SNS 계정을 통해 "스페이스X 팀, 축하합니다"라고 전했다. 이는 팀의 노력과 진전을 인정하는 동시에 그들의 노력을 격려하는 메시지로 해석된다. 이번 시험 비행은 당초 17일에 예정되어 있었으나, 일부 부품 교체로 인해 하루 연기되었다. 이러한 조정은 우주 비행의 복잡성과 미세한 조정의 필요성을 반영한다. 스페이스X는 이번 시험 발사 실패의 원인 분석에 착수할 예정이다. 미국 연방항공청(FAA)은 이 사건에 대한 조사를 감독하며, 이는 항공우주 산업의 안전과 발전을 위한 중요한 단계로 여겨진다. 이번 시험 발사는 지난 4월 20일 첫 발사 실패 이후 두 번째 시도다. 지난 4월 첫 시도보다는 두 배가량 비행했다. 지난 4월 첫 시도에서는 스타십이 이륙 후 하단의 슈퍼헤비 로켓과 분리되지 못하고 약 4분 만에 공중에서 폭발해 실패로 돌아갔다. 빌 넬슨 미국 항공우주국(NASA) 국장은 자신의 SNS 계정을 통해 "우주비행은 '할 수 있다'는 자세와 굉장한 혁신을 요구하는 어려운 모험"임을 언급하며, "오늘의 시험 비행은 배움의 기회"라고 말했다. 그는 또한 "NASA와 스페이스X는 인간을 달, 화성, 그 너머로 데려갈 것"이라며 미래에 대한 기대를 표현했다.
-
- 산업
-
스페이스X 대형우주선 '스타십' 두 번째 발사도 실패⋯머스크 "축하" 트윗
-
-
나사, 최신 우주 망원경으로 4억5천만 개 은하 조사...우주지도 작성 목표
- 미국 항공우주국(NASA)의 새로운 우주 탐사 프로젝트인 SPHEREx 망원경이 우주 지도 작성을 위한 중요 단계에 진입했다고 과학 전문 매체 사이테크데일리가 15일(현지시간) 보도했다. 사이테크데일리에 따르면, SPHEREx는 지금까지 볼 수 없었던 방식으로 우주의 지도를 작성할 계획이며, 현재 지구 궤도에 도착해 전체 하늘의 지도를 그릴 준비를 하고 있다. '우주의 역사, 재이온화 시대 및 빙결체 탐사를 위한 분광-광도계(Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer)'로 알려진 SPHEREx는 약 2.6미터(8.5피트) 높이와 3.2미터(10.5피트) 너비의 독특한 형태를 가진 망원경이다. 이 우주 망원경의 특이한 외형은 원뿔 모양의 광자 차폐막으로 만들어졌으며, 남부 캘리포니아에 위치한 NASA 제트 추진 연구소(Jet Propulsion Laboratory, JPL)의 클린룸에서 조립 중이다. 차폐막의 구조와 기능 나사의 SPHEREx 망원경은 태양과 지구로부터 오는 빛과 열을 차단하기 위해 세 개의 중첩된 원뿔 모양의 차폐막으로 둘러싸여 있다. 이 차폐막들은 각각 다른 크기의 원뿔 안에 위치새 망원경을 효과적으로 보호한다. SPHEREx는 하늘의 모든 영역을 스캔하여 매년 두 장의 상세한 천체 지도를 완성할 예정이다. JPL의 사라 수스카 뷔페이로드 관리자 겸 시스템 엔지니어는 "SPHEREx는 매우 빠른 속도로 하늘을 스캔해야 하기 때문에 높은 기동성이 요구된다"고 밝혔다. 그는 "차폐막은 보기에는 무겁게 보일 수 있지만 실제로는 매우 가볍고 여러 층의 재료로 구성되어 있다. 외부는 알루미늄 시트로, 내부는 알루미늄 벌집 구조로 되어 있어 가볍지만 견고하다"고 설명했다. 세부적인 미션 목표 2025년 4월까지 발사 예정인 SPHEREx는 과학자들이 생명에 필요한 주요 성분, 특히 물의 기원에 대한 더 깊은 이해를 제공할 것으로 기대된다. 이를 위해 SPHEREx 미션은 새로운 별이 탄생하고 행성이 형성되는 곳인 성간 가스와 먼지 구름 속의 물 얼음의 분포를 측정할 예정이다. 또한 우주 은하들이 내뿜는 빛의 양을 분석하여 은하의 역사를 연구할 계획이다. 이러한 관측을 통해 은하들이 언제 형성되기 시작했으며, 시간이 지남에 따라 그 형성 과정이 어떻게 변화했는지를 밝혀낼 수 있을 것이다. 또한, 수백만 은하의 위치를 서로에 대해 매핑함으로써, SPHEREx는 빅뱅 직후의 우주의 급격한 팽창, 또는 인플레이션이 어떻게 일어났는지에 대한 새로운 단서를 찾아 낼수 잇을 것으로 보인다. 냉각과 안정성 확보 SPHEREx는 적외선 광을 감지하여 다양한 임무를 수행할 예정이다. 적외선은 가시광선보다 긴 파장을 가지며 열 복사의 한 형태로도 알려져 있다. 모든 따뜻한 물체는 적외선을 방출하므로, 망원경 자체도 적외선을 생성할 수 있다. 이 적외선이 탐지기와 상호작용하면 문제가 될 수 있기 때문에, 망원경은 극도로 추운 상태인 섭씨 약 -210도(화씨 -350도) 이하로 유지되어야 한다. 망원경을 보호하는 외부 광자 차폐막은 태양과 지구로부터의 빛과 열을 차단하며, 각 뿔 사이의 공간은 열이 망원경 내부로 침투하는 것을 방지한다. 그러나 SPHEREx가 적절한 온도에 도달하도록 보장하기 위해서는 V-그루브 라디에이터라는 특별한 장치가 필요하다. 이 장치는 우산을 거꾸로 뒤집은 것처럼 생긴 세 개의 원뿔형 거울로 구성되어 있으며, 광자 차폐막 아래에 위치한다. 각 거울은 적외선 광을 우주로 튕겨내는 일련의 쐐기 모양으로 되어 있어, 실온의 우주선 버스에 위치한 컴퓨터와 전자 장치에서 발생하는 열을 제거하는 데 도움이 된다. JPL의 콘스탄틴 페나넨 페이로드 매니저 "우리는 SPHEREx가 얼마나 차가운지뿐만 아니라 온도가 일정하게 유지되는지도 중요하게 생각한다"라고 말했다. 그는 "온도가 변하면 감지기의 감도가 달라져 잘못된 신호로 해석될 수 있다"고 설명했다. 하늘을 관측하는 창 SPHEREx의 주요 구성요소인 망원경은 3개의 거울과 6개의 감지기를 통해 멀리 떨어진 광원으로부터 적외선을 수집한다. 이 망원경은 광자 차폐막이 제공하는 보호 범위 내에서 가능한 한 넓은 하늘 영역을 관측할 수 있도록 설계된 기울기 조절 받침대에 장착되어 있다. 콜로라도주 볼더의 볼 에어로스페이스에서 제작된 이 망원경은 지난 5월 캘리포니아주 패서디나의 칼텍(Caltech, 캘리포니아 공과대학교)에 도착해, 검출기 및 V-그루브 라디에이터와 통합됐다. JPL의 엔지니어들은 로켓 발사 시 견뎌야 할 진동 모사 테스트를 위해 진동 테이블에 망원경을 부착했다. 진동 테스트 후, 망원경은 다시 칼텍으로 이송되어 과학자들이 거울의 초점이 여전히 정확하게 맞춰져 있는지 확인할 수 있었다. SPHEREx의 적외선 '탐색 능력' SPHEREx 망원경 내부의 거울은 멀리 떨어진 물체로부터 빛을 모으는 역할을 하지만, 실제로 적외선 파장을 감지하는 것은 '검출기'다. 태양과 같은 별들은 전체 가시광선 범위의 빛을 방출한다. 이 빛은 프리즘을 통해 구성 파장, 즉 무지개 색상으로 분리될 수 있는데, 이를 분광학이라고 한다. SPHEREx는 검출기에 장착된 필터를 이용해 분광학적 분석을 수행한다. 각 필터는 무지개 색상처럼 보이는 여러 개의 세그먼트로 구성되어 있어 특정 적외선 파장을 제외한 모든 파장을 차단한다. SPHEREx가 관측하는 모든 물체는 이 세그먼트별로 이미지화되며, 과학자들은 별이든 은하든 해당 물체가 방출하는 특정 적외선 파장을 확인할 수 있다. 이 망원경은 100개 이상의 다양한 고유 파장을 관측할 수 있다. 이러한 기능을 통해 SPHEREx는 이전에 없던 우주 지도를 작성할 계획이다.
-
- IT/바이오
-
나사, 최신 우주 망원경으로 4억5천만 개 은하 조사...우주지도 작성 목표
-
-
NASA, 전기추진 시스템(AEPS) 자격 시험 성공
- 미국 항공우주국(NASA)과 항공우주 회사인 에어로제트 로켓다인(Aerojet Rocketdyne)사가 12킬로와트(kW) 태양 전기추진(SEP) 엔진인 고도의 전기추진 시스템(AEPS)에 대한 자격 시험을 성공적으로 완료했다고 유니버스 투데이(Universe Today)가 최근 보도했다. AEPS는 현재 제조 중인 전기추진(이온 추진이라고도 함) 시스템 중 가장 강력한 것으로, 달과 그 너머에 있는 장기 우주여행에 사용될 예정이다. 12킬로와는 1330개 이상의 LED 전구를 작동시킬 수 있을만큼 강력하며, 이번의 성공적인 자격 시험은 NASA가 지난 7월 자격 시험을 시작한 이후 이루어진 것이다. NASA의 글렌(Glenn) 연구 센터에서 AEPS 프로젝트 매니저를 맡고 있는 클레이튼 카셀은 "AEPS는 진정한 차세대 기술"이라며 "현재의 전기추진 시스템은 약 4.5킬로와트의 전력을 사용하는 반면, AEPS는 단일 추진기에서 전력을 크게 증가시킨다"고 말했다. 이어 "이 기능은 미래 우주 탐사를 위한 무한한 기회를 열어준다. AEPS는 우리를 더 멀리, 더 빠르게 이끌 것"이라고 덧붙였다. AEPS의 자격 시험에서 관찰된 엔진의 푸른 배기 플륨은 이온화된 제논 가스에서 생성된다. 기존의 화학 추진은 액체 추진제를 연료로 사용하여 매우 짧지만 강력한 에너지 폭발을 일으켜 우주선을 원하는 방향으로 추진한다. 반면, 전기 추진은 비활성 가스 추진제를 연료로 사용하여 에너지는 더 적지만 지속 시간이 길어 효율성이 높고 장기 우주 임무에 적합하다. NASA가 계획 중인 게이트웨이 우주 정거장에는 AEPS 기술이 중요한 역할을 할 예정이다. 게이트웨이의 파워 앤드 프로펄전 엘리먼트에 세 개의 AEPS 전기추진체를 장착하여 게이트웨이 주변의 원하는 궤도를 유지하고 지구와의 고속 통신 및 전체 우주 정거장에 대한 전력 공급 등 다양한 기능을 수행할 예정이다. 게이트웨이는 2025년 발사를 목표로 하고 있으며, NASA의 아르테미스 임무의 중요한 부분으로 국제 및 상업적인 파트너와 협력하여 몇 년 안에 달 남극에 도달할 예정이다. AEPS의 리드 엔지니어인 로히트 샤스트리(Rohit Shastry)는 "이 기술이 어떤 종류의 임무를 수행하게 될지 지켜보는 것이 흥미로울 것 같다. 우리는 지금까지 이루어진 것의 한계를 뛰어넘고 성능과 기회를 향상시키기 위해 큰 도약을 하고 있다"라고 말했다. AEPS는 태양 전기 엔진을 기반으로 하는 전기 추진 시스템이지만, 다른 형태의 전기 추진 시스템으로는 핵 반응기를 사용하는 핵 전기 추진(NEP)이 있다. AEPS는 현재 제작 중인 가장 강력한 전기 추진체이며, NASA는 이전에도 전기 추진을 딥스페이스 임무에 사용한 바 있다. 예를 들어 2015년 발사된 NASA의 던(Dawn) 우주선은 이온 추진 시스템을 사용한 최초의 과학 탐사선이었다. 던 우주선은 중량이 1240kg에 달하는 비교적 작은 탐사선으로 7년 반 동안 우주를 날아 소행성 베스트와 세레스를 탐사했다. 최근인 지난 10월 13일에 성공적으로 발사된 NASA의 프시케(Psyche) 탐사선은 태양 전기 추진을 사용한 것으로, 소행성 16 프시케로 가는 36억 킬로미터(22억 마일) 여행을 하고 있다. AEPS의 성공적인 자격 시험은 전기추진 기술의 발전에 있어 중요한 진전이며, 이는 미래 우주 탐사를 위한 새로운 가능성을 열어줄 것으로 기대된다.
-
- 산업
-
NASA, 전기추진 시스템(AEPS) 자격 시험 성공
-
-
인도 슈퍼컴퓨터로 '일란성 쌍둥이' 우주 생성 실험 성공
- 과학자들이 우주의 탄생 비밀을 밝혀내기 위해 머리를 맞대고 있는 가운데, 인도에서 슈퍼컴퓨터를 이용해 우주 생성에 대한 시뮬레이션을 수행해 주목받고 있다. 인도의 위온(WION) 뉴스에 따르면, 최근 천문학자들은 슈퍼컴퓨터를 통해 우주의 탄생인 빅뱅부터 현재까지 이어지는 우주의 역사를 시뮬레이션하는 데 성공하여 기념비적인 성과를 이루었다고 보도했다. 천문학자들은 고성능 망원경으로 수집한 새로운 데이터를 활용하여 이 가상 우주를 실제 우주와 비교하는 것을 목표로 하고 있다. 이러한 비교는 때때로 관측 데이터가 기존의 우주론 표준 모델과 다를 때 중요한 통찰력을 제공한다고 위온은 설명했다. '플라밍고 프로젝트(Flamingo Project)'라는 이름의 이 연구는 물리학의 기본 법칙을 바탕으로 일반 물질, 암흑 물질, 암흑 에너지를 포함한 우주의 모든 구성 요소의 진화를 모델링하는 복잡한 계산을 포함하고 있다. 이 같은 시뮬레이션을 통해 세밀하게 구성된 가상의 은하계와 은하단이 생성됐다. 은하, 퀘이사, 별을 연구하는 유클리드 우주 망원경과 NASA의 제임스 웹 우주 망원경과 같은 첨단 장비로 수집한 데이터는 이 연구에 매우 중요한 역할을 하고 있다. 영국 더럼대학교의 플라밍고 프로젝트 공동 연구자인 카를로스 프렌크 교수는 우주론이 중요한 전환점에 있다고 언급했다. 그는 "강력한 망원경으로부터 얻은 새롭고 놀라운 데이터 중 일부가 우리의 이론적 예측과 일치하지 않는 것을 볼 수 있다"고 말했다. 이어서 "우주론의 표준 모델에 오류가 있거나 관측 데이터에 미묘한 선입견이 존재할 수 있지만, 우리의 초정밀 우주 시뮬레이션을 통해 이에 대한 답을 찾을 수 있을 것"이라고 덧붙였다. 중성미자와 우주 일반 물질 주목 과거의 우주 시뮬레이션은 주로 우주 구조의 핵심 요소인 차가운 암흑 물질에 초점을 맞추었다. 그러나 최근 천문학자들은 중성미자와 같이 드물게 상호 작용하는 작은 입자와 우주의 모든 물질 중 일반 물질이 차지하는 16%의 중요성을 강조하고 있다. 이 일반 물질은 지구상의 모든 물질을 포함한다. 우주의 진화를 전체적으로 이해하기 위해서는 이러한 요소들을 모두 고려해야 한다. 플라밍고 프로젝트는 우주 슈퍼컴퓨터 시뮬레이션을 전담하는 국제 천체물리학 연구팀인 버고 컨소시엄(Virgo Consortium)의 일환이다. 차세대 관측 자료 해석을 위한 전천후 대규모 구조 시뮬레이션의 약자로, 전천후 매핑(all-sky mapping)이 포함된 풀 하이드로 대규모 구조 시뮬레이션(full-hydro large-scale structure simulations)의 줄임말이다. 한국, '예미랩'서 우무 비밀 탐색 한편, 한국 강원도 정선군의 예미산 지하 1000미터에 위치한 세계적 수준의 고심도 지하실험시설 '예미랩'에서 우주의 비밀을 밝혀낼 가능성이 있다. 이곳에서는 '암흑물질'과 '중성미자' 연구 등이 진행되고 있다. 암흑물질은 우주의 주요 구성 요소로 여겨지며, 우주 에너지의 약 26%를 차지한다고 추정된다. 중성미자는 우주를 구성하는 기본입자다. 암흑물질의 존재와 중성미자의 특성을 규명하는 연구는 세계 물리학계에서 우선적으로 풀어야 할 과제로 꼽고 있다. 암흑물질과 중성미자로부터 나오는 신호를 포착하는 것은 극히 어려운 일이므로, 배경 잡음을 최소화할 수 있는 연구 환경이 필수적이다. 이러한 이유로 전 세계 연구그룹들은 지하 깊은 곳에 실험시설을 구축해 경쟁적으로 연구를 진행하고 있다. 예미랩은 이러한 연구를 위한 1000미터 지하의 실험시설을 갖추고 있다. 예미랩을 구축한 기초과학연구원(IBS) 지하실험 연구단은 양양실험실에서 사용한 실험장비를 이전해, 예미랩에서 중성미자 미방출 이중베타붕괴(AMoRE-II) 연구와 암흑물질 탐색(COSINE-200) 프로젝트를 진행할 계획이다. AMoRE-II 실험은 중성미자의 물리적 특성을 규명하기 위해 몰리브덴을 사용하는 연구이다. 이 실험은 양양에서 수행된 AMoRE-I에 이어서 진행되며, 예미랩에서는 몰리브덴 결정의 크기를 기존 6kg에서 200kg까지 확대하여 연구를 계속할 예정이다. COSINE-200은 현재까지 직접적으로 관측되지 않은 암흑물질을 탐색하는 프로젝트이다. 이 연구는 우주의 약 26%를 차지하는 암흑물질을 찾기 위해, 지구에 도달하는 암흑물질 입자와 COSINE 실험의 검출기 내 결정과의 충돌 과정을 통해 암흑물질의 존재 흔적을 찾는다.
-
- IT/바이오
-
인도 슈퍼컴퓨터로 '일란성 쌍둥이' 우주 생성 실험 성공
-
-
화성 지진, 운석 충돌 아닌 지각 내부 활동 때문
- 우주과학 전문 매체 머커닷더(Merkur.de)는 2022년 5월 4일 화성에서 발생한 규모 4.7의 지진은 미국 항공우주국(NASA)의 인사이트호(InSight)에 의해 포착되었으며, 화성에서 발견된 가장 강력한 지진 중 하나로 기록되었다고 최근 보도했다. 당시 NASA는 이 지진이 운석 충돌로 인해 발생했다는 가능성을 제기했다. 그러나 옥스퍼드대의 벤저민 페르난도 교수가 주도한 국제 연구팀은 다른 가설을 제기했다. 이 연구팀은 화성 표면을 철저히 조사한 결과, 지진을 일으킬 만한 충분한 운석 충돌 흔적을 찾지 못했다고 발표했다. 대신, 화성 지각 내부의 엄청난 압력 변화가 지진의 주 원인이라고 지목다. 연구팀은 전 세계 화성 탐사 프로젝트가 공동으로 화성 표면을 탐색했으나 강진을 유발할만한 운석 충돌 흔적을 찾지 못했다고 밝혔다. 대신 화성 내부에 응축돼 있던 엄청난 지각의 힘이 방출되면서 규모 4.7의 강진을 일으킨 것으로 결론지었다. 연구팀은 화성 지각 내부의 높은 압력이 지각의 얇은 구조와 관련이 있을 것으로 추정했다. 화성의 지각은 지구보다 얇고, 그로 인해 암석층이 더욱 활발하게 움직일 수 있다. 화성의 지각은 지구처럼 판이 움직이지는 않지만, 내부의 암석층은 다른 속도로 냉각과 수축 과정을 겪으면서 지진을 유발하는 압력을 쌓게 된다. 이러한 상황에서 충분한 압력이 축적되면, 암석층이 파괴되면서 지진이 발생하게 된다는 것이 연구팀의 결론이다. 이번에 발생한 화성 지진의 규모는 4.7로, 지구의 지진에 비해 상대적으로 약하지만 화성에서는 매우 강한 편에 속한다. 이 지진은 화성 북극 부근의 거대한 화산인 발행산에서 북서쪽으로 약 280km 떨어진 지점에서 발생했다. 인사이트호는 지진이 발생한 지점에서 대략 1000km 떨어진 곳에 있었으며, 다행히도 지진으로 인해 피해는 발생하지 않았다. 이번 연구는 화성의 지질학적 특성과 활동에 대한 중요한 통찰을 제공할 것으로 예상된다. 화성의 지진 활동 분석은 화성의 내부 구조와 진화 과정을 이해하는 데 도움이 될 것으로 보인다. 특히, 이번 연구는 화성 내부의 암석층이 상당히 활발하게 움직이고 있음을 보여주며, 이로 인해 화성의 지질 활동이 지구보다 활발할 수 있다는 가설을 제시했다. NASA는 이번 연구 결과를 통해 화성의 지질학적 활동에 대한 이해를 넓힐 수 있을 것으로 기대하며, 향후 인사이트호를 통해 화성의 지진 활동을 지속적으로 관측할 계획이다. 한편, 인사이트(InSight)는 NASA의 화성 지질 탐사 착륙선이다. 화성의 탄생과 태양계의 진화와 형성과정, 내부 온도, 지각활동, 화성의 열분포 등의 연구가 목적이다. 2018년 5월 5일 발사되어, 2018년 11월 26일 화성에 도착해 탐사 임무를 수행중이다. 주요 장비로는 HP3과 지진계 등을 장착했으며, SEIS로 화성 지표면 내부의 파동을 들여다 볼 수 있다. 달에도 아폴로 12호, 14, 15, 16호 미션 때 설치한 지각활동을 탐사하는 지진계가 있다. 현재까지 지구 외 다른 천체에서 관측된 가장 강한 지진은 달에서 1977년 관측된 것으로 우리나라 경주 지진과 비슷한 강도 5.5규모였다.
-
- 산업
-
화성 지진, 운석 충돌 아닌 지각 내부 활동 때문
-
-
NASA, 금속성분 풍부한 '프시케' 소행성 탐사
- 미국 항공우주국(NASA)은 화성과 목성 사이의 궤도에 있는 프시케(Psyche)라는 금속성분이 풍부한 소행성 탐사를 시작했다. 미국 매체 더 힐에 따르면 프시케는 철과 니켈 등의 금속으로 풍부하며, 길이가 280km에 달하는 거대한 소행성이다. NASA는 이 소행성이 충돌로 인해 표면의 암석이 제거된 채 남아있는 행성 핵으로 보고 있으며, 이를 통해 지구를 포함한 행성들의 핵이 어떻게 형성되었는지에 대한 단서를 찾을 수 있을 것으로 기대하고 있다. NASA의 제트 추진 연구소(JPL)는 지난 10월 13일 프시케 탐사선을 우주로 쏘아 올렸다. 이 탐사선은 약 6년 동안 40억km를 여행해 2029년 8월에 동일한 이름의 목적지인 프시케 소행성에 도착할 예정이다. 그 전에 탐사선은 2026년 5월 화성 근처를 지나며 화성의 중력을 이용해 속도를 증가시키고 방향을 조절한다. 행성에 도착한 후에는 약 26개월 동안 고도 65~700km 상공에서 프시케를 공전하며 지형과 구성 성분, 자기, 중력 등 다양한 정보를 수집할 계획이다. 이번에 탐사를 진행하는 '프시케' 탐사선은 소행성 이름을 따서 붙여졌다. 다중 스펙트럼 이미저, 감마선과 중성자 분광계, 자력계와 X-밴드 중력 과학 조사를 포함한 여러 도구를 탑재하고 있다. 또한 전파가 아닌 레이저를 사용하여 훨씬 더 빠른 속도로 데이터를 지구로 다시 보내는 심우주 광통신 장치를 테스트한다. 프시케 탐사 임무는 태양계의 탄생과 진화에 대한 많은 정보를 밝혀내어 과학에 도움이 될 것으로 기대한다. 아울러 우주의 천연 자원 채굴에 대한 정보도 수집한다. 일부 전문가들은 프시케 소행성의 광물 가치를 약 10조 달러(약 1경3430조원)로 추정하고 있다. '지구 물리학 연구 저널(Journal of Geophysical Research)'의 한 논문은 대략 11.65조 달러로 추정하기도 했다. 정확한 가치는 아직 확인되지 않았지만 미래에 이 소행성의 풍부한 광물을 채굴하려는 많은 시도가 예상된다. 핵 융합 추진 기술 발전 기대 프시케 혹은 다른 소행성에서의 채굴을 시작하기 위해서는 향후 5~6년 동안 새로운 기술 개발이 필요하다. 지구와 프시케 사이의 거리가 매우 멀기 때문에, 현재의 기술로는 소행성에서 광물을 채굴하고 지구로 귀환시키는 데 엄청난 비용이 들 것으로 예상되기 때문이다. 핵 융합 추진 기술이 개발된다면, 지구와 프시케 사이의 이동 시간이 크게 단축될 것으로 보인다. 이 기술을 활용하면 로봇을 이용해 소행성에서 자원을 채굴하고 정제한 후, 채굴된 자원을 우주 산업 인프라로 운송하는 광산 선박의 활용이 가능해질 것이다. 프시케와 같은 태양계의 천체들은 경제적인 이윤을 창출할 수 있으며, 이는 많은 이점을 가지고 있다. 소행성 채굴은 지구에서의 채굴과 달리 환경에 미치는 부정적인 영향이 없다. 저명한 천체 물리학자 닐 드 그래스 타이슨(Neil deGrasse Tyson)은 소행성과 달의 채굴에 대해 긍정적인 견해를 제시했다. 그는 이러한 채굴 활동이 천연 자원에 대한 충돌과 갈등을 줄일 수 있을 것이라고 말했다. 한국, 다누리 탐사 계획 우리나라도 우주 광물 채굴 분야에 뛰어들기 위한 준비를 하고 있다. 한국항공우주연구원은 2029년부터 2031년까지 '다누리'라는 이름의 소행성 탐사선을 개발 중이다. '다누리'는 지구로부터 약 1.5억km 떨어진 '162173 APL' 소행성을 목표로 하고 있다. 이 소행성은 지름이 약 500m이며, 철, 니켈, 황, 규산염 등의 광물이 풍부하다. '다누리'는 2029년 8월에 발사되어 2031년 12월에 APL 소행성에 도착할 예정이며, 그곳의 지형, 구성 성분, 자기장 등을 조사할 계획이다. '프시케'와 '다누리'의 탐사는 우주 광물 채굴의 실현 가능성을 입증하는 중요한 단계가 될 것이다. 우주 광물 채굴이 현실화되면 지구의 자원 문제를 해결하고, 새로운 경제적 기회를 열어줄 것으로 예상된다.
-
- 산업
-
NASA, 금속성분 풍부한 '프시케' 소행성 탐사
-
-
목성 위성 중 하나의 바다에서 탄소 발견
- 목성의 달 중 하나인 유로파의 깊은 지하 해양에는 생명 유지에 필요한 성분인 탄소가 포함되어 있다는 것이 확인됐다. 제임스 웹 우주 망원경의 관측에 따르면, 유로파의 표면의 이산화탄소 얼음은 약 1만6000m 두께의 얼음 층 아래의 소금물 해양에서 비롯된 것으로 보인다. 영국 매체 더가디안에 따르면 이 연구 결과는 유로파의 지하 해양에 탄소가 존재한다는 것을 확인하고, 생명의 존재 가능성을 시사하는 동시에, 유로파 해양이 태양계 내에서 탐사가 가장 유망한 지역 중 하나라는 견해를 뒷받침한다. 텍사스의 남서부 연구소(Southwest Research Institute)의 지화학자인 크리스토퍼 글린 박사는 "이는 매우 중요한 발견이고, 나는 이로 인해 매우 기쁘다"라고 말했다. 그는 또한 "유로파의 해양에 실제로 생명이 존재하는지 여부는 아직 확실하지 않지만, 이러한 새로운 발견은 그곳에 todaqud이 있을 가능성이 높다는 더 많은 근거를 제공한다. 그러한 환경은 우주생물학적 관점에서 흥미로워 보인다"고 덧붙였다. 지구의 달보다 약간 작은 유로파는 지표면 온도가 -140도씨를 거의 넘지 않고 목성으로부터 오는 복사선을 포함한 극한의 어려움에 직면하는 것으로 알려져 있다. 유로파의 해양 깊이는 약 6만4160km에 이르며, 얼음 표면 아래에서도 약 1만6000m~2만4140m의 깊이에 달한다. 이러한 깊고 넓은 해양 덕분에 유로파는 생명 탐색의 주요 후보지로 떠올랐다. 깊은 해양에서의 생명 존재 가능성은 탄소와 같은 생물학적으로 필수적인 요소의 풍부도와 그 화학적 특성에 연관되어 있다. 이전 연구에서는 유로파의 표면에서 고체 이산화탄소 얼음의 존재를 확인했으나, 이것이 지하 해양에서 나온 것인지, 아니면 운석 충돌을 통해 유로파 표면에 전달된 것인지는 확실하지 않았다. 최근에는 제임스 웹 망원경의 근적외선 관측을 활용하여 유로파 표면의 이산화탄소 분포를 정밀하게 지도화했다. 특히 '카오스 지형'이라 불리는 지역, 즉 얼음 블록이 지질학적 움직임으로 인해 표면으로 밀려나와 생성된 균열과 능선이 특징인 약 1800km2 크기의 타라 레지오(Tara Regio)에서 이산화탄소의 농도가 특히 높게 관측됐다. 나사 제트 추진 연구소(Nasa's Jet Propulsion Laboratory)의 우주생물학자이자 논문의 공동 저자인 케빈 핸드는 이 연구 결과를 "중요하다"고 평가했다. 그는 "우리가 알고 있는 생명체는 이산화탄소를 섭취하고 호흡하는데, 유로파의 해양에서 이산화탄소가 풍부하다는 점은 그곳의 생명 거주 가능성과 잠재적 생물존재에 대한 중요한 단서가 될 수 있다"고 강조했다. 우주생물학에서는 지구의 생명체에게 필요한 '주요 여섯 가지' 원소를 종종 언급하는데, 이 중 탄소, 수소, 산소, 황의 네 가지는 이미 유로파에서 발견됐다. 그러나 황이 유로파의 해양에서 나온 것인지, 아니면 제우스의 다른 위성인 이오(Io)에서 전달된 것인지는 아직 확인되지 않았다. 글린 박사는 "유로파 해양에서 사용 가능한 탄소의 존재는 그곳의 생명 거주 가능성을 높인다"고 지적했다. 그는 "앞으로 제임스 웹 망원경과 내년에 예정된 유로파 클리퍼 미션의 관측 결과를 통해 유로파에서 질소와 같은 생명의 기본 구성 요소가 얼마나 쉽게 접근 가능한지에 대한 추가적인 정보를 얻을 수 있을 것이다"라며 기대감을 드러냈다. 이번 연구 결과는 '사이언스(Science)' 저널에 발표되었고, 이와 함께 탄소 동위원소(원소의 다른 형태)의 비율 분석도 함께 제시되었다. 탄소-12와 탄소-13의 비율은 생명의 흔적을 나타낼 수 있지만, 이번 연구에서는 명확한 결론을 내리지 못했다. 런던 대학교 머러드 우주과학 연구소의 행성과학 부문장 앤드루 코츠 교수는 이 연구를 "중요하며 흥미롭다"고 평가했다. 그는 "우리는 유로파에 이러한 요소들이 존재할 가능성이 크다고 보고 있다"고 말했다.
-
- 산업
-
목성 위성 중 하나의 바다에서 탄소 발견
-
-
나사, 베누 소행성 샘플서 '탄소와 물' 존재 확인
- 나사(NASA)가 우주에서 채취해 지구로 가져온 45억 년 된 소행성 '베누(Bennu)' 샘플에 탄소와 물의 존재가 확인됐다. 베누 샘플 연구는 지구 생명체의 구성 요소가 암석에서 어떻게 출현했는지 실마리를 제공할 것으로 보인다. 미국 항공우주국(NASA)은 11일(현지시간) 텍사스주 휴스턴에 있는 존슨우주센터(JSC)에서 지난 9월 24일 귀환한 소행성 탐사선 '오시리스-렉스'(OSIRIS-REx)가 채취한 '베누' 샘플을 처음으로 공개했다. 이 발견은 NASA의 오시리스-렉스(OSIRIS-REx, 기원, 스펙트럼 해석, 자원 식별 및 보안 - 레골리스 탐사선) 과학팀의 예비 평가의 일부였다. 빌 넬슨 NASA 국장은 "오시리스-렉스 샘플의 돌과 먼지에는 물과 많은 양의 탄소를 포함하고 있다"며 "과학자들이 앞으로 여러 세대에 걸쳐 지구 생명체의 기원을 조사하는 데 도움이 될 것"이라고 밝혔다. 풍부한 물과 탄소 함유 NASA는 소행성의 암석과 먼지에 담긴 비밀은 앞으로 수십 년 동안 연구되어 태양계가 어떻게 형성되었는지, 지구에 생명체의 전구 물질이 어떻게 뿌려졌는지, 지구와의 소행성 충돌을 피하기 위해 어떤 예방 조치를 취해야 하는지에 대한 통찰력을 제공할 것으로 기대했다. 넬슨 국장은 "오시리스-렉스 샘플은 지금까지 지구로 보내진 소행성 샘플 중 가장 탄소가 풍부하다"며 "첫 번째 분석 결과, 점토 광물 속에 물이 상당히 많이 함유돼 있다. 광물과 유기 분자 모두에 탄소도 있다"고 말했다. NASA 존슨의 큐레이션 전문가들은 특별히 지어진 새로운 클린룸에서 지난 열흘 동안 샘플 반환 하드웨어를 조심스럽게 분해하여 그 안에 들어 있는 대량의 샘플을 엿볼 수 있었다. 당초 소행성 샘플은 60g으로 계획됐지만 과학자들은 처음 과학용 캐니스터 뚜껑을 열었을 때 수집기 헤드, 캐니스터 뚜껑, 베이스 외부를 덮고 있는 소행성 물질을 추가로 발견했다. 여분의 물질이 너무 많아서 기본 샘플을 수집하고 담는 세심한 과정이 느려졌다는 설명이다. 넬슨은 "이 물질들은 지구 형성에 중요한 요소"라며 "이는 생명체가 탄생할 수 있었던 원소의 기원을 규명하는 데 도움이 될 것"이라고 말했다. 태양계와 지구 원소 규명 기대 처음 2주 동안 과학자들은 주사 전자 현미경, 적외선 측정, X-선 회절, 화학 원소 분석을 통해 이미지를 수집하여 행성 초기 물질에 대한 "빠른" 분석을 수행했다. 또한 X-선 컴퓨터 단층 촬영을 통해 입자 중 하나의 3D 컴퓨터 모델을 생성하여 다양한 내부를 들여다봤다. 이 초기 모습을 통해 샘플에 탄소와 물이 풍부하다는 증거를 확인할 수 있었다. 오시리스-렉스 소행성 탐사선에 탑재된 캡슐은 2016년 9월 케이프 커내버럴 우주센터에서 발사된 지 7년 만에 38억6000마일(62억km)에 달하는 대장정 끝에 지난 2023년 9월 24일 지구로 무사히 귀환했다. 이 탐사선은 2020년 10월 지구에서 약 3억3300만㎞ 떨어진 곳에 있는 베누 표면에서 흙과 자갈 등 샘플 250g을 채취한 뒤 2021년 5월 지구로의 귀환을 시작했다. 이는 미국으로선 첫 번째 소행성 샘플 채취였지만, 앞서 일본이 이토카와(2010년), 류구(2020년) 소행성으로부터 각각 채취한 샘플 1g 미만과 5.4g보다는 많은 양이다. 기상 현상과 지각 변동 등으로 크게 변형된 지구와 달리 베누는 45억년 전 태양계 형성 초기의 물질을 그대로 간직하고 있을 것으로 추정되고 있다. 투손 애리조나 대학교의 오시리스-렉스 수석 연구자인 단테 로레타(Dante Lauretta)는 "소행성 베누의 먼지와 암석 속에 보존된 고대의 비밀을 들여다보면서 우리는 태양계의 기원에 대한 심오한 통찰력을 제공하는 타임캡슐을 열어보고 있다"라고 말했다. 로레타는 "탄소가 풍부한 물질과 물을 함유한 점토 광물이 풍부하게 존재하는 것은 우주 빙산의 일각에 불과하다. 수년간의 헌신적인 협력과 최첨단 과학을 통해 이루어진 이러한 발견은 우리가 살고 있는 천체뿐만 아니라 생명의 시작에 대한 잠재력을 이해하는 여정으로 우리를 이끌고 있다"고 전했다. 우주 신비 규명 기대 한편, NASA는 존슨우주센터 내 전용 청정실에서 앞으로 2년간 베누의 샘플을 정밀 분석할 예정이다. 베누에서 채취된 샘플이 어떻게 소행성이 형성되고 진화했는지 우주 유산의 신비를 풀 수 있을 것으로 기대를 모으고 있다. 또한 이를 통해 지구에 생명체 출현에 대한 인류의 오랜 궁금증을 풀고 앞으로 이 소행성이 지구를 어떻게 비껴갈 수 있는지를 연구하는 데에도 도움을 줄 수 있을 것으로 보고 있다. 과학자들은 베누가 지금부터 약 160년 후 지구와 충돌할 가능성이 큰 것으로 추정하고 있다. NASA는 미래 세대의 과학자를 포함한 전 세계 과학자들의 추가 연구를 위해 베누 소행성 샘플의 최소 70%를 존슨 기지에 보존할 예정이다. 아울러 올가을에는 스미소니언 박물관, 휴스턴 우주 센터, 애리조나 대학교에 추가 샘플을 대여하여 공개적으로 전시할 계획이다.
-
- 산업
-
나사, 베누 소행성 샘플서 '탄소와 물' 존재 확인
-
-
NASA, 리튬 배터리 에너지 밀도 '획기적' 개선
- 높은 에너지 효율로 주목 받아온 리튬 배터리가 환경 문제와 비싼 비용 문제로 여론의 뭇매를 맞고 있다. 에너지 기업들은 이에 대응해 대체재와 새로운 처리 기술 개발에 열을 올리고 있다. 이러한 가운데 미국 항공우주국(NASA)이 리튬을 대체하면서도 에너지 밀도를 눈에 띄게 개선했다는 소식이 전해져, 산업계에 큰 주목을 받고 있다. 미국 매체 '굿뉴스네트워크(GoodNewsNetwork)'는 나사가 기존 리튬 이온 배터리보다 배터리 수명과 방전 능력이 월등히 뛰어난 새로운 기술을 연구 중이라고 전했다. 현재 전기차의 핵심 기술로 자리 잡고 있는 리튬 이온 배터리는 사용 시간이 길어질수록 과열과 화재 위험, 전원 손실 등의 문제를 안고 있다. 이에 나사의 최신 프로젝트인 'SABERS(Solid-state Architecture Batteries for Enhanced Rechargeability and Safety)'는 이 문제점을 해결할 수 있는 고체 상태 배터리 팩 개발에 성공했다. 나사의 이번 연구 성과가 상용화된다면 전기차는 물론 다양한 전자기기의 배터리 수명과 안전성 문제에 긍정적인 영향을 미칠 것으로 보인다. SABERS는 항공 분야의 중대한 도전과제를 극복하기 위해 설계된 나사의 'CAS(Convergent Aeronautics Solutions)' 프로젝트에서 투자를 받아왔다. 이 프로젝트의 주요 연구 목표는 배터리를 활용한 항공기 운용이다. 현재 항공기는 전 세계 온실가스 배출량 중 약 2%를 차지하고 있어, 환경 오염 문제의 주요 원인 중 하나로 꼽힌다. 배터리는 탄소 배출이 많은 제트 연료에 대한 잠재적인 개선책으로 간주된다고 굿뉴스네트워크는 설명했다. SABERS의 최근 연구 성과로, 고체 상태 배터리는 지난해 시장의 다른 제품들보다 10배나 빠른 에너지 방출 속도를 보였으며, 기술 개선을 통해 이 수치가 추가로 5배 향상됐다. 또한 배터리 내의 황과 셀레늄 셀은 케이스 없이 직접 적층되어 무게 절감이 가능하다. 이로 인해 여러 배터리를 분리 과정 없이 쉽게 쌓을 수 있어 효율성이 높아졌다. 나사의 글렌 연구 센터에서 활동 중인 SABERS팀의 수석 연구원 로코 비기아노(Rocco Viggiano) 박사는 "현대 배터리 중 가장 첨단으로 여겨지는 리튬 이온 배터리에 비해, 새롭게 연구 중인 배터리의 에너지 저장 능력이 2~3배 높아질 것이며, 이에 따른 배터리의 중량도 30~40% 감소할 것"이라고 밝혔다. 또한 SABERS 연구팀은 이번 연구 성과로 현재 전기 자동차의 2배에 해당하는 1kg당 500와트시로 물체에 동력을 공급할 수 있게 됐다. 나사는 "올해 SABERS 프로젝트의 핵심 목표는 배터리의 성능이 에너지 및 안전 기준을 만족하면서도 실제 환경에서 최대 출력에서도 안전하게 작동할 수 있다는 것을 입증하는 것이었다"고 전했다. 나사의 SABERS 팀은 배터리 연구를 위해 조지아 공과대학과 협력을 펼쳐왔다. 비기아노 박사는 "조지아 공과대학은 배터리 셀의 작동 중 미세한 변화에 주목하고 있으며, 이러한 연구가 SABERS 팀에게 배터리 내부 압력의 변화를 관찰하는 데 큰 도움을 줬다"고 설명했다. 비기아노 박사는 또 "조지아 공과대학과의 협업을 통해 셀 제조 방식을 실질적으로 어떻게 최적화할 수 있는지에 대한 인사이트를 얻을 수 있었고, 이는 다양한 개선 방안으로 이어졌다"라고 강조했다. 나사가 연구 중인 'SABERS' 배터리는 고체 형태로 구성돼 화재 위험이 없어 항공기에 필요한 동력 공급에서 큰 장점을 보인다. 특히 이 배터리는 현존하는 리튬 배터리보다 두 배 더 높은 온도에도 안정적으로 작동하며, 경량화된 구조로 인해 제한된 공간 내에 더 많은 에너지를 저장할 수 있다는 강점을 가지고 있다. 하지만, 이런 고성능 배터리의 제작 비용이 상당히 높아 실제 상용화까지는 시간이 소요될 것으로 전망된다.
-
- 산업
-
NASA, 리튬 배터리 에너지 밀도 '획기적' 개선
-
-
나사, 소행성 베누 시료 첫 개봉
- 과학자들은 지난달 베누 소행성에서 가져온 시료에 놀라운 반응을 보였다. 그 놀라움의 원인은 어떤 것일까? 이 질문의 답은 오는 10월 11일 미국 우주항공국(NASA)의 라이브 방송을 통해 밝혀질 예정이다. 미국 CNN에 따르면, NASA의 오시리스 렉스(OSIRIS-Rex) 탐사선은 7년의 임무를 성공적으로 마무리하고 행성에서 취득한 시료를 곧 분석할 계획이다. 과학자들은 지난 9월 26일, 과학자들이 탐사선의 시료 용기를 열자, 용기 주변과 내부에서 암석과 토양을 수집하는 데 사용된 기구로부터 어둡고 미세한 물질을 발견했다. CNN은 이것이 소행성에 대한 초기 통찰을 제공하는 중요한 장면이라고 전했다. 이 시료는 지난 9월 24일, 미국 유타 사막의 국방부 유타 시험훈련장에 예상보다 3분 빠르게 도착했다. 탐사선은 베누라는 소행성에 착륙해 시료를 채취한 후 지구로 귀환했고, 이 과정에서 약 60억 2100만km(38.6억 마일)를 이동했다. 소행성은 태양계 형성 시기의 유물로, 행성이 초기에 형성되며 겪은 혼란스러운 시기의 모습을 반영한다. CNN은 지구 근처의 소행성들이 지구에 위협을 가하므로, 그들의 구성과 궤도를 파악하는 것이 지구와의 충돌 위험을 회피하기 위한 중요한 방법이라고 설명했다. 현재, 이 시료는 나사의 휴스턴 존슨 우주센터에 있는 청정실에서 정밀 분석을 위해 보관 중이다. 탐사선은 2020년 10월 터치 앤 고(Touch-and-Go) 방식의 TAGSAM 시료 획득 메커니즘을 이용해 베누 표면의 시료를 성공적으로 수집했다. 이 과정에서 많은 양의 물질이 획득되어 빠르게 분석할 수 있을 것이라는 기대가 컸다. 그러나 메커니즘 내부에서 아직 전체 시료에 접근하기 전에도 충분한 양의 물질이 확인되었다. 오시리스 렉스의 큐레이션 책임자인 크리스토퍼 스니드(Christopher Snead)는 "물질의 양이 많아 예상했던 것보다 분석에 더 많은 시간이 걸릴 것으로 보인다"라고 전했다. 미국 CNN 보도에 따르면, 현재 TAGSAM 헤드를 통해 수집된 시료의 초기 분석이 진행 중이며, 베누에서 얻은 물질에 대한 첫 번째 결과가 곧 공개될 것으로 예상된다. 오시리스 렉스는 2018년 12월 발사된 후 약 2년여 만에 지구에서 약 1억3000만km 떨어진 태양 궤도를 도는 소행성 베누의 상공에 도착했다. 2020년 10월에는 베누 표면에 착륙하여 시료를 채취한 후, 2021년 5월에 지구로 귀환하기 시작했다. 린지 캘러(Lindsay Keller) 오시리스 렉스의 시료 분석팀 대표는 "우리는 시료를 원자 단위까지 정밀하게 분석할 수 있는 세심한 기술을 갖추고 있으며, 이 분석을 위한 최고의 전문가와 최첨단 설비를 보유하고 있다"고 성명에서 밝혔다. 팀은 베누에서 얻은 시료의 초기 분석을 위해 주사 전자 현미경, X선, 적외선 기기 등을 활용하여 재료의 화학적 특성을 파악하며, 수화된 광물과 유기 입자의 존재를 확인한다. 또한, 소행성 내에 특정 광물이 풍부하게 존재하는지도 파악할 예정이다. 과학자들은 베누에서 얻은 풍부한 시료를 통해 무엇을 우선적으로 예상해야 할지에 대한 보다 명확한 인식을 갖게 될 것으로 예상하고 있다. 그들은 베누와 같은 소행성이 지구 초기 형성 단계에서 필수적인 원소인 물과 같은 물질을 지구에 전달했을 가능성을 검토하고 있다. 한편, 이 시료를 지구로 전달한 탐사선은 '오시리스 아펙스(OSIRIS-APEX)'라는 이름으로 재명명되었으며, 2029년에 지구 근처에서 맨 눈으로도 관측 가능한 거리까지 접근하는 소행성 아포피스의 연구를 위해 이동 중이다.
-
- 산업
-
나사, 소행성 베누 시료 첫 개봉
-
-
지구 자전축, 80cm 또 기울어진 이유는?
- 지구의 자전축 기울기가 약 80cm(약 31.5인치)나 또 어긋난 것으로 밝혀졌다. 최근에 '지구의 기울기'가 다시 화제가 되고 있는 가운데, 과학자들의 조사에 따르면 지구의 기울기 변동이 가속화되어 31.5인치(약 80 센치)나 변경된 것으로 확인됐다. 이 데이터는 2023년 6월 지구과학 저널 「지구물리학 연구 레터(Geophysical Research Letters)」에 게재된 연구에 따른 것으로, '지하수의 과도한 채취'가 지구 기울기의 주요 원인으로 보고됐다. 또한 이 연구에서는 "지구의 기울기 변화와 전 세계적인 해수면 상승(약 0.24인치 또는 약 6mm) 간에 연관성이 있다"고 지적했다 지구 자전축의 변화가 세계 해수면에 어떤 영향을 미치는지, 그리고 지하수 채취가 왜 자전축의 기울기에 영향을 주는지, 그리고 자전축의 기울기가 31.5인치로 커진 것이 실제로 얼마나 큰 문제인지에 대해 정리했다. 먼저 자전축의 기울기는 지구에 어떤 영향을 미칠까. 자전축의 기울기는 지구를 특징짓는 특징 중 하나다. 자전축이 기울어져 있기 때문에 지구에는 봄, 여름, 가을, 겨울과 같은 계절이 발생하는 지역이 있으며, 북극과 남극에서는 궁극적으로 극야(위도 66.55도 이상인 극지방에서 겨울철에 해가 뜨지 않고 밤만 계속되는 기간)와 극주야(?)/백야(해가 지지 않아 밤에 어두워지지 않는 현상)가 존재한다. 이 현상을 놀이기구를 떠올리면 쉽게 이해할 수 있다. 자전축이 공전 궤도에 수직이라면, '틸트 어 휠(Tilt-a-Whirl)' 놀이기구처럼 어느 북반구나 남반구에서도 일년 내내 일정한 일조 시간을 가지며, 태양의 궤도 위치가 항상 같아 시간의 흐름에 따른 변화가 없을 것이다. 이와 같은 상황은 북극점과 남극점에서도 동일한 상황이 지속될 것이다. 하지만, 지구는 기울어져 있기 때문에 '틸트 어 휠' 내부에 있는 것처럼 중심(태양)이나 수평선에 가까워질 때도 있고 멀어질 때도 있다. 우리가 평소에 단단하다고 느끼는 지구의 안정성은 실제로는 그렇지 않다. 지구의 지각은 주로 단단한 암석으로 구성되어 있으며, 대부분의 지역에서는 약 40킬로미터(약 25마일)의 깊이에 이른다. 1 평방피트(약 930㎠) 크기의 지표면 아래 40킬로미터 깊이의 지각 부분은 부피로 따지면 대략 1만1000톤으로 추정된다. 이것은 2012년 티레니아 해에서 전복된 호화 여객선 코스타 콘코르디아(약 11만4000톤)의 무게와 거의 비슷하며, 이 배를 원래의 상태로 세울 수 있는 무게와 동일하다. 그러나 태양계 내에서 밀도가 가장 높은 행성인 지구에서도 40킬로미터 두께의 지각은 지구 지름의 0.33% 정도에 불과하며, 1만1000톤은 지구의 총 질량인 5.972 ×10²⁴kg에 비하면 미미하다. 지구를 M&M 초콜릿 한 알로 비유하면, 얇은 설탕 코팅 부분이 지각에 해당한다. 그렇다면 과도한 지하수 채취는 어떤 문제를 야기할까. 지각 위에는 바다가 있고, 지각 바로 아래에는 광대한 지하 담수층이 있다. 그 아래에는 유동성 있는 암석을 포함한 맨틀이 있으며, 외피 아래의 외부 핵은 액체이다. 현재 지구의 내부 핵은 고체라는 주장이 유력하다. 최근 발표된 지하수 관련 논문에서는 특정 현상에 대한 조사가 진행되고 있다. "지하수를 얻기 위해 지하 또는 지각 내에 저장된 물을 얻으려고 구멍을 뚫으면 갑자기 지구 외부의 일부 무게가 크게 가벼워지며, 지구 전체의 균형 유지에 매우 간단한 형태로 영향을 미치게 된다"는 설명이다. 볼링 공이나 회전하는 스피너 외부에만 구멍을 뚫는다면 어떤 변화가 일어나는지 상상해보자. 볼링공은 여전히 회전은 가능하겠지만, 원래의 회전과는 달리 불규칙한 방식으로 회전할 것이다. 게다가 지구에는 대량의 물과 용해된 금속이 있으므로, 이러한 물질들이 새로운 회전 방향에 영향을 받아 추가적인 회전 특성을 나타낼 수도 있다. 지구의 기울기는 '자전축 기울기'라고도 하며, 약 4만 1000년마다 22.1도에서 24.5도 사이로 변동한다. 지구의 위도 1도당 거리는 대략 111.11킬로미터(약 69마일)이기 때문에, 80cm의 변화는 사실상 크게 중요하지 않다고 볼 수 있다. 이 논문은 지구의 기울기에 영향을 미치는 특정 요인에 집중하고 있다. 중요한 것은 이 변화가 자연적인 변동이 아닌 인간의 활동에 의한 결과라는 점이다. 인류는 약 4만 1000년 전부터 존재했지만, 그 당시 인간은 지하수를 채취하기 위해 지각을 깊게 파지 않았다. 반면, 정화된 물을 위한 우물의 역사를 살펴보면, 약 9000년 전 신석기 시대의 시리아 텔 사비 아비아드(Tell Seker al-Aheimar) 유적에서 발견된 것이 가장 오래된 것으로 기록되어 있다. 과도한 지하수 채취 문제는? 미국 지질 조사국(USGS)에 따르면 지표면 아래의 수층은 세계의 강과 호수의 수백 배 이상의 물량을 포함하고 있다. 여기서수층은 지하수를 저장하는 암석과 퇴적층을 의미한다. 이 지하수는 지구의 다양한 지역(사막 포함)에서 볼 수 있지만, 접근이 어렵거나 정화 처리가 필요한 경우가 많다. 지하수는 지표면 근처에 위치하며, 단지 몇 시간 정도만 축적되었을 수도 있고, 지하의 매우 깊은 곳에서 몇 천 년 동안 존재했을 수도 있다. 미국 과학·공학·의학 아카데미와 애리조나 주립 대학교의 '과학과 기술의 이슈(Issues in Science and Technology)' 간행물에 따르면, 호수와 강의 담수 부족 때문에 인간은 지하수를 채취하기 시작했다. 이러한 지하수는 음용, 관개, 그리고 광물 채굴 등 여러 목적으로 사용되고 있다. 그렇지만 지하수의 과도한 채취는 자연 환경과 습지에 큰 피해를 준다. 이는 땅이 건조해지는 것뿐만 아니라 토양의 붕괴, 야생동물과 물고기, 나무에 대한 부정적 영향, 그리고 일부 종의 멸종 위험을 가져온다. 더욱이, 최근의 연구에서는 지하수 채취가 지구의 기울기에도 영향을 주고 있음이 밝혀졌다. 지구 기울기가 변한 다른 요인 지구는 완벽한 균형을 가진 공이나 볼링 공처럼 완벽하게 균형 잡힌 상태를 유지할 필요가 없다. 사실, 과학자들은 '테이아(Theia)'라는 천체가 원시 지구와의 충돌로 인해 지구가 기울게 되어 자전하게 되었다는 가설을 제기하고 있다. 이 충돌에 의해 원시 지구에서 분리된 부분이 달이 되었다고 추측하고 있다. 당시 충돌로 인해 원시 지구의 한 쪽에는 커다란 스위스 치즈 같은 크레이터가 생겨나, 그 결과 회전 축이 변화했다고 본다. 그 이후로 지구의 자전축이 다시 원래대로 돌아온 적은 없다. 지구와 같은 행성은 자전으로 인해 시간이 지남에 따라 점차적으로 거의 완벽한 구형에 가까운 형태로 변화한다. 이 개념은 '정적압력 균형'이라고 불린다. 사실, 거의 완벽한 구형에 가까운 형태는 행성이나 천체의 기본적인 특성 중 하나이다. 이를 고려하면 '테이아'라는 천체의 충돌 이전의 울퉁불퉁한 지구는 자전 활동이 회복되기 전까지 '행성'으로 간주되지 않았을 수도 있다. 지구의 자전축 기울기는 지구의 구 형태를 유지하는 데 영향을 미치지 않는다고 여겨진다. 지구의 정적압력 균형은 이러한 기울기와 상관없이 각 행성의 자전 현상에 의해 결정되기 때문이다. 미국 항공우주국(NASA)은 2018년 "20세기에 지구의 기울기 변화를 초래한 3가지 주요 원인을 확인했다"고 보고했다. 나사에서 파악한 원인은 '그린란드의 얼음 해빙', 빙하의 이동 또는 해빙으로 인해 얼음의 무게가 사라져 지각이 서서히 상승하는 '빙하성 반동', 그리고 '맨틀 대류'이다. 맨틀 대류는 지각 아래에 있는 유동성 있는 암석 성분이 가열되어 상층으로 이동하고 표면 근처에서 냉각되어 밀어내는 운동이다. 온도가 다른 암석의 밀도가 서로 다르기 때문에 중심을 뒤흔드는 것. 한편, 과학자들은 지구의 기울기가 많은 다른 요인에 의해 변동된다는 사실을 알고 있지만, 이러한 요인을 동시에 연구하는 단계는 아직 확립되지 않았다고 말했다. 2020년 논문에서 과학자들은 "지구는 내부에서부터 외부로 이르기까지 다양한 시간 스케일에서 연속적인 변화가 진행 중이기 때문에 이러한 동적 매개변수는 모두 안정된 값을 갖지 않으며 시간이 지남에 따라 변화한다"고 지적했다. 또한 "이러한 변동은 상대적으로 작기 때문에 최근까지 관측하기 어려웠다"면서 "앞으로 몇 년 안에 지구의 기울기 변화가 특정 요인에 의해 크게 변할 것이라는 뉴스를 자주 접할 가능성은 낮을 것으로 생각된다"고 밝혔다.
-
- 산업
-
지구 자전축, 80cm 또 기울어진 이유는?
-
-
나사 탐사선 '오시리스 렉스', 7년 만의 귀환⋯소행성 베누 샘플 채취
- 미국 항공우주국(NASA)에서 쏘아올린 소행성 연구 우주 탐사선 오시리스 렉스(OSIRIS-REx)가 7년 만의 귀환을 앞두고 있다. 미국 우주항공전문매체 스페이스닷컴(SPACE.com)에 따르면, 나사의 오시리스 렉스 미션의 소행성 샘플 반환 캡슐이 2023년 9월 24일(현지시간) 오전 10시 EDT (GMT 1400)에 미국 유타 주의 더그웨이 근처에 위치한 국방부 유타 시험 및 훈련 범위(Department of Defense's Utah Test and Training Range)에서 착륙할 예정이다. 2016년 9월에 발사된 오시리스 렉스는 2020년 10월에 소행성 베누에 도착해 표면에서 샘플을 성공적으로 채취했다. 이제 9월 24일, 7년 간의 깊은 우주 여정을 마치고 채취한 샘플을 지구로 가져옴으로써 NASA는 새로운 우주 탐사 역사의 한 페이지를 장식하게 될 것으로 보인다. 천문학자 지안루카 마시(Gianluca Masi)는 이번 오시리스 렉스의 지구 접근을 이탈리아 체카노의 망원경으로 관측할 계획이다. 그는 이날 밤에는 무료 라이브 스트림으로 오시리스 렉스의 귀환을 공개할 예정이며, 관심 있는 이들은 해당 방송을 통해 직접 관찰할 수 있다. 한편, NASA는 2017년에 오시리스 렉스 탐사선을 소행성 베누 탐사를 위해 발사했다. 이 탐사선은 2020년에 소행성에 도착해 샘플을 성공적으로 채취했고, 그 샘플이 이제 지구로 안전한 귀환을 몇시간 앞두고 있다. 특별한 반환 캡슐과 낙하산을 이용해, 소중한 샘플들이 안전하게 지구에 돌아올 예정이다 탐사선의 샘플 반환 캡슐은 착륙 약 4시간 전에 모체선에서 분리될 예정이며, 이후 지구로의 귀환 여정을 시작하게 된다. 천문학자들은 망원경을 통해 오시리스 렉스의 탐사 대상인 소행성 베누를 관측했을 때, 단단한 물체로 판단했다. 그러나 오시리스 렉스 미션의 주요 과학자 케빈 월쉬의 분석에 따르면, 베누는 느슨한 자갈과 다공성의 저밀도 바위로 이루어진 '지옥 같은' 공간이라는 사실이 드러났다. 오시리스 렉스 우주선은 2023년 9월 24일로 예정된 소행성의 샘플을 지구로 반환하기 위해 마지막 궤도 조정을 진행했다. 현재 이 우주선은 지구로부터 약 280만 km 거리에 있으며, 시속 약 23,000km로 지구에 접근 중이다. 24일 일요일, 지구에서 약 10만2000km 위의 공간에서 오시리스 렉스는 샘플 캡슐을 분리해 유타 사막의 36마일 x 8.5마일 구역에 착륙시킬 예정이다. 이 작업을 위해 나사와 미국 군대가 현장에서 대기 중이다. 이 샘플 캡슐에는 500미터 폭의 소행성 베누에서 채취된 물질이 담겨있다. 이 물질은 태양계의 역사에 관련된 중요한 정보를 담고 있을 것으로 예측된다. 오시리스 렉스가 2018년에 소행성 베누에 접근했을 때, 그 모습은 예상했던 것과 크게 달랐다. 이 프로젝트의 주요 과학자인 다른테 로레타는 "소행성의 표면 구조가 우리의 예상과는 크게 달라, 우주선은 베누의 느슨하고 자갈로 덮인 표면에 안전하게 착륙하기 위해 재프로그래밍이 필요했다"고 스페이스 닷컴에 전했다. 2016년 시작된 7년 미션의 마무리 단계에 접어든 오시리스 렉스는 지난 9월 10일 강력한 추진 엔진을 발사해 지구로의 궤도 변경을 수행했다. 그러나 오시리스 렉스의 미션이 단순히 지구에 안착하는 것으로 끝나지 않는다. 캡슐 내부가 오염될 수 있으므로 이를 텍사스 휴스턴의 존슨 우주 센터에 위치한 이동식 클린룸으로 옮겨진다. 클린룸에서는 캡슐의 외부를 깨끗하게 제거하여 내부 샘플에 접근해야 한다. 존슨 우주 센터의 관계자는 "베누에서 가져온 샘플 중 4분의 1은 오시리스 렉스 팀이 보관하게 될 것"이라며 "나머지 샘플은 향후 수십 년간 다양한 연구에 활용될 예정"이라고 밝혔다.
-
- 포커스온
-
나사 탐사선 '오시리스 렉스', 7년 만의 귀환⋯소행성 베누 샘플 채취
-
-
美 나사, 1경 규모 금속 행성 탐사선 10월 발사
- 미국 텍사스주 크기의 행성이 엄청난 속도로 지구를 향해 돌진하고 있다. 미국 우주항공국(NASA)는 비행선을 보내 이 행성에 구멍을 뚫고, 핵탄두를 설치해 폭파하는 방법으로 행성을 둘로 쪼개는 아이디어를 낸다. 영화 '아마겟돈' 이야기다. 그런데 영화 같은 일이 실제로 벌어질 전망이다. 나사는 이번엔 행성을 폭파하는 것이 아니라 어떤 광물이 있는지 조사하기 위해 비행선을 발사한다. 독일의 날씨전문 누리집 '다스베터(daswetter)'에 따르면, 과학자들은 '16프시케(16 Psyche)'라는 이름의 소행성을 탐사할 예정이다. 이번 탐사는 행성의 구성을 파악하기 위한 것이다. 이 소행성은 지난 1852년 3월 17일 이탈리아의 천문학자 안니발레 드 가스프리스(Annibale de Gasparis)가 발견했으며, 소행성대에서 가장 무거운 10개의 소행성 중 하나로 꼽힌다. 과학자들의 이번 탐사는 행성의 형성과 관련된 금속 및 기타 구성 요소에 대한 탐색을 목적으로 한다. 우주는 끊임없이 새로운 비밀을 품고 있으며, 이를 탐사하는 과학자들의 노력은 계속 이어진다. 소행성 '16프시케'는 철, 니켈, 금 등의 금속 성분을 주요 구성 요소로 갖는다. 이러한 특징은 태양계를 구성하는 미행성 핵이 대체로 금속 성분으로 형성됐을 가능성을 시사하며, 과학계는 이 점에 큰 관심을 가지고 있다. 나사가 그린 위의 프시케 상상도처럼 이 소행성의 형태는 감자와 유사한 불규칙한 모양을 하고 있다. 어쩌면 편평한 타원형으로 보일 수도 있다. 적도를 가로지르는 가로 길이는 약 280km, 세로 길이는 232km로, 전체 표면적은 약 16만5800 ㎢에 이른다. 최근의 연구에서는 이 소행성의 주요 성분이 금속으로 되어 있다고 분석됐다. 일반적으로 유리와 모래에서 발견되는 금속성분과 규산염의 복합체로 이해하면 된다. 레이더를 통한 관찰과 소행성의 열관성 측정 결과, 프시케는 암석과 금속의 조합으로 이루어져 있을 가능성이 높다. 특히, 전체 부피 중 30~60% 정도가 금속성분으로 구성되어 있는 것이 확인됐다. 과학자들은 광학과 레이더 관찰을 이용해 프시케의 3D 모델을 구축했다. 이 모델에는 두 개의 함몰된 분화구가 포함되어 있다. 그 결과 소행성 표면에는 금속 함량과 색상에 상당한 차이가 있음이 드러났다. 이 소행성은 우리 태양계를 구성하는 요소 중 하나인 소행성 핵에서 파생된 대량의 금속성분으로 이루어져 있을 가능성이 높다고 과학자들은 추정하고 있다. 소행성 프시케는 태양계 형성 초기에 자주 일어났던 여러 차례의 격렬한 충돌을 견뎌낸 것으로 추정된다. 이는 우리에게 지구의 핵이나 다른 암석 행성의 핵이 어떻게 형성되었는지에 대한 통찰을 제공할 수 있다. 프시케는 태양으로부터 3억7800만~4억9700만km 떨어진 화성과 목성 사이의 태양을 공전한다. 이는 2.5~3.3AU(1AU, Astronomical unit, 지구와 태양 사이의 거리)거리로, 프시케가 태양 주위를 회전하는데 지구 시간으로 약 5년이 걸리지만, 자체 축(프시케의 하루)을 중심으로 한 번 회전하는 데는 4시간이 조금 넘게 걸린다. 나사는 2023년 10월 5일에 '프시케(Psyche)'라는 탐사선을 발사할 계획이다. 이 탐사선은 중력을 이용해 화성 상공을 지나가며, 이후 태양 전기 추진을 활용해 소행성에 접근할 예정이다. 탐사선이 소행성에 도착하면, 4개의 다른 궤도에서 탐사 활동을 시작한다. 주된 연구 목적은 프시케가 실제로 소행성의 핵심 부분인지 파악하는 것이다. '프시케 임무'의 핵심 과학적 목표는 행성 형성의 기본 구성 요소를 분석하고, 이전에 경험하지 못한 새로운 세계를 탐험할 계획이다. 연구팀은 프시케에 핵의 잔여 물질이 있는지, 그 연대는 어느 정도인지, 그리고 지구의 핵과 유사한 환경에서 형성되었는지, 그 표면의 특성은 어떠한지를 밝히려고 한다. 프시케 탐사 우주선과 태양전지는 테니스장 정도의 크기다. 우주선의 몸체는 소형 픽업트럭 보다 약간 크고, 높이는 농구 골대 정도다. 우주선에는 △금속성분과 규산염 성분을 구분할 수 있는 고해상도 멀티스펙트럴 이미저(Multispectral Imager) △ 소행성의 원소 구성을 감지하는 감마선 및 중성자 분광계, △ 잔류 자기장을 감지하고 측정하는 자력계, △ X-밴드 무선 통신 시스템을 사용해 중력장을 고정밀도로 측정하고 프시케의 내부 구조에 대한 정보를 얻을 수 있는 전파과학, △ 짧은 시간에 많은 데이터를 전송할 수 있는 심우주 광통신(DSOC) 등이 탑재된다. 16프시케가 예상대로 대량의 금속으로 이루어져 있다면 그 가치는 약 10조 달러(한화로는 약 1경3280조원)로 추정된다. 그러나 이번 탐사 임무의 주요 목적은 단순한 채굴이나 경제적 이익이 아니라 해당 행성의 구성물질을 파악하는 것에 있다. 미국과 일본 등 우주 강국은 다른 소행성 탐사 프로젝트도 활발히 진행 중이다. 2019년에 발사된 일본의 우주선 '하야부사2'는 2030년 이후 다른 소행성으로의 여정을 계획하고 있다. 나사의 '오시리스 렉스' 탐사선은 소행성 베누(Bennu)에서 수집한 샘플을 지구로 가져오기 위해 오는 9월24일 복귀할 예정이다.
-
- IT/바이오
-
美 나사, 1경 규모 금속 행성 탐사선 10월 발사
-
-
외계 행성 'K2-18b', 생명 징후⋯메탄·이산화탄소 확인
- 미국 항공우주국(NASA)이 제임스웹 우주망원경을 통해 생명체가 존재할 가능성이 큰 행성을 찾아냈다. 소위 우주 강국으로 불리는 미국, 유럽, 인도, 중국, 러시아 그리고 한국과 일본 등은 최근 지구에서는 보이지 않는 달 뒷면을 탐사하기 위해 심혈을 기울이고 있다. 달 자원 탐사뿐만 아니라 자국의 과학기술을 뽐내기 위한 하나의 방편이기도 하다. 여기에 우주망원경도 첨단 기술이 대거 탑재되면서 우주에서 지구와 같은 생명체가 존재할 수 있는 행성을 찾고 있다. 마치 영화 '아바타'에서 행성을 찾는 것을 연상시킨다. 미국 미디어 바이트(The Byte)와 영국 매체 가디언에 따르면, 나사는 제임스웹 우주망원경을 통해 K2-18b에서 메탄과 이산화탄소 등을 발견해 생명체가 존재할 가능성이 있다고 밝혔다. 나사는 최근 제임스웹 우주망원경(JWST)으로 지구에서 120광년 떨어진 사자자리의 행성인 K2-18b의 대기 구성을 관찰한 결과 물로 이뤄진 바다와 해양 세계가 존재할 가능성을 발견했다고 밝혔다. K2-18b는 2015년 나사가 K2 임무에서 케플러 우주망원경을 통해 처음 확인했으며 앞서 지난 2019년 대기에 수증기가 있다는 관측 결과가 발표된 바 있다. 이 행성은 질량이 지구의 약 9배에 달하며, 지구보다는 크고 해왕성보다는 작은 질량을 지칭하는 이른바 '슈퍼지구'에 해당한다. 하이시언 행성 가능성 제임스웹 망원경은 K2-18b에서 지구상에 살아있는 유기체만이 생산할 수 있는 황함유화합물의 일종인 디메틸설파이트(DMS dimethyl sulfide)라 불리는 분자를 발견했다. 연구자들은 이 행성의 대기에서 메탄과 이산화탄소 존재를 확인했다. 이 행성은 바다로 덮여 있고, 수소가 풍부한 대기를 가진 '하이시언 행성'(Hycean planet, 대기에는 수소가 있고 표면에는 물이 있어서 생명체가 존재할 가능성이 있는 행성)일 가능성이 있다. K2-18b는 시스템상 거주 가능 지역에서 약 120광년 떨어진 사자자리의 차가운 왜성인 모항성을 공전한다. 이는 기술적으로 액체 물이 표면에 존재할 수 있을 만큼 별로부터 충분한 복사선을 받는다는 것을 의미한다. 이번 웹 망원경의 관측 결과 K2-18b의 대기에 메탄과 이산화탄소가 풍부하고 암모니아는 부족한 것으로 파악됐다. 나사는 "이는 이 행성의 수소 대기 아래에 물로 이뤄진 바다가 있을 수 있다는 가설을 뒷받침한다"고 설명했다. '미니 해왕성' 추정 외계 행성의 일종 K2-18b는 지구와 해왕성 크기의 중간 규모로, '미니 해왕성(sub-Neptunes)'이라고 불리는 외계 행성의 일종이다. 이 행성들은 우리 태양계의 어떤 행성과도 매우 달라서 행성의 성질에 대해서는 오직 근거에 기인한 추측만 할 수 있다. 영국 카디프 대학교 슈바지트 사카르(Subhajit Sarkar) 교수는 "비록 이런 종류의 행성은 우리 태양계에는 존재하지 않지만, 미니 해왕성은 지금까지 은하계에서 알려진 가장 일반적인 유형의 행성"이라고 말했다. 그는 이어 "현재까지 거주 가능 구역 미니 해왕성의 가장 상세한 스펙트럼을 얻었으며 이를 통해 대기에 존재하는 분자를 밝히는 데 성공했다"고 설명했다. 그러나 K2-18b가 생명체로 가득 차 있다고 결론을 내리기에는 너무 이르다는 지적이다. 연구자들은 더 많은 데이터가 시급한 실정이라고 언급했다. 연구팀 책임자인 영국 케임브리지 대학 니쿠 마두수단(Nikku Madhusudhan) 교수는 BBC를 통해 "만약 (생명체가) 확인된다면 이는 엄청난 일이 될 것이며 올바른 판단을 해야 한다는 책임감을 느낀다"고 말했다. 마두수단 교수는 "가장 궁극적인 목표는 거주 가능한 외계 행성에서 생명체를 식별하는 것이다. 이번 발견은 이 연구에서 하이시언 세계를 더 깊이 이해하기 위한 첫 걸음"이라고 덧붙였다. 다행스럽게도 제임스웹 우주망원경의 MIRI(중적외선 장비) 분광기를 통해 더 많은 데이터가 수집되고 있다. K2-18b 행성에 실제 바다가 존재한다면 수소 대기 아래 외계 생명체 존재도 가능할 것으로 보인다. 한편, K2-18b는 지구 지름의 약 2.6배, 질량의 8.6배의 크기로, 수소가 풍부한 대기 밑에 바다 또는 얼음이 존재할 것으로 예상되는 행성이다. 중력이 지구보다 1.18배며, 0도에서 40도의 온도로 인간이 살기에 적합한 것으로 추정된다. 2019년 9월 BC는 영국 유니버시티 칼라지 런던(UCL)의 연구팀이 이 행성의 대기에서 수증기를 찾아냈다고 보도됐다. 물이 있다는 것은 생명체가 살고 있거나 살 수 있다는 강력한 신호로 풀이된다.
-
- IT/바이오
-
외계 행성 'K2-18b', 생명 징후⋯메탄·이산화탄소 확인
-
-
달, 고대 얼음 없다..."달 탐사 전략 수정"
- 달의 영구음영 지역에 존재하는 것으로 알려진 얼음이 탄생 초기에 생성된 '고대 얼음'이 아니라는 연구 결과가 공개됐다. 달의 영구음영 지역(permanently shadowed regions, PSR)은 달의 남극과 북극 등 햇빛이 전혀 들지 않는 영원한 음지를 말한다. 과학 기술 전문 매체 인터레스팅엔지니어링에 따르면 행성과학연구소의 새로운 연구 결과, 달의 얼음이 우리가 알고 있는 것보다 훨씬 '젊다'는 사실이 밝혀졌다. 이번 발견으로 달 탐사 전략이 크게 수정될 전망이다. 행성과학연구소의 노버트 쇼르호퍼 선임 연구원이 이끄는 연구팀은 최근 '사이언스 어드밴스(Science Advances)' 학술지에 발표한 논문에서 달의 영구음영 지역(PSR)에 저장된 얼음은 약 34억년 전에 형성된 것으로 기존 추정치인 45억년보다 훨씬 '젊다'는 연구 결과를 공개했다. 쇼르호퍼 박사는 "이번 연구 결과로 달의 지질학적 이해뿐만 아니라 얼음 발견 예측에 대한 전략도 크게 수정될 것"이라고 말했다. 특히, 이 얼음은 달에서의 인간 생명 유지와 연료 생산 자원으로의 활용 가능성 때문에 많은 주목을 받고 있다. 달은 지구로부터 점점 멀어지면서 중요한 스핀 축 방향의 변화를 겪었다. 이 변화 이후에 영구적으로 그림자가 드리운 지역(PSR)이 등장하고 확장됐다. 달의 얼음은 수십억 년에 걸쳐 보존된 것으로 알려져 왔으며, 이로 인해 태양빛에서 가려진 PSR 지역은 여러 탐사 임무의 핵심으로 여겨져 왔다. 그러나 이번 연구 결과는 달 탐사의 궤도를 크게 변경할 필요가 있다는 점이 밝혀졌다. 지난해 발표된 프랑스의 한 연구와도 일치하는 이번 연구 결과는 지구와 달 사이의 거리 변화를 중심으로 진행됐다. 쇼르호퍼 박사는 이에 대한 깊은 통찰을 얻고 즉각 이를 달의 얼음 탐사에 반영하기 위한 조사를 시작했다고 밝혔다. 랄루카 루푸 공동 저자와 논문 작업을 협업한 쇼르호퍼는 지구와 달 사이의 거리 변화 모델을 바탕으로 달의 스핀 축 방향을 추정하고 PSR 지역을 정확하게 매핑했다. 11억년 '젊은' PSR 얼음 일반적으로는 달이 45억 년 전 초기에 혜성과 화산 활동으로 물이 생기거나 수증기를 내뿜었다고 믿어져 왔다. 그러나 이 연구에서는 PSR이 실제로는 약 34억 년 전에 형성되기 시작했다는 사실을 밝혀냈다. 쇼르호퍼는 "현재 극지방에서 발견되는 물은 달 초기의 물이 아니다. 데이터를 기반으로 PSR의 평균 연령은 최대 18억 년으로 추정된다. 따라서 달에는 실제로 '고대 얼음 저장소'가 없다"라고 강조했다. 또한 2009년에 달의 분화구 관측 및 감지 위성을 통해 발견된 물이 위치한 지점의 PSR은 10억 년보다 더 젊다. 쇼르호퍼는 이것이 긍정적인 발견이라고 지적하며, 젊은 PSR에도 얼음이 있을 가능성이 높다는 것을 시사했다. 한편, 이 연구는 얼음이 풍부하게 있는 것으로 보이는 수성의 극지방에 대한 관심을 증대시키고 있다. 쇼르호퍼는 "수성의 PSR이 오래되었을 것이며, 초기에 물을 포착했을 수 있다. 이것이 두 행성 간의 불일치를 설명할 수 있을 것"이라고 추측했다. 쇼르호퍼의 이번 연구는 NASA의 달 데이터 분석 프로그램 보조금과 태양계 탐사 연구 가상 연구소(SSERVI)의 GEODES 노드 지원을 받아 진행했다. 한국 달 탐사선 '다누리' 한편, 한국 달 탐사선 '다누리'도 달의 영구음영 지역 사진을 전송해 우리나라 달 탐사 위상을 높이고 있다. 다누리가 담은 달의 북극 지역 관측 사진은 지난 8월 7일 공개됐다. 달의 북극 지역에 있는 직경 약 20km의 분화구 에르미트-A는 내부에 영원히 태양빛이 닿지 않는 영구음영 지역을 포함하고 있다. 아울러 다량의 물이 얼음 형태로 존재할 것으로 예상되는 지역이기도 하다. 이외에도 다누리는 지구에서 관측하기 쉽지 않은 남극 지역 대형 분화구 드라이갈스키, 미국 아르테미스 III 계획의 착륙 후보지 중 하나인 아문센 분화구 영역 등의 고해상도 이미지를 담아 달의 민낯을 적극 탐사하고 있다. 이들 사진은 지난 8월 7일 대전 한국항공우주연구원에서 열린 '다누리 발사 1주년 기념식 및 우주탐사 심포지엄'에서 공개됐다. 다누리는 작년 8월 5일 오전 8시 8분 미국 플로리다주 케이프커내버럴 우주군 기지에서 발사된 후, 145일 간의 지구-달 항행을 통해 2022년 12월 27일 달 임무궤도에 진입했다. 이후 약 1개월의 시운전을 거쳐 2월 4일 정상 임무운영에 들어갔다. 다누리는 6개의 탑재체로 달 착륙후보지 탐색, 달 과학연구, 우주인터넷기술 검증 등 과학기술 임무를 수행 중이다. 지난 3월에는 우리나라 최초로 달 뒷면 촬영 사진을 전송하기도 했다. 지난 6월 다누리는 잔여 연료량과 본체 영향성 분석을 거쳐 임무운영기간을 2025년까지 연장했다.
-
- 포커스온
-
달, 고대 얼음 없다..."달 탐사 전략 수정"
-
-
[퓨처 Eyes(2)] 인도, 태양 탐사선 '아디트야-L1' 발사 성공
- 인도가 달 정복에 이어 태양의 비밀 벗기기에 도전하고 있다. 인도 달 탐사 우주선 찬드라얀 3호가 달 남극에 착륙한 지 불과 10일 만에 첫 태양 탐사선 아디트야-L1(Aditya-L1)이 태양을 향해 성공적으로 발사됐다. 무게가 약 1480kg(3264 파운드)로 초경량급 우주선인 '아디트야-L1'은 지난 9월 2일 오전 11시 50분(GMT 06시 20분)에 인도 남부 스리하리코타에 있는 사티시 다완 우주센터에서 44.4미터 높이의 극지 위성 발사체(PSLV-XL)를 이용해 태양을 향해 장대한 여행을 시작했다. 이 우주선은 '라그랑주 5'점 중 하나를 중심으로 후광 궤도를 돌며 지구에서 150만km를 비행할 예정이다. 이는 지구-태양 거리의 1%에 해당한다. 인도 우주국은 태양 탐사선이 이 거리를 여행하는 데 4개월(약 125일)이 걸릴 것이라고 밝혔다. 태양계에서 가장 큰 천체를 연구하기 위한 인도 최초의 우주 기반 태양 관측 임무는 '아디티야'라고도 알려진 힌두교의 태양신 수리아의 이름을 따서 명명됐다. BBC에 따르면 우주선 '아디티야-L1'에서 'L1'은 '라그랑주점 1'의 약자로, 인도 우주선이 향하고 있는 태양과 지구 사이의 정확한 지점을 의미한다. 유럽우주국에 따르면 라그랑주 지점은 태양과 지구와 같은 두 개의 큰 물체의 중력이 서로 상쇄되어 우주선이 '호버링(hovering, 정지 비행)'할 수 있는 지점을 말한다. 태양 활동·우주 날씨 실시간 관측 미국 기술 전문매체 테크 크런치에 따르면 인도의 우주 기관인 인도우주연구기구(ISRO)는 아디트야-L1 우주선에 원격 감지용 4개와 현장 실험용 3개 등 총 7개의 과학장비(페이로드, payload)를 설치했다. 탑재된 장비에는데이터를 수집하고 관측을 하기 위해 가시 방출선 코로나그래프, 태양 자외선 영상 망원경, X-선 분광기, 태양풍 입자 분석기, 플라즈마 분석기 패키지, 3축 고해상도 디지털 자력계 등이 장착되어 있다. ISRO는 이 우주선에 태양 코로나(가장 바깥층), 광권(태양 표면 또는 지구에서 보이는 부분), 염색권(광권과 코로나 사이에 있는 얇은 플라즈마 층)을 관찰하고 연구할 7가지 페이로드를 탑재했다고 밝혔다. 코드명 'PSLV-C57'인 이 우주선 임무의 전반적인 목적은 태양 활동과 그것이 우주 날씨에 미치는 영향을 실시간으로 관측하는 것이다. 이륙 한 시간여 만에 아디트야-L1 우주선은 146×12,117마일의 타원형 궤도에 진입시켰다. 인도가 발사체 상단이 두 번의 연소 과정을 거쳐 의도했던 궤도에 우주선을 진입시킨 것은 이번이 처음이다. ISRO의 S. 소마나스 회장은 우주국의 임무 통제 센터에서 참석자들에게 "이제 아디트야-L1은 몇 가지 지구 기동을 거친 후 여정을 시작할 것"이라면서 "아디트야 우주선이 긴 여정을 마치고 L1의 후광 궤도에 진입할 수 있도록 최선을 다하길 기원한다"라고 말했다. 아디트야-L1은 L1을 향해 발사되기 전에 지구를 여러 번 돌게 된다. 그리고 일식 동안 태양이 숨겨져 있더라도 지속적으로 태양을 관찰하고 과학적 연구를 수행할 수 있다. 이번 연구는 과학자들이 태양풍과 태양 플레어와 같은 태양 활동과 그것이 지구와 우주 날씨에 미치는 영향을 실시간으로 이해하는 데 도움이 될 것이다. 태양 탐사 비용 4600만달러 이번 태양 탐사선의 비용이 얼마인지 밝히지 않았지만, 인도 언론의 보도에 따르면 37억 8000만 루피(4600만 달러, 약 615억 원)가 소요될 것으로 예상된다. 아디트야-L1 미션의 프로젝트 책임자인 니가르 샤지는 "아디트야-L1 팀에게는 꿈이 실현된 것"이라고 말했다. 샤지는 "아디트 [임무]가 시운전되면 이 나라의 헬리오피직스는 물론 전 세계 과학계의 자산이 될 것"이라고 기대했다. 과거에는 미국, 유럽, 중국이 태양을 연구하기 위해 우주에서 태양 관측소 임무를 수행했다. 지금까지 지상 망원경을 이용한 태양 관측에 주력해 온 인도가 이 분야에 뛰어든 것은 이번이 처음이다. 아디트야-L1이 성공하면 인도는 이미 태양을 연구하고 있는 일부 극소수 국가 그룹에 합류하게 된다. 일본은 1981년 태양 플레어를 연구하기 위해 최초로 탐사선을 발사했다. 미국 우주국 나사(NASA)와 유럽우주국(ESA)은 1990년대부터 태양을 관찰해 왔다. 나사와 ESA는 2020년 2월, 공동으로 태양 궤도선을 발사해 가까운 거리에서 태양을 연구하고 있다. 과학자들은 태양의 역동적인 행동을 이해하는 데 도움이 될 데이터를 수집하고 있다고 밝혔다. 아울러 나사의 최신 우주선인 파커 태양 탐사선은 최초로 2021년 태양의 외기권인 코로나를 통과해 새로운 역사를 썼다. 유엔 우주국(UNOOSA)에 따르면 지구 궤도에는 약 1만290개의 위성이 남아 있으며, 그 중 약 7800개의 위성이 현재 작동 중이다. 한편, 인도의 태양 탐사선은 지난 8월 말 세계 최초로 달 남극 근처에 탐사선을 성공적으로 착륙시킨 것에 연이은 쾌거다. 이로써 인도는 미국, 구소련, 중국에 이어 세계에서 네 번째로 달에 연착륙한 국가가 되었다. 달 남극에는 인류 생존의 필수 자원인 물이 존재하고 있는 것으로 알려졌다. 나사에 따르면 달에서 물을 최초로 발견한 것은 인도 탐사선이다. 2008년 인도 탐사선 찬드라얀 1호가 달 표면에 퍼져 있고 극지방에 집중된 수산기 분자를 감지한 것이 물 발견에 결정적으로 기여했다. 현재 인도는 우주에 50개 이상의 위성을 보유하고 있으며 통신 링크, 날씨 데이터, 해충 침입, 가뭄 및 임박한 재난 예측 등 여러 가지 중요한 서비스를 제공한다. ISRO는 아디트야-L1과 함께 2025년으로 예정된 인간 우주 비행 임무인 가가냥(Gaganyaan) 발사를 오랫동안 준비해 오고 있다. 또 인도 우주국은 금성을 향한 무인 탐사선 발사도 계획하고 있다.
-
- 포커스온
-
[퓨처 Eyes(2)] 인도, 태양 탐사선 '아디트야-L1' 발사 성공
-
-
미국·중국·러시아 등 강대국이 달에서 채굴하려는 광물은?
- 최근 미국, 중국, 인도에 이어 러시아가 47년만에 달 탐사선을 궤도에 진입시켜 우주 전쟁이 본격화 되고 있다. 러시아 국립우주국 로스코스모스는 러시아의 달 탐사선인 루나 25호(Luna-25)가 지난 8월 16일 오전 11시 57분(GMT 08시57분)에 달 궤도에 진입했다고 밝혔다. 미국, 중국, 인도 등 주요 강대국들이 지구 유일의 자연 위성인 달 표면에 존재하는 다양한 물질을 탐사하기 위해 경쟁하는 가운데 러시아가 최근 47년 만에 처음으로 달 착륙 우주선을 발사한 것. 루나 25호는 지구의 유일무이한 위성인 달을 5일 정도 돌고난 뒤 8월 21일로 예정된 달 남극에 연착륙하기 위해 항로를 바꾼다. 소형차 정도의 크기인 루나 25호는 최근 몇 년 동안 마국 항공우주국(NASA)과 다른 나라 우주국의 과학자들이 분화구에서 얼어붙은 물의 흔적을 발견한 남극에서 1년 동안 작동하는 것을 목표로 한다. 러시아 달 탐사선, 47년만에 달 궤도 진입 최근 지오 뉴스(Geo News)에 따르면 러시아는 달 탐사선을 발사한 후 러시아와 중국의 공동 탐사선과 달 기지 건설 가능성도 검토할 것이라고 밝혔다. 러시아 우주 프로그램을 추적하는 러시아스페이스웹닷컴(RussianSpaceWeb.com)의 창시자이자 게시자인 아나톨리 작크(Anatoly Zak)에 따르면 소련은 1976년 달 탐사선인 루나 24(Luna-24) 이후 어떤 러시아 우주선도 달 궤도에 진입하지 못했다. 미국의 나사(NASA)는 '달의 골드러시'에 대해 이야기하고 달 채굴의 잠재력을 탐구했다. 인도의 달 탐사선 찬드라얀 3호는 8월 말로 예정된 달 남극 착륙을 위해 이달 초 달 궤도에 진입했다. 중국은 2030년 이전에 유인 달 탐사선 착륙을 목표로 하고 있다. 지난 5월 스페이스뉴스에 따르면 중국 유인 우주국(CMSA)의 린 시창 부국장은 지우취안 위성 발사 센터에서 열린 기자회견에서 "최근 중국의 유인 달 탐사 프로그램의 달 착륙 단계가 시작됐다. 주요 목표는 2030년까지 중국 우주 비행사를 처음으로 달에 착륙시키는 것"이라고 밝혔다. 이처럼 미국과 중국, 러시아 등 강대국들이 달 탐사에 열을 올리는 이유는 무엇일까. 지구에서 38만4400km 떨어져 있는 달은 지구의 자전축 흔들림을 완화하여 보다 안정적인 기후를 보장한다. 또한 달은 전 세계 바다에 조수(지구·태양·달 사이의 인력 작용으로 해수면이 하루에 2회 주기적으로 오르내리는 것)를 일으킨다. 현재 학설에 따르면 달은 약 45억 년 전에 거대한 물체가 지구와 충돌하면서 형성된 것으로 추정된다. 충돌로 인한 파편이 모여 달을 형성한 것으로 추정하고 있다. 인도 달 탐사선, 달 남극에 '물' 존재 확인 인도와 러시아 달 탐사선의 최종 목적지인 달 남극은 물이 존재하는 것으로 알려졌다. 달에 물이 존재한다는 것은 주요 우주 강대국에 큰 영향을 미친다. 인간 생명에 필수적인 물의 존재로 인해 인간이 행성에 더 오래 머물면서 달 자원을 채굴할 수 있게 할 것으로 보인다. 달에는 물을 비롯해 헬륨-3, 스칸듐, 이트륨 등 희토류 금속이 있다. △ 물 나사에 따르면 달에서 물을 최초로 발견한 것은 인도 탐사선이다. 2008년 인도 탐사선 찬드라얀 1호가 달 표면에 퍼져 있고 극지방에 집중된 수산기 분자를 감지한 것이 결정적이다. 물은 인간의 생명에 필수적이다. 또 수소와 산소의 원천이 될 수 있고 로켓 연료로 사용될 수 있다. △ 헬륨-3 헬륨-3은 지구에서는 희귀한 헬륨의 동위원소다. 나사에 따르면 달에는 헬륨-3이 100만 톤이 있는 것으로 추정된다. 유럽우주국에 따르면 이 동위원소는 핵융합로에서 핵에너지를 제공할 수 있지만 방사능이 아니기 때문에 위험한 폐기물을 생성하지 않는다고 한다. △ 희토류 금속 보잉의 연구에 따르면 스마트폰, 컴퓨터 및 첨단 기술에 사용되는 희토류 금속인 스칸듐, 이트륨 및 15란타나이드 등이 달에 존재한다. 그렇다면 달에서 희토류 등의 채굴은 어떻게 이루어질까. 이들 광물들을 채굴하려면 달에 일종의 인프라를 구축해야 한다. 지구가 아닌 달의 환경에서는 로봇이 대부분의 힘든 작업을 해야 한다는 것을 의미한다. 다만 달에 물이 있다는 것은 인간이 장기간 존재할 수 있는 조건이 될 수 있다. 특정 국가가 '달 주권' 주장할 수 있나? 지구의 법으로 어느 한 나라가 달 주권을 주장하기엔 아직 불명확하고 빈틈이 많다. 1966년 유엔의 우주 조약에 따르면 어떤 국가도 달이나 다른 천체에 대한 주권을 주장할 수 없으며 우주 탐사는 모든 국가의 이익을 위해 수행되어야 한다고 명시되어 있다. 그러나 법률가들은 민간 기업이 달의 일부에 대한 주권을 주장할 수 있는지 여부는 불분명하다고 지적했다. 랜드(RAND Corporation)는 작년에 블로그에서 "우주 채굴은 잠재적으로 높은 위험에도 불구하고 기존의 정책이나 거버넌스가 상대적으로 거의 적용되지 않는다"라고 언급했다. 1979년 달 협정은 달의 어떤 부분도 "국가, 국제 정부 간 또는 비정부 기구, 국가 조직 또는 비정부 단체 또는 자연인의 재산이 되어서는 안 된다"고 명시하고 있다. 문제는 주요 우주 강대국 중 어느 나라도 이 협정을 비준하지 않았다는 점이다. 미국은 2020년 나사의 아르테미스 달 탐사 프로그램의 이름을 딴 '아르테미스 협정 '을 발표해 달에 '안전 구역'을 설정함으로써 기존의 국제 우주법을 기반으로 법을 구축하기 위해 노력했다. 그러나 러시아와 중국은 이 협정에 가입하지 않아 향후 강대국간의 달 주권 다툼 문제가 제기될 가능성이 크다. 한편, 19일 러시아 국립우주국 로스코스모스는 러시아의 루나 25호가 착륙 전 궤도로의 이동을 준비하던 중 이날 "비정상적인 상황"이 발생했다고 밝혀 달 남극 탐사에 제동이 걸렸음을 시사했다.
-
- 산업
-
미국·중국·러시아 등 강대국이 달에서 채굴하려는 광물은?