검색
-
-
합성 DNA로 효모 염색체 16개 합성⋯"100% 합성 게놈" 근접
- 과학자들은 합성 DNA를 이용해 효모의 16개 염색체를 모두 합성하는 데 성공했다. 최근 기술 전문 매체 BGR와 GEN의 보도에 따르면, 국제 연구팀은 7개 이상의 합성된 염색체를 단일 효모 세포에 통합해, 인공 DNA의 비율이 50% 이상인 상태에서도 야생 효모처럼 생존하고 복제가 가능한 효모를 만드는 데 성공했다. 이는 100% 합성된 게놈을 가진 효모 개발에 한층 더 가까워진 것을 의미한다. 영국 맨체스터대 패트릭 카이 교수와 미국 뉴욕대(NYU) 랑곤헬스의 제프 보케 교수 등 '합성 효모 게놈 프로젝트(Sc2.0)' 연구팀은 16개 염색체를 모두 합성해 오류를 수정하고 있다고 전했다. 전체 유전체가 합성 염색체로 이루어진 효모를 만드는 게 목표인 Sc2.0은 미국, 영국 등 과학자 200여 명으로 구성된 국제 컨소시엄이다. 연구팀은 먼저 효모의 16개 염색체 중 15개를 인공 DNA로 합성했다. 그런 다음, 이들 염색체를 하나의 단일 세포에 옮기기 위해 기존 효모 균주와 교배하는 방식을 사용했다. 이번 연구 성과는 지난 9일 과학 저널 '셀(Cell)'과 '셀 노믹스(Cell Genomics)', '몰레큘러 셀'(Molecular Cell) 등에 논문 10여편으로 게재됐다. 이 논문은 합성 DNA를 이용한 세포 생성 분야에서 큰 진전을 이루었다는 평가를 받고 있다. 이전 연구에서는 효모의 염색체 일부를 합성 DNA로 합성하는 데 성공한 바 있지만, 이번 연구는 16개 염색체를 모두 합성하여 살아있는 세포를 만들어낸 최초의 사례다. 연구팀은 맥주 발효 또는 제빵에 사용되는 천연 효모인 '사카로마이세스 세레비지에(Saccharomyces cerevisiae)'를 기반으로, 효모 염색체들을 합성하고 이를 실제 효모 세포에 점차 확대 적용했다. 연구자들은 또한 tRNA 신염색체라고 불리는 자연계 어디에서도 발견되지 않는 완전히 새로운 염색체를 생성함으로써 게놈의 안정성을 높이는 조치를 취했다. 과거에는 박테리아와 바이러스의 게놈이 합성된 예가 있었지만, 복잡하게 얽힌 여러 개의 염색체를 가진 진핵생물의 게놈을 합성하여 실제 세포에서 정상적으로 기능하는 것을 입증한 것은 이번이 처음이다. 카이 교수는 "이번 연구는 단순히 몇 개의 유전자를 수정하는 것이 아니라, 효모의 전체 게놈을 새롭게 설계하고 구축한 것으로, 엔지니어링 생물학의 새로운 장을 여는 것"이라며 이번 연구의 중요성을 강조했다. 논문의 교신저자이자 Sc2.0 프로젝트의 리더인 보케 교수는 "자연이 제공한 설계를 크게 변형하여 새롭게 창조하는 것이 중요하다"고 말하며, "이 프로젝트의 가장 중요한 목표는 우리에게 새로운 생물학적 지식을 제공할 수 있는 효모를 개발하는 것"이라고 말했다. 이번 연구를 통해 인공 DNA를 이용해 다양한 종류의 효모를 생성할 수 있을 것이다. 이로써 향후 식품, 바이오 연료, 의약품 등 다양한 분야에 활용될 것으로 전망된다.
-
- IT/바이오
-
합성 DNA로 효모 염색체 16개 합성⋯"100% 합성 게놈" 근접
-
-
美 메릴랜드대, 야생 '뱀파이어 바이러스' 최초 발견
- 미국에서 '뱀파이어 바이러스'가 야생에서 최초로 발견돼 과학자들의 주목을 받고 있다. 영국의 의사이자 소설가였던 존 윌리엄 폴리도리(1795~1821)는 흡혈귀 즉 '뱀파이어' 소설을 집필해 큰 인기를 끌었다. 밤에 나타나 사람들의 피를 빨아먹고, 삶을 연명하는 뱀파이어는 지금까지도 수많은 영화로도 제작될 만큼 단골 소재로 쓰이고 있다. 이러한 뱀파이어 바이러스가 실제로 발견돼 세상을 놀라게 했다. 영국 매체 메일 온라인은 미국 메릴랜드대학교 볼티모어 카운티(UMBC) 연구팀이 스스로를 복제하기 위해 다른 바이러스에 달라붙는 병원체인 '뱀파이어 바이러스'를 처음으로 관찰했다고 최근 보도했다. 연구팀은 오랫동안 이론적으로 대부분의 자가 복제와는 달리 일부 바이러스가 다른 바이러스를 '잡아먹는 현상'을 알고 있었다. 메릴랜드의 연구팀은 '위성 바이러스'와 '도우미 바이러스'라 불리는 바이러스 간의 상호작용을 현미경을 통해 관찰했다. 연구 결과, 박테리아를 감염시키는 일종의 바이러스인 박테리오파지가 토양 매개 바이러스의 '목' 부분(캡시드가 바이러스의 꼬리와 연결되는 부위)에 부착하는 것을 발견했다. 수석 연구원이자 생물학자인 타지드 드카발로(Tagide deCarvalho)는 이러한 현상을 목격하고 믿을 수 없었다고 밝혔다. 그는 "박테리오파지나 다른 바이러스가 또 다른 바이러스에 부착되는 것을 목격한 사람은 거의 없었다"고 말하며 놀라움을 나타냈다. 바이러스 간의 관계에서 '위성'과 '도우미'라는 용어가 사용된다. 여기서 '위성'은 자신의 생명주기 동안 도우미 바이러스에 의존하는 감염성 요소를 의미한다. 연구팀은 토양에서 발견되는 스트렙토마이세스 박테리아(조력자 역할을 하는 종)를 포함해 위성 박테리오파지(박테리아를 감염시키는 바이러스)의 샘플을 연구했다. 일반적으로 박테리오파지는 유전적으로 통합된 유전자를 가지고 있으며, 보통은 도우미 바이러스에 직접 부착하지 않는다. 그러나 UMBC에서 연구된 '미니플라이어(MiniFlayer)'라고 명명된 이 위성은 유전적 통합이 없는 것으로 알려진 최초의 사례다. 이는 숙주 세포의 DNA에 병합될 수 없기 때문에 생존하려면 숙주 세포에 들어갈 때마다 '마인드플라이어(MindFlayer)'라는 도우미 바이러스 근처에 있어야 한다. 실험 결과에 따르면, 분석된 도우미 바이러스 중 80%(50개 중 40개)가 목 부위에 위성 바이러스가 부착된 상태로 관찰됐다. 이러한 발견을 바탕으로, 연구팀은 이 현상의 직접적인 증명은 아직 이루어지지 않았음에도 불구하고, 바이러스 간의 부착이 중요한 의미를 갖는다고 추론했다. 이반 에릴 생물학 교수는 이에 대해 "부착이 없다면, 위성 바이러스가 어떻게 세포 내부로 들어갈 수 있을지 보장할 수 없다"고 지적했다. 추가 관찰을 통해 미니플라이어와 도우미 바이러스가 오랫동안 함께 진화해온 사실이 밝혀졌다. 에릴 교수는 "이 위성 바이러스는 적어도 1억 년 동안 도우미 바이러스와 관련되어 게놈을 조정하고 최적화해왔다"고 주장했다. 에릴 연구팀의 대학원생이자 논문 공동 제1저자인 엘리아 마스콜로(Elia Mascolo)는 위성, 도우미, 숙주의 게놈을 분석하여 이전에는 알려지지 않았던 이러한 바이러스 관계에 대한 추가적인 단서를 밝혀냈다. 대부분의 위성 바이러스는 숙주 세포 내부에 들어간 후 그 세포의 유전 물질에 통합될 수 있는 유전자를 가지고 있다. 이를 통해 도우미 바이러스가 세포에 들어올 때마다 위성 바이러스가 번식할 수 있게 되며, 숙주 세포는 위성 바이러스가 분열할 때 그것의 DNA와 자신의 DNA를 복제하게 된다. 특히 바이러스 간의 상호 작용이 질병의 발병과 전파에 어떤 영향을 미치는 지 이해하는 데 도움이 될 것으로 기대된다.
-
- 생활경제
-
美 메릴랜드대, 야생 '뱀파이어 바이러스' 최초 발견
-
-
한·영, ODA 사업 등 '전략적 개발 파트너십' 체결…협력 가속화
- 윤석열 대통령의 영국 국빈 방문을 계기로 한국과 영국이 공적개발원조(ODA) 등 국제 개발 협력 분야 유·무상 전략적 파트너십을 체결했다. 정부는 21일(현지시간) 영국 런던에서 추경호 경제부총리 겸 기획재정부 장관과 박진 외교부 장관이 데이비드 캐머런 영국 외교·영연방·개발부 장관과 '한·영 전략적 개발 파트너십'을 체결했다고 23일 밝혔다. 에에 따라 대외경제협력기금(EDCF)과 영국 국제투자공사 간 협력사업을 추진하는데 있어 속도가 붙을 전망이다. 이번 파트너십 체결은 한·영 수교 140주년 기념 윤석열 대통령의 영국 국빈 방문을 계기로 이뤄졌다. 지난 5월 양국이 서명한 '한·영 전략적 개발 파트너십 의향서'의 후속 조치기도 하다. 양국은 공통 관심 분야인 디지털, 기후·환경, 보건, 민간협력·개발금융, 여성 부문에서 △국제개발 파트너십(필라1) △개발 경험 공유 및 역량 강화(필라2) △다자체제 내 협력(필라3) 등 3대 축을 중심으로 전략적 협력을 추진할 계획이다. 유상원조 부문에서 대외경제협력기금(EDCF)과 영국 국제투자공사 간 협력 사업을 추진한다. 내년도 ODA 예산 확대에 대비해 사업 발굴 경로를 다변화할 수 있을 것으로 기대된다고 정부 관계자는 전했다. 무상원조 부문에서는 인도-태평양 지역을 대상으로 한 사업 발굴 과정에서 영국과의 공동 사업을 추진할 수 있는 방안을 모색한다. 개발 협력 분야 인적 교류와 정보 공유도 확대해 전문성을 강화하고 다자무대에서 양자 공조를 추진키로 했다. 유상원조는 기재부가, 무상원조는 외교부가 주관하는 한국의 국제 개발 협력 추진 체계에서 선진 공여국과 유·무상 통합 파트너십을 구축한 것은 처음이다. 기재부 관계자는 "한·영 수교 140주년을 맞아 개발 협력 분야에서도 양국 간 미래지향적 협력을 강화하기 위한 토대를 마련했다"며 "이를 바탕으로 개발도상국의 지속가능발전목표(SDGs) 달성 지원을 위해 협력해 나가기로 했다는 데 의의가 있다"고 말했다.
-
- 경제
-
한·영, ODA 사업 등 '전략적 개발 파트너십' 체결…협력 가속화
-
-
스페이스X 대형우주선 '스타십' 두 번째 발사도 실패⋯머스크 "축하" 트윗
- 일론 머스크가 이끄는 우주 개발 기업 스페이스X는 18일(현지시간) 대형 우주선 '스타십'(Starship)의 두 번째 지구궤도 시험비행이 실패했다고 발표했다. 이날 오전 7시 3분, 미국 텍사스주 보카 치카의 스타베이스 발사시설에서 스타십이 발사됐다. AP 통신과 다른 뉴스 소스에 따르면, 발사 3분 후, 스타십은 수직으로 상승하며 2단 로켓의 아랫부분인 '슈퍼 헤비'가 분리되었다. 이후 스타십은 90km(55마일) 상공으로 치솟아 우주 궤도 진입을 시도했다. 그러나 '슈퍼 헤비' 로켓은 분리 직후 멕시코만 상공에서 폭발했다. 우주선 부스터는 분리 후 우주에 도달하여 궤도 진입을 시도하는 도중, 발사 8분 만에 통신이 두절됐다. 스페이스X의 존 인스프러커 수석 통합 엔지니어는 "두 번째 단계의 데이터를 잃어버렸다"며 부스터와의 통신이 단절된 것으로 보인다고 밝혔다. 이에 따라 스페이스X는 스타십의 자폭 기능(self-destruct)을 활성화시켰다. 이 기능은 스타십이 예정된 경로를 벗어나지 않도록 하기 위한 조치다. 스타십은 원래 240km 상공 지구 궤도에 진입한 후, 약 1시간 반 만에 하와이 인근 태평양에 착륙할 예정이었다. 이번 실패로 스페이스X는 다시 한 번 중대한 도전에 직면하게 되었다. 스페이스X는 최근 스타십의 지구궤도 시험 비행과 관련하여, "슈퍼 헤비 부스터와 우주선이 계획보다 빠르게 분리됐다"고 분석하며, 이러한 상황에도 불구하고 "믿을 수 없을 정도로 성공적인 날이었다"고 평가했다. 이는 기술적인 난관에도 불구하고 이루어낸 진전을 강조하는 발언으로 보인다. 일론 머스크는 발사 현장에서 직접 스타십의 발사를 지켜보며, 발사 후 자신의 SNS 계정을 통해 "스페이스X 팀, 축하합니다"라고 전했다. 이는 팀의 노력과 진전을 인정하는 동시에 그들의 노력을 격려하는 메시지로 해석된다. 이번 시험 비행은 당초 17일에 예정되어 있었으나, 일부 부품 교체로 인해 하루 연기되었다. 이러한 조정은 우주 비행의 복잡성과 미세한 조정의 필요성을 반영한다. 스페이스X는 이번 시험 발사 실패의 원인 분석에 착수할 예정이다. 미국 연방항공청(FAA)은 이 사건에 대한 조사를 감독하며, 이는 항공우주 산업의 안전과 발전을 위한 중요한 단계로 여겨진다. 이번 시험 발사는 지난 4월 20일 첫 발사 실패 이후 두 번째 시도다. 지난 4월 첫 시도보다는 두 배가량 비행했다. 지난 4월 첫 시도에서는 스타십이 이륙 후 하단의 슈퍼헤비 로켓과 분리되지 못하고 약 4분 만에 공중에서 폭발해 실패로 돌아갔다. 빌 넬슨 미국 항공우주국(NASA) 국장은 자신의 SNS 계정을 통해 "우주비행은 '할 수 있다'는 자세와 굉장한 혁신을 요구하는 어려운 모험"임을 언급하며, "오늘의 시험 비행은 배움의 기회"라고 말했다. 그는 또한 "NASA와 스페이스X는 인간을 달, 화성, 그 너머로 데려갈 것"이라며 미래에 대한 기대를 표현했다.
-
- 산업
-
스페이스X 대형우주선 '스타십' 두 번째 발사도 실패⋯머스크 "축하" 트윗
-
-
중국, 인간처럼 협력하는 드론 기술 개발
- 중국 과학자들이 인간처럼 협력하고 작업을 수행하는 새로운 드론 기술을 개발했다고 인디아 타임스(India Times)가 최근 보도했다. 일반적으로 드론 군집은 벌이나 개미처럼 군집 지능을 통해 통신하고 협업한다. 하지만 이번에 개발된 기술은 인간의 협력 방식을 모방한 것으로, 드론이 서로 의사소통하고 작업을 분담하는 방식이 인간이 팀을 운영하는 방식과 유사하다. 연구팀은 이 기술을 통해 드론이 다양한 분야에서 활용될 수 있을 것으로 기대하고 있다. 예를 들어, 보안 순찰, 재난 구조, 항공 물류 등에서 드론을 보다 효율적이고 안전하게 사용할 수 있을 것으로 보인다. 이 기술은 중국 산시성 서북공업대학교 리 쉬에롱(Li Xuelong) 교수가 이끄는 인공지능, 광학, 전자학부 팀이 개발했다. 리 교수는 컴퓨터 비전과 머신 러닝 분야의 전문가로, 드론의 자율주행 기술을 연구해왔다. 이번 연구에서 리 교수 팀은 챗GPT와 같은 대규모 언어모델(LLM)을 실제 애플리케이션에 통합했다. 이 드론의 핵심 기능은 '인간 두뇌'로, '인턴LM(InternLM)'이라는 오픈 소스 대형 언어 모델에서 개발된 자연어를 사용하여 서로 상호 작용할 수 있다는 점이다. 이를 통해 운영자와 드론 간의 원활한 통신이 가능하다. 연구팀은 이번 기술을 실증하기 위해 6대의 드론을 이용한 실험을 진행했다. 실험에서 드론은 서로 그룹 채팅을 통해 의사소통하며 수색 작업을 수행했다. 3대의 드론은 수색 지역을 탐색하고, 나머지 3대는 수색 결과를 공유했다. 연구팀은 "이번 기술은 협업형 드론의 새로운 시대를 열어줄 수 있을 것으로 기대한다"며 "향후 다양한 분야에서 드론의 활용도를 높이기 위해 연구를 지속할 계획"이라고 밝혔다.
-
- 산업
-
중국, 인간처럼 협력하는 드론 기술 개발
-
-
나사, 최신 우주 망원경으로 4억5천만 개 은하 조사...우주지도 작성 목표
- 미국 항공우주국(NASA)의 새로운 우주 탐사 프로젝트인 SPHEREx 망원경이 우주 지도 작성을 위한 중요 단계에 진입했다고 과학 전문 매체 사이테크데일리가 15일(현지시간) 보도했다. 사이테크데일리에 따르면, SPHEREx는 지금까지 볼 수 없었던 방식으로 우주의 지도를 작성할 계획이며, 현재 지구 궤도에 도착해 전체 하늘의 지도를 그릴 준비를 하고 있다. '우주의 역사, 재이온화 시대 및 빙결체 탐사를 위한 분광-광도계(Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer)'로 알려진 SPHEREx는 약 2.6미터(8.5피트) 높이와 3.2미터(10.5피트) 너비의 독특한 형태를 가진 망원경이다. 이 우주 망원경의 특이한 외형은 원뿔 모양의 광자 차폐막으로 만들어졌으며, 남부 캘리포니아에 위치한 NASA 제트 추진 연구소(Jet Propulsion Laboratory, JPL)의 클린룸에서 조립 중이다. 차폐막의 구조와 기능 나사의 SPHEREx 망원경은 태양과 지구로부터 오는 빛과 열을 차단하기 위해 세 개의 중첩된 원뿔 모양의 차폐막으로 둘러싸여 있다. 이 차폐막들은 각각 다른 크기의 원뿔 안에 위치새 망원경을 효과적으로 보호한다. SPHEREx는 하늘의 모든 영역을 스캔하여 매년 두 장의 상세한 천체 지도를 완성할 예정이다. JPL의 사라 수스카 뷔페이로드 관리자 겸 시스템 엔지니어는 "SPHEREx는 매우 빠른 속도로 하늘을 스캔해야 하기 때문에 높은 기동성이 요구된다"고 밝혔다. 그는 "차폐막은 보기에는 무겁게 보일 수 있지만 실제로는 매우 가볍고 여러 층의 재료로 구성되어 있다. 외부는 알루미늄 시트로, 내부는 알루미늄 벌집 구조로 되어 있어 가볍지만 견고하다"고 설명했다. 세부적인 미션 목표 2025년 4월까지 발사 예정인 SPHEREx는 과학자들이 생명에 필요한 주요 성분, 특히 물의 기원에 대한 더 깊은 이해를 제공할 것으로 기대된다. 이를 위해 SPHEREx 미션은 새로운 별이 탄생하고 행성이 형성되는 곳인 성간 가스와 먼지 구름 속의 물 얼음의 분포를 측정할 예정이다. 또한 우주 은하들이 내뿜는 빛의 양을 분석하여 은하의 역사를 연구할 계획이다. 이러한 관측을 통해 은하들이 언제 형성되기 시작했으며, 시간이 지남에 따라 그 형성 과정이 어떻게 변화했는지를 밝혀낼 수 있을 것이다. 또한, 수백만 은하의 위치를 서로에 대해 매핑함으로써, SPHEREx는 빅뱅 직후의 우주의 급격한 팽창, 또는 인플레이션이 어떻게 일어났는지에 대한 새로운 단서를 찾아 낼수 잇을 것으로 보인다. 냉각과 안정성 확보 SPHEREx는 적외선 광을 감지하여 다양한 임무를 수행할 예정이다. 적외선은 가시광선보다 긴 파장을 가지며 열 복사의 한 형태로도 알려져 있다. 모든 따뜻한 물체는 적외선을 방출하므로, 망원경 자체도 적외선을 생성할 수 있다. 이 적외선이 탐지기와 상호작용하면 문제가 될 수 있기 때문에, 망원경은 극도로 추운 상태인 섭씨 약 -210도(화씨 -350도) 이하로 유지되어야 한다. 망원경을 보호하는 외부 광자 차폐막은 태양과 지구로부터의 빛과 열을 차단하며, 각 뿔 사이의 공간은 열이 망원경 내부로 침투하는 것을 방지한다. 그러나 SPHEREx가 적절한 온도에 도달하도록 보장하기 위해서는 V-그루브 라디에이터라는 특별한 장치가 필요하다. 이 장치는 우산을 거꾸로 뒤집은 것처럼 생긴 세 개의 원뿔형 거울로 구성되어 있으며, 광자 차폐막 아래에 위치한다. 각 거울은 적외선 광을 우주로 튕겨내는 일련의 쐐기 모양으로 되어 있어, 실온의 우주선 버스에 위치한 컴퓨터와 전자 장치에서 발생하는 열을 제거하는 데 도움이 된다. JPL의 콘스탄틴 페나넨 페이로드 매니저 "우리는 SPHEREx가 얼마나 차가운지뿐만 아니라 온도가 일정하게 유지되는지도 중요하게 생각한다"라고 말했다. 그는 "온도가 변하면 감지기의 감도가 달라져 잘못된 신호로 해석될 수 있다"고 설명했다. 하늘을 관측하는 창 SPHEREx의 주요 구성요소인 망원경은 3개의 거울과 6개의 감지기를 통해 멀리 떨어진 광원으로부터 적외선을 수집한다. 이 망원경은 광자 차폐막이 제공하는 보호 범위 내에서 가능한 한 넓은 하늘 영역을 관측할 수 있도록 설계된 기울기 조절 받침대에 장착되어 있다. 콜로라도주 볼더의 볼 에어로스페이스에서 제작된 이 망원경은 지난 5월 캘리포니아주 패서디나의 칼텍(Caltech, 캘리포니아 공과대학교)에 도착해, 검출기 및 V-그루브 라디에이터와 통합됐다. JPL의 엔지니어들은 로켓 발사 시 견뎌야 할 진동 모사 테스트를 위해 진동 테이블에 망원경을 부착했다. 진동 테스트 후, 망원경은 다시 칼텍으로 이송되어 과학자들이 거울의 초점이 여전히 정확하게 맞춰져 있는지 확인할 수 있었다. SPHEREx의 적외선 '탐색 능력' SPHEREx 망원경 내부의 거울은 멀리 떨어진 물체로부터 빛을 모으는 역할을 하지만, 실제로 적외선 파장을 감지하는 것은 '검출기'다. 태양과 같은 별들은 전체 가시광선 범위의 빛을 방출한다. 이 빛은 프리즘을 통해 구성 파장, 즉 무지개 색상으로 분리될 수 있는데, 이를 분광학이라고 한다. SPHEREx는 검출기에 장착된 필터를 이용해 분광학적 분석을 수행한다. 각 필터는 무지개 색상처럼 보이는 여러 개의 세그먼트로 구성되어 있어 특정 적외선 파장을 제외한 모든 파장을 차단한다. SPHEREx가 관측하는 모든 물체는 이 세그먼트별로 이미지화되며, 과학자들은 별이든 은하든 해당 물체가 방출하는 특정 적외선 파장을 확인할 수 있다. 이 망원경은 100개 이상의 다양한 고유 파장을 관측할 수 있다. 이러한 기능을 통해 SPHEREx는 이전에 없던 우주 지도를 작성할 계획이다.
-
- IT/바이오
-
나사, 최신 우주 망원경으로 4억5천만 개 은하 조사...우주지도 작성 목표
-
-
'마이트플라이'의 대형 화물 드론, 美 공군과 맞손
- 도심 항공 모빌리티(Urban Air Mobility, UAM) 생태계 구축을 위한 협력이 활발하게 진행되고 있다. 미국의 한 스타트업은 미 공군의 물류 지원 임무를 수행하는 데 사용될 예정이며, 한국에서는 다양한 운영 방식과 교통수단의 적용을 위한 계획이 세워지고 있다. UAM에 쓰이는 주요 교통수단은 전동 수직 이착륙기(eVTOL)이다. 에너지 관련 전문 매체 '인터레스팅 엔지니어링'에 따르면, 화물 배송용 드론을 개발하는 스타트업 '마이트플라이(MightyFly)'가 자체 개발한 자율 하이브리드 eVTOL 화물 항공기의 추가 개발을 위해 미국 공군과 중요한 계약을 체결했다고 보도했다. 미국 공군은 소기업 혁신 연구(SBIR) 2단계 계약으로 마이트플라이에 약 125만 달러(16억1500만원)를 지급했다. 이 보조금은 마이트플라이의 자율적 부하 마스터링 시스템(ALMS)에 대한 추가 연구에 사용될 예정이다. ALMS는 물류 프로세스를 완전히 독립적으로 만드는 데 도움이 되는 중요한 기술이다. 샌프란시스코에 본사를 둔 마이트플라이는 기업과 정부 기관에 빠르고, 경제적이며, 친환경적인 화물 운송 솔루션을 제공하는 것을 목표로 하고 있다. 마날 하빕 마이트플라이의 CEO는 "미 공군과의 협력을 통해 민간 및 군사 분야에서의 신속한 물류 요구에 대응하는 자율 항공기 시스템을 개발하고, 군수 분야에 필요한 주요 기능을 통합하는 데 기여할 계획"이라고 전했다. SBIR 프로그램은 국방부에 도움이 될 수 있는 새로운 기술을 개발하는 중소기업에 지원금을 수여한다. 이 계약을 통해 마이트플라이는 군사 분야에 최신 항공 기술을 적용하기 위한 노력을 강화하며, 조비(Joby)나 아커(Archer)와 같은 다른 주요 eVTOL 회사들과 함께 이 분야의 선두 주자로 자리매김하게 됐다. 화물 운송의 신속화 마이트플라이의 자율적 부하 마스터링 시스템(ALMS)은 화물 항공기의 자동적인 적재, 하역과 배송을 가능하게 하여 긴급한 물류 문제를 해결하는 데 기여한다. 이 기술은 기업과 정부 기관에게 자동화, 효율성 향상, 비용 절감의 혜택을 제공한다. 마이트플라이의 3세대 하이브리드 화물 드론은 컨베이어 벨트를 활용하는 로딩 메커니즘을 통해 지상에서 독립적으로 화물을 적재하고 항공기의 화물칸에 저장한다. 목적지에 도착하면 드론은 인간의 개입 없이 패키지를 안전하게 배치하고 회수할 수 있다. 이 완전 자동화된 시스템은 화물 처리 과정을 최적화하고 신속하게 처리한다. 이러한 기술 덕분에 마이트플라이의 3세대 MF100 항공기는 현재의 특송 물류 서비스보다 더욱 빠르고 효율적이며, 신뢰성과 비용 효율성을 갖춘 지점 간에 당일 배송과 가속배송 서비스를 제공할 것으로 기대된다. 회사에 따르면, 그들의 제품은 물류, 공급망 관리, 제조업, 의료 및 제약 산업, 소매, 자동차, 그리고 석유 및 가스 산업에 이르기까지 다양한 분야에 적용 가능하다. 또한, 이 제품은 국립 공원이나 주립 공원 관리, 인도주의적 활동, 재난 구호 기관 등에도 유용하다. 이 회사는 자사의 eVTOL 항공기에 대해 미국 연방 항공청(FAA)으로부터 실험용 항공기 운용 허가를 획득했으며, 지난해 12월에 테스트 비행을 시작했다. 회사는 성명에서 "캘리포니아에서 1세대와 2세대 항공기인 MVP(Minimum Viable Product)와 센토(Cento)의 시험 비행을 성공적으로 마치고 100회 이상의 자율 호버링 비행을 완료했다"고 발표했다. 하이브리드 전기 수직이착륙기 '마이티플라이 센토' 이전에 2세대 MF-100으로 알려졌던 마이트플라이의 Cento 모델은 화물 용량이 100파운드(45kg), 항속 거리가 600마일(965km), 최고 속도 150마일(시속 240km)인 하이브리드 전기 VTOL 항공기다. 완전 장착된 Cento는 8개의 전기 수직 리프트 팬과 1개의 전방 추진 프로펠러, 그리고 고강도 탄소섬유 구조를 갖추고 있으며, 총 무게는 약 161kg(약 355lb)이다. eVTOL의 크기는 약 4m x 5m(13.1피트 x 16.7피트)로, 이는 소형 자동차 2대보다 적은 공간을 차지한다. 이것은 현장 운영을 위한 지상 환승 스테이션의 크기가 일반적인 주차장의 두 대 차량 공간이면 충분하다는 것을 의미한다. 마이티플라이에 따르면, 올해 말까지 3세대 MF100 항공기의 생산을 마칠 계획이며, 2024년에는 미시간 주에서 45kg(100파운드)의 화물을 탑재할 수 있는 자율 화물 항공기의 비행 시연을 공개적으로 진행할 예정이다. 또한, 2024년 말부터 2025년 동안 협력사들과 함께 개념 증명(Proof of Concept, POC) 프로그램에 참여할 예정이다 K-UAM 드림팀, 기체 안정적 확보 한편, 한국의 SK텔레콤·한국공항공사·한화시스템·티맵모빌리티로 구성된 ‘K-UAM 드림팀’ 컨소시엄(이하 드림팀)은 도심항공교통(UAM) 구축을 위해 적극 나서고 있다. UAM은 전기로 구동되는 전기수직이착륙기(eVTOL)를 기반으로 하는 항공 이동 서비스를 의미하며, 활주로가 필요 없는 수직 이착륙 기능으로 육상 교통과의 연계가 가능한 친환경 이동 수단으로 각광받고 있다. UAM 상용화의 중요한 요소인 기체도 안정적으로 확보했다. SK텔레콤은 지난 6월, 글로벌 UAM 기체 제조사인 조비 에비에이션(Joby Aviation)에 1억 달러(약 1294억 원)를 투자해 한국 시장에서 조비 기체의 독점적 사용 권리를 확보했다. 9월에는 조비와 국내 UAM 실증사업 및 상용화를 위한 협력 계약을 체결하고, 2024년 조비 기체 국내 도입을 위한 준비를 마쳤다. 아울러 지난 15일 드림팀 컨소시엄이 경상북도와 UAM 협력을 위한 업무협약을 체결했다. 드림팀과 경상북도는 2024년 4월 '도심항공교통 활용 촉진 및 지원에 관한 법률' 시행을 맞추어 운송, 공공, 관광 분야 등에서 도심항공교통 서비스 모델을 개발하고, 전용 항공 노선과 수직이착륙장(Vertiport) 구축 등에 착수할 계획이다. 양측은 또한 경상북도 소재 기업들과의 상생과 협력 방안을 마련하고, 도심항공교통 관련 전문 인력 양성을 통해 지역의 도심항공교통 생태계 구축에 적극적으로 나설 예정이다.
-
- 산업
-
'마이트플라이'의 대형 화물 드론, 美 공군과 맞손
-
-
과학자들, 다른 바이러스에 부착하는 바이러스 첫 발견
- 바이러스가 다른 바이러스에 달라붙어 자신의 유전자를 숙주 세포에 삽입할 수 있다는 연구 결과가 나왔다. 과학전문 매체 뉴아틀라스에 따르면, 이번 발견은 미국 메릴랜드 대학교 과학자들이 실험 결과에서 나타난 명백한 오염을 통해 처음으로 확인됐다. 일반적으로 바이러스는 동물, 식물, 박테리아와 같은 숙주 유기체의 세포를 감염시키지만, 다른 바이러스에 직접 부착되는 현상은 알려지지 않았다. 이번 연구에서 주목된 것은 '도우미' 바이러스와 '위성' 바이러스 간의 관계다. 위성 바이러스는 생존을 위해 도우미 바이러스에 의존하며, 과학자들은 이번 연구에서 위성 바이러스가 도움을 주는 도우미 바이러스에 지속적으로 부착되어 있는 것을 관찰했다. 이번 발견은 박테리오파지(포도상구균 바이러스)를 연구하는 학부 프로젝트의 일환으로, 환경 샘플에서 바이러스를 분리하고 실험실에서 염기서열 분석을 수행하는 과정에서 시작됐다. 한 샘플에서 '마인드플레이어(MindFlayer)'라는 이름의 예상 바이러스 DNA가 발견되었지만, 분석 결과 알려지지 않은 DNA의 오염이 확인됐다. 반복된 실험에서도 같은 결과가 나타났다. 이 현상을 파악하기 위해 연구자들은 투과전자현미경(TEM)을 사용하여 샘플을 검사했다. 그 결과, 마인드플레이어 바이러스의 '목' 부분에 '미니플레이어(MiniFlayer)'라고 불리는 작은 위성 바이러스가 부착되어 있는 것을 발견했다. 이 현상은 일회성 사건이 아니었다. 관찰된 박테리오파지 중 80%, 즉 50개 중 40개에 위성 박테리오파지가 부착되어 있는 것이 확인됐다. 더욱 흥미로운 것은, 덩굴손이 존재하지 않았지만, 일부 박테리오파지가 과거에 덩굴손에 묶여 있었다는 흔적인 '덩굴손' 구조를 가지고 있었다는 점이다. 연구의 제1 저자인 메릴랜드 대학교의 타지드 드카발로(Tagide deCarvalho) 박사는 "이 현상을 목격했을 때 정말 믿기 어려웠다"고 말하며 "박테리오파지나 다른 바이러스가 다른 바이러스에 부착되는 것은 전례가 없는 일"이라고 강조했다. 연구팀은 발견 후 위성 바이러스와 헬퍼 바이러스, 숙주 바이러스의 게놈을 분석해 일어나고 있는 현상을 조사했다. 연구에서는 마인드플레이어 바이러스가 알려진 다른 위성 바이러스들과 달리 숙주의 DNA에 통합되는데 필요한 유전자가 없다는 것을 발견했다. 이는 마인드플레이어가 숙주 세포 내에서 복제하기 위해서는 근처에 있어야 한다는 것을 의미한다. 이번 연구의 수석 저자인 이반 에릴(Ivan Erill)은 "바이러스의 부착 메커니즘이 이제 명확해졌다. 부착하지 않으면 동시에 세포 안으로 들어갈 수 있다는 것을 보장할 수 없다"고 말했다. 이 메커니즘의 정확성과 다른 바이러스들 사이에서의 일반성을 확인하기 위한 추가 연구가 계획되어 있으며, 이 연구는 국제 미생물 생태학 학회지에 게재됐다.
-
- IT/바이오
-
과학자들, 다른 바이러스에 부착하는 바이러스 첫 발견
-
-
풍력 발전, 에너지 비용 절감은 허상?
- 최근 몇 년 동안, 많은 그린 에너지 지지자들은 석유나 가스와 같은 화석 연료에 비해 재생 가능 에너지원이 더 저렴한 대안이라고 주장해 왔다. 그러나 영국 매체 스파이크트는 지난 11월 1일, 풍력발전 등 재생 가능 에너지원이 더 저렴한 대안이라는 의견이 사실과 다르다고 보도했다. 최근 영국에서 풍력 발전과 관련된 두 가지 뉴스는 그린 에너지 지지자들의 주장에 의문을 제기했다. 첫 번째 보도는, 영국 정부는 지난 9월 해상 풍력 발전을 위한 계약 경매에서 어떤 계약도 성사시키지 못했다는 것이다. 기업들은 정부가 설정한 전기 요금이 해상 풍력 프로젝트를 경제적으로 실행 가능하게 만들기에 충분하지 않다고 주장했다. 두 번째는 10월 말, 영국 최대 발전소 운영업체인 독일 전기 대기업 RWE가 정부에 해상 풍력 발전소에서 얻는 전기 요금을 최대 70% 더 인상해줄 것을 요청했다. 톰 글로버(Tom Glover) RWE UK 사장은 개발업체가 정부가 설정한 44파운드(약 7만1000원)/MWh(메가와트시) 대신 65~75파운드(약 10만5000원~12만1000원)/MWh를 지급받아야 한다고 말했다. 이러한 뉴스는 풍력 발전이 에너지 비용을 절감하지 못할 것으로 예상되는 이유를 시사한다. 풍력 발전은 여전히 상대적으로 비용이 높으며, 정부 보조금 없이는 경제적으로 실행이 어려운 경우가 많다. 풍력 발전의 또다른 단점은 발전량이 날씨 조건에 따라 달라지므로, 전력망을 안정적으로 공급하기 위해 가스 화력 발전소와 같은 화석 연료 발전소의 보조가 여전히 필요하다. 이러한 이유로 영국에서는 풍력 발전이 단기적으로 에너지 비용 절감에 크게 기여하지 못할 것으로 보인다. 한국의 풍력 발전 현황 한편, 한국의 풍력 발전은 최근 몇 년 동안 급속도로 성장하고 있다. 2022년 기준으로 한국의 풍력 발전 설비 용량은 14.5GW(기가와트)이며, 이는 전체 발전 설비 용량의 약 7.4%를 차지한다. 그러나 한국의 풍력 발전은 아직 초기 단계에 있으며 경제적으로 완전히 자립하기에는 어려움이 있다. 한국에너지공단에 따르면, 2022년 기준 한국의 풍력 발전 전기 평준화 비용(LCOE)은 MWh당 118.5달러로, 화력 발전(44.1달러/MWh)보다 약 2.6배 높다. 풍력 발전이 에너지 비용을 절감하기 위해서는 기술 개발을 통해 비용을 낮추고, 발전량을 안정적으로 유지하기 위한 추가적인 기술 개발을 통해 백업 발전소의 필요성을 줄여야 한다. 또한, 풍력 발전을 다른 재생 가능 에너지원과 통합하여 에너지 시스템의 효율성을 높이는 것이 필요하지만, 이러한 방안이 쉽지 않을 것으로 보인다.
-
- 산업
-
풍력 발전, 에너지 비용 절감은 허상?
-
-
암 조기 진단 위한 새로운 혈액 검사 개발
- 암을 조기 발견할 수 있는 저렴하고도 새로운 혈액 검사 방법 개발됐다. 대부분의 암은 증상이 나타나기 전까지 진단되지 않고, 증상이 나타난 시점에는 이미 질병이 널리 퍼져 치료가 어려운 경우가 많다. 바이오마커(biomarker)는 암을 감지하는 데 사용되지만, 일부는 증상이 나타난 후 혹은 특정 암 유형에만 감지가 가능하다. 그러나 이제 빠르고 저렴한 새로운 혈액 검사가 개발되어 증상이 나타나기 전에 암을 발견하는 것이 가능해졌다. 이로 인해 암 진단 방법에 혁신이 일어날 것으로 기대된다. 미국 매체 뉴아틀라스에 따르면, 뉴욕시 록펠러대학교의 연구팀은 다양한 암의 조기 발견 가능성을 보여주는 암세포에서 생산되는 주요 단백질을 검출하는 매우 정밀한 혈액 검사를 개발했다. 검사 비용은 약 3달러로 저렴한 비용으로 눈길을 끌었다. 'LINE-1 ORF1p'는 과학계에서 주목받고 있는 비교적 새로운 바이오마커 단백질이다. 바이오마커는 단백질이나 DNA, RNA, 대사 물질 등을 활용해 몸 안의 변화를 알아낼 수 있는 지표로 사용된다. 'LINE-1(Long interspersed element-1)'은 모든 인간 세포에서 발견되는 레트로트랜스포존(retrotransposon)으로 바이러스와 유사한 특성을 가지며, 게놈의 새로운 위치에 자신을 복사해 붙여넣는 메커니즘을 통해 복제된다. 레트로트랜스포존은 DNA의 일부분이 유전체 내의 한 곳에서 다른 곳으로 이동할 수 있는 전이인자(transposable element) 중 하나다. '오픈 리딩 프레임 1 프로틴(ORF1p)'은 식도암, 결장암, 폐암, 유방암, 전립선암, 난소암, 자궁암, 췌장암, 두부암, 머리와 목 등의 가장 흔하고 치명적인 암 중 많은 암에서 높은 수준으로 생산되는 단백질이다. 이번 연구의 공동 저자인 존 라카바(John LaCava) 박사는 "트랜스포존은 주로 정자와 난자, 배아 형성 과정에서 활성화되므로 트랜스포존이 비병리학적으로 활성화될 수도 있다. 하지만 그렇지 않은 경우, 이러한 '점핑 유전자'는 게놈 내에서 침묵 상태를 유지하며, 그 활동이 세포에 스트레스와 손상을 유발하기 때문이다"라고 말했다. 대부분의 경우 신체는 LINE-1을 통제한다. 하지만 LINE-1이 ORF1p를 생성하고 표출할 때, 이는 뭔가 잘못되었을 수 있는 신호일 수 있다. 라카바는 "LINE-1이 표출되지 않도록 하고 ORF1p를 생성하는 것을 방지하는 메커니즘이 있으므로 전사체를 제어할 수 없는 건강하지 못한 세포에 대한 대용으로 이 단백질을 사용할 수 있다"며 "건강한 사람의 혈액에서 ORF1p가 검출되어서는 안 된다"고 지적했다. 암세포는 질병 초기부터 ORF1p를 생산하는 것으로 알려져 있으므로 이를 정확하게 탐지하는 방법을 개발하는 것은 암을 초기 단계에서 발견할 수 있음을 의미한다. 연구팀은 혈장 내에서 ORF1p를 검출하기 위한 빠르고 저렴한 검사를 개발했다. ORF1p는 기존 임상 실험실 방법의 검출 한계보다 훨씬 낮은 농도에서 발견되기 때문에 연구팀은 소량의 혈청, 혈장 또는 뇌척수액에서 바이오마커를 측정하기 위한 미세분자 기반 검출 기술인 시모아(Simoa)를 사용했다. 이들은 라마에서 파생되고, 조작된 맞춤형 나노바디 시약을 사용하여 ORF1p 단백질을 검출하고 포획했다. 라카바는 "우리는 대장암에서 ORF1p와 다른 단백질의 분자적 연관성을 포착하고 설명하려는 임무의 일환으로 이러한 시약을 개발했다"고 말했다. 연구팀은 대부분의 대장암에 LINE-1 단백질이 풍부하게 발견된다는 것을 인지하고 있었으며, 이 단백질이 형성하는 상호 작용이 암의 성장에 도움을 주면서 정상 세포 기능의 조절을 방해할 수 있다고 추측했다. LINE-1 입자를 분리함으로써 이러한 상호 작용을 자세히 관찰할 수 있었다는 것이 라카바의 설명이다. 연구팀은 새롭게 개발된 분석 방법을 이용하여 다양한 암 유형을 가진 환자들과 암이 없는 것으로 알려진 400명 이상의 '건강한 대조군' 개인들을 조사했다. 대조군의 약 99%에서는 혈장 ORF1p가 검출되지 않았다. 하지만 ORF1p가 검출된 5명 중 가장 높은 수치를 보인 한 환자는 6개월 후에 진행성 전립선암이 발견됐다. 연구에 포함된 초기 단계의 8명의 난소암 환자 중 4명에서 ORF1p에 대해 양성 반응이 나타났는데, 이는 바이오마커가 초기 질병을 나타내는 지표가 될 수 있음을 시사한다. 전반적으로 연구팀은 이 검사가 난소암, 위식도암, 대장암 환자의 혈액 샘플에서 매우 정확하게 ORF1p를 검출한다는 사실을 발견했다. 검사 비용은 3달러(약 3940원) 미만이며, 결과는 2시간 이내에 나온다. 이 검사는 암 진단뿐만 아니라 암 치료의 효과성을 평가하는 데에도 유용하게 사용될 수 있다. 치료가 성공적일 경우, 환자의 ORF1p 수준이 감소해야 한다. 연구팀은 위식도암 치료를 받는 19명의 환자를 연구한 결과, 치료에 반응한 13명의 환자에서 ORF1p 수준이 검출 한계 아래로 떨어지는 것을 관찰했다. 연구팀은 이 검사가 조기 경보 시스템으로 일상적인 건강 관리에 통합될 것으로 기대하고 있다. 라카바는 "건강한 시기에는 ORF1p 수준을 측정하여 기준점을 설정할 수 있을 것"이라고 말했다. 그는 "이후 의사는 ORF1p 수준의 변화를 관찰할 것이며, 이는 건강 상태에 변화가 있음을 나타낼 수 있다. ORF1p 수준의 약간의 변동은 정상일 수 있지만, 지속적인 상승은 심층적인 조사가 필요한 이유가 될 있다"고 말했다. 더욱 광범위한 연구 대상 집단을 사용한 추가 연구는 이 검사의 효과를 더욱 확실하게 검증하고, 세포암 이외의 다른 암 유형을 감지할 수 있는지 확인하기 위해 필요하다. 또한 순환 중인 ORF1p의 정상 기준 수준이 무엇인지와 이 수준에 영향을 주는 요인들을 이해하기 위한 추가 연구가 요구된다. 한편, 한국의 아이엠비디엑스는 최첨단 유전자 분석 기술을 바탕으로 한 알파리퀴드 플랫폼을 개발해 활용 중이다. 이는 인공지능(AI) 초정밀 유전자 검사법을 활용해 암 조기진단부터 진행성 암의 재발 예측과 치료 프로파일링 서비스를 제공한다. 암세포에서 혈액으로 방출된 DNA 조각인 '순환 종양 DNA(ctDNA, circulating-tumor DNA)'를 검출하고 차세대 염기서열 분석(NGS)을 통해 DNA 정보를 스캔해 유전자변이를 분석한다. 이 간편한 혈액검사는 비침습적 검사법으로 출혈이나 감염 등의 부작용이나 방사선 노출 위험이 없다. 기존 검사로는 발견하기 어려운 1cm 미만의 작은 종양도 검출할 수 있는 것으로 알려졌다.
-
- 생활경제
-
암 조기 진단 위한 새로운 혈액 검사 개발
-
-
G7 경쟁당국 수장, "생성형 AI 독과점 우려" 공동성명 첫 채택
- 주요 7개국(G7) 경쟁당국이 생성형 인공지능(AI) 분야의 독과점에 대한 우려를 나타내며 첫 공동성명을 채택했다고 요미우리신문과 아사히신문이 9일 보도했다. 보도에 따르면 G7 경쟁당국 수장은 전날 도쿄에서 열린 회의에서 거대 IT기업에 의한 경쟁 저해 우려와 규제 협력의 필요성 등에 대해 논의했다. 성명에서는 디지털 시장이 '급격한 독과점화와 시장 지배적 지위를 낳는 경향'이 있다고 지적하며, 기존의 빅테크 기업들이 생성형 AI 분야에서도 반경쟁적 행위를 할 수 있다고 우려했다. 또한 새로운 기술, 특히 생성형 AI가 온라인 가상 공간 등 경쟁 환경에 미치는 영향을 조기에 파악하고 대응하는 것이 중요하다고 강조하면서 당국 간의 협력을 촉구했다. G7 경쟁당국 수장 회의는 2021년부터 매년 열렸으며, 올해 처음으로 일본이 개최했다. 공동 성명 채택도 이번이 처음이다. 일본 대표로는 후루야 가즈유키 일본 공정거래위원회 위원장이 포함됐다. G7에는 올해 순회 의장국인 일본 외에도 영국, 캐나다, 프랑스, 독일, 이탈리아, 미국과 유럽연합이 포함된다. 요미우리신문은 주요국 경쟁당국이 최근 몇 년간 빅테크 기업들에 대한 견제를 강화해온 배경을 설명하며, 이들 기업이 생성형 AI 분야에서도 시장 지배력을 활용하여 경쟁을 저해할 수 있다는 우려가 있다고 전했다. 아마존, 마이크로소프트, 구글 등 거대 기술 기업이 고점유율을 가진 클라우드 서비스가 생성형 AI의 기반이 되므로 끼워팔기 등의 행위가 우려된다고 지적했다. AI 개발에 필요한 방대한 데이터와 자본이 빅테크 기업들에게 유리하게 작용해, 이들이 생성형 AI 분야에서의 주도권을 장악하며 시장 지배력을 더욱 강화할 수 있다고 이 신문은 보도했다. G7 경쟁당국 수장들은 도쿄 회의 후 발표한 공동성명에서 "전력 통합으로 속도를 억제하고 혁신의 경로를 왜곡할 수 있기 때문에 이러한 시장에서 조치를 취하지 않으면 특히 비용이 많이 들 수 있다"고 경고했다. 성명에서는 또한 생성형 AI 개발에 필요한 훈련 데이터와 컴퓨팅 능력을 통제하는 기술 기업들이 가격 인상과 같은 불공정한 관행을 통해 소비자를 이용할 수 있는 잠재적 위험을 지적했다. 또한 "기업들이 AI를 활용하여 수익을 창출함에 따라, G7 경쟁당국과 정책 입안자들은 현재의 경쟁법이 AI 개발, 제품과 사용에도 적용되어야 한다는 점을 강조하고 있다"고 밝혔다.
-
- IT/바이오
-
G7 경쟁당국 수장, "생성형 AI 독과점 우려" 공동성명 첫 채택
-
-
중국, 시멘트 공장 창고 재활용시설 떠 있는 '방주' 공개
- 사용하지 못하는 의미 있는 공장을 개조해 지역 명물인 카페나 식당을 만들거나, 자동차를 고치는 정비소로 활용하는 등 다양한 시도가 이어지고 있다. 물론 한국의 경우에만 국한되는 것은 아니다. 최근 중국에서도 역사적 가치가 있는 공장을 재활용하는 설계 도안이 공개됐다. 미국 매체 뉴아틀라스(newatlas)에 따르면, 중국 매드아키텍스(MAD Architects)는 지금은 사용하지 않은 상하이의 거대한 시멘트 공장 창고 위에 방주를 연상시키는 복합 용도의 건물을 디자인해 눈길을 끌고 있다. 방주 이미지를 구현할 이 시멘트 공장은 중국 상하이에 위치한 장장 시멘트 공장(Shanghai Zhangjiang Cement Factory)으로, 한때 중국 도시에서 가장 큰 시멘트 공장 중 하나로 꼽혔다. 이번 개조 공사는 대규모 창고에 중점을 뒀다. 1971년에 건설된 이 건물은 선박 가공을 위해 시멘트 공장에 원자재를 보내는 첫 번째 정류장 역할을 해왔다. 2013년에 운영을 중단하기까지 약 50년간 상하이의 도시 건설과 발전을 목격했다. 최근, 중국의 건축가들은 역사적인 산업 상징물인 시멘트 사일로, 가마 테일 타워, 1만미터 사일로 등을 포함하는 공장을 보존하기 위한 공원 클러스터 설계를 의뢰받았다. 이러한 역사적 가치가 있는 산업 건물들을 재개발하고 재사용함으로써, 문화와 스포츠, 창의적 상업 지원 시설 등을 갖춘 복합 캠퍼스로 변모시키는 계획이다. 매드가 수행할 개조 공사는 창고 벽의 산업적 미학을 존중하면서도, 지붕은 '아크(ark, 방주)'라는 이름의 새롭고 다양한 기능을 갖춘 복합 건물로 대체될 예정이다. 공동 작업 공간, 연구실, 다목적 홀, 카페, 대형 건물 등이 포함될 예정이며, 공개적으로 접근 가능한 옥상 공원이 설계되었다. 내부는 대형 금속 계단을 통해 접근 가능하며(엘리베이터 설치도 고려 중), 지상 층에는 조경과 판매 공간이 조성될 예정이다. 또한 기존 창고의 서쪽 벽은 유리벽으로 교체해 햇빛이 들어오는 밝은 공간으로 꾸민다. 건축적으로 복잡한 이 구조는 새로운 기둥, 바닥 트러스, 스패닝 트러스, 대형 스패닝 빔을 추가함으로써 방주가 떠 있는 것 같은 부유 효과를 구현한다. 오래된 벽은 스터드, 강철 와이어 메쉬, 강철 프레임을 사용하여 보강할 계획이다. 건물 내부에서 강변의 경치를 즐길 수 있도록, 오래된 공장 건물의 1층은 강변을 따라 개방되어 수변 광장과 통합될 예정이다. 건물 중앙에는 복도가 설치되어 공원 내의 광장과 강둑을 연결하며, 새로 설계된 다리는 강 양안을 연결해 지역민들이 이 새로운 공공 공간을 더욱 편리하게 이용할 수 있도록 할 것이다. 옥상은 추가적인 도시 공공 공간으로 구상됐다. 사람들은 이 공간에 자유롭게 접근할 수 있으며 멀리 천양강의 경치를 즐길 수 있다. 방주의 처마는 완만하게 기울어져, 건물 높이가 추안강 유역에 미칠 수 있는 압박감을 최소화하는 동시에 옥상 테라스에서 바라보는 전망을 최적화한다. 매드에 따르면, 이 프로젝트는 오래된 구조와 새로운 구조를 결합하여 시간과 물리적 차원에서의 3차원적 계층 구조를 구현함으로써 쇠퇴한 산업 현장에 새로운 활력을 불어넣을 것으로 기대한다. 매드의 공동창업자 마 옌쑹(Ma Yansong)은 "산업 유산은 그 안에 담긴 역사적 가치 때문뿐만 아니라 미래에 역사 의식을 주는 중요한 요소로 보존되고 활용되어야 한다"며 "이에 우리는 산업 미학을 단순히 찬양하고 통합하는 것이 아니라 현재와 미래의 정신에 초점을 맞출 필요가 있다"고 강조했다. 현재 방주 프로젝트는 진행 중이며 오는 2026년 완공될 예정이다.
-
- 생활경제
-
중국, 시멘트 공장 창고 재활용시설 떠 있는 '방주' 공개
-
-
인도, 초소형 슈퍼커패시터 개발⋯에너지 저장 분야 혁신 기대
- 인도에서 개발된 초소형 슈퍼커패시터(콘덴서)가 에너지 저장 분야에서의 혁신을 예고했다. 과학기술 전문매체 '사이테크 데일리(SciTechDaily)'는 최근 인도 과학 연구소(Indian Institute of Science, IISc)의 응용 물리학부 연구진이 기존의 슈퍼커패시터보다 훨씬 작고 밀도가 높은 초소형 슈퍼커패시터를 개발했다고 보도했다. 화학 분야 학술지 'ACS 에너지 레터(Energy Letters)'에 게재된 최근의 연구에서, 연구원들은 전통적인 커패시터에서 사용되는 금속 전극을 대체하여, 전계 효과 트랜지스터(Field Effect Transistors, FET)를 전하 수집기로 활용해 슈퍼커패시터를 제작했다. 이 연구를 주도한 교신 저자인 아바 미스라(Abha Misra) IAP의 교수는 "FET를 슈퍼커패시터의 전극으로 사용하는 것은 커패시터의 전하 조정 방식에 있어 혁신적인 접근이다"라고 언급했다. 현재 사용되는 커패시터들은 주로 금속 산화물 기반의 전극을 사용하지만, 이는 전자 이동성이 낮다는 한계를 가지고 있다. 이 문제를 해결하기 위해, 미스라 박사 팀은 전자 이동성을 개선하고자 이황화몰리브덴(MoS₂)과 그래핀 층을 몇 원자 두께로 번갈아 가며 금 접점에 연결한 하이브리드 FET를 개발하기로 결정했다. 이들은 두 FET 전극 사이에 고체 젤 전해질을 적용하여 고체 상태의 슈퍼커패시터를 구축했다. 이 전체 구조는 이산화규소와 실리콘 베이스 위에 구축됐다. 미스라 박사는 "두 시스템을 통합하는 것이 설계의 핵심이다"라고 언급했다. 이 두 시스템은 서로 다른 전하 용량을 가진 두 개의 FET 전극과 이온성 매질인 젤 전해질로 구성된다. IAP의 박사 과정 학생이자 연구의 수석 저자 중 한 명인 비노드 판와르(Vinod PanWar)는 트랜지스터의 모든 이상적인 특성을 구현하기 위한 장치 제작이 어려웠다고 말했다. 이 초소형 슈퍼 커패시터는 매우 작아 현미경 없이는 볼 수 없으며, 제작 과정에서는 높은 정밀도와 뛰어난 손기술이 필요하다. 현미경으로 관찰 가능 크기와 무게 면에서 기존 슈퍼커패시터를 능가하는 이 초소형 슈퍼커패시터는 배터리를 대체할 수 있는 새로운 가능성을 제시하고 있다. 연구팀은 전계 효과 트랜지스터(FET)와 이황화 몰리브덴(MoS₂)과 그래핀 층을 통합해 특정 조건에서 전기 용량이 3000% 이상 증가하는 결과를 얻었다. 슈퍼커패시터(콘덴서)는 특히 전기 용량의 성능을 강화하여, 전지처럼 사용할 수 있도록 설계된 부품이다. 전자 회로에서 사용되는 이 커패시터는 전기적으로 충전지와 유사한 기능을 제공한다. 기본적인 원리는 '전력을 저장하여 필요에 따라 방출하는 것'이며, 전자 회로가 안정적으로 작동하도록 하는 데 필수적인 부품 중 하나이다. 초소형 슈퍼커패시터는 기존 슈퍼커패시터보다 훨씬 작고 조밀한 구조를 가진다는 장점이 있다. 이러한 특성은 거리의 가로등부터 전자제품, 전기 자동차, 의료 기기에 이르기까지 다양한 응용 분야에 활용될 수 있는 기회를 제공한다. 현재 이러한 대부분의 장치는 배터리로 작동한다. 하지만 배터리는 시간이 지나면서 전기 저장 능력이 감소하여 제한된 수명을 갖게 된다. 반면, 커패시터는 설계 특성상 훨씬 오래 전기를 저장할 수 있는 장점이 있다. 슈퍼커패시터는 배터리와 커패시터의 장점을 결합하여 대량의 에너지를 저장하고 방출할 수 있는 장치로, 차세대 전자기기에서 매우 중요한 역할을 할 것으로 여겨진다. 이번 연구는 초소형 슈퍼커패시터의 가능성을 보여주는 중요한 성과로 평가된다. 향후 연구가 성공적으로 진행된다면, 초소형 슈퍼커패시터는 기존의 배터리를 대체하여 다양한 전자 기기의 성능과 수명을 향상시키는 데 기여할 것으로 기대된다. 한국, 초소형 슈퍼커패시터 개발 현황 한편, 한국에서도 슈퍼커패시터 관련 연구와 개발을 진행하는 업체가 다수 있다. 에스피지(주)는 고체 전해질 기반의 슈퍼커패시터와 FET를 이용한 초소형 슈퍼커패시터를 개발하고 있다. 포스코케미칼(주)는 그래핀 기반의 초소형 슈퍼커패시터를, LG화학(주)는 전기 자동차용 초소형 슈퍼커패시터를 개발하고 있다. 한국의 슈퍼커패시터 기술은 세계 수준에 도달하고 있다. 이를 바탕으로 국내 업체들이 초소형 슈퍼커패시터 시장에서 글로벌 경쟁력을 확보할 수 있을 것으로 전망된다. 초소형 슈퍼커패시터는 다양한 전자 기기에 적용 가능한 높은 잠재력을 가지고 있다. 특히 전기 자동차, 스마트 워치, IoT 기기 등에서 기존의 배터리를 대체할 수 있는 새로운 솔루션으로 기대를 모으고 있다. 전기 자동차의 경우, 초소형 슈퍼커패시터를 사용하면 배터리의 용량을 줄일 수 있고, 충전 시간을 단축할 수 있다. 또한, 스마트 워치나 IoT 기기에서의 사용은 배터리 수명을 연장할 수 있다. 초소형 슈퍼커패시터 기술의 지속적인 개발과 상용화가 진행된다면, 에너지 저장 분야에서 혁신적인 변화를 이끌 것으로 기대된다.
-
- IT/바이오
-
인도, 초소형 슈퍼커패시터 개발⋯에너지 저장 분야 혁신 기대
-
-
영국 해군, '군수물자' 드론 항공모함 착륙 후 본토 복귀 첫 성공
- 드론의 활용 범위가 점점 넓어지고 있다. 드론은 이제 군수 물자를 배송하는 수준까지 발전했다. 최근 영국 해군이 운영하는 항공모함에 드론이 최초로 착륙해 드론의 미래 운용 방향에 관심이 모아지고 있다. 미국의 매체 '인사이더'에 따르면, 2023년 9월 드론이 영국의 항공모함 'HMS 프린스 오브 웨일스'에 화물(군수물자)을 배달하고 영국 본토로 복귀하는 첫 번째 테스트를 성공적으로 마쳤다. 이를 바탕으로 영국 해군은 항공모함 타격단에 드론을 통합하여 선박 간 보급품 전송을 용이하게 하는 한편, 유인 헬리콥터가 다른 전술 임무, 예를 들어 잠수함과 수상함으로부터 항공모함 그룹을 보호하는 작업에 집중할 수 있도록 계획하고 있다. HMS 항공모함 사령관 리차드 휴잇(Richard Hewitt) 대령은 최근의 드론 테스트를 '환상적인 이정표'로 칭하며, 이번 드론 비행이 항공모함 항공 분야에서 중대한 역할을 수행하고 있음을 시사한다고 밝혔다. 이번 테스트에 사용된 드론은 영국의 W오토노머스시스템즈(W Autonomous Systems)가 제작한 단거리 이착륙 모델이다. 약 100kg 화물을 1000km 이동 성공 이 드론은 최대 220파운드(약 99.8kg)의 화물을 약 620마일(약 997.8km) 거리까지 운반할 수 있는 능력을 지니고 있다. 회사 측에 따르면, 이 드론은 최대 12시간 동안 공중에 머무를 수 있으며, 원격 조종사의 조작 없이도 작동할 수 있는 자동 조종 시스템을 탑재하고 있다. 또 드론의 이착륙을 위해서는 약 500~600피트(최대 약 183미터)의 공간이 필요한 것으로 알려졌다. 이는 항공모함과 같은 상대적으로 짧은 활주로에서도 드론이 작동할 수 있음을 의미한다. 실제로 HMS 항공모함의 전체 길이는 900피트(약 274미터)를 조금 넘는다. 휴잇 대령은 영국 해군의 보도 자료에서 이번 테스트에 대해 언급하며, "이러한 자율 드론의 운용은 미래의 영국 해군 항공모함 타격 그룹의 표준이 될 것"이라고 말했다. 이어 "현재 영국해군항공대(Fleet Air Arm)의 중추인 F-35 라이트닝 제트기, 해군 멀린 및 와일드캣 헬리콥터와 함께 승무원 없는 항공기를 안전하게 운용하기 위한 중요한 단계"라고 밝혔다. HMS 항공모함에서 테스트를 주도한 애쉬 로프터스(Ash Loftus) 중령은 "항공모함 항공은 해전의 가장 어려운 측면 중 하나이며, 이번 테스트의 성공은 영국 해군의 18개월 간의 작업에 대한 노력의 증거"라고 말했다. HMS 항공모함은 이번 드론 테스트 외에도 다른 목적으로 드론을 시험한 장소였다. 2021년 영국 해군은 승무원이 탑승하는 제트기와 미사일 방어 훈련에 도움이 되는 드론 시스템을 시험했다. 그 당시의 테스트 종료 후, 영국 해군 항공 시험·평가 책임자는 "지금은 해상 항공과 함대 공군의 미래에 있어서 매우 흥미로운 시기다"라고 말했다. 서방 국가들의 군대는 드론을 함대에 통합하는 데 점점 더 중점을 두고 있다. 터키 해군은 드론 비행단을 위해 특별히 설계된 세계 최초의 항공모함인 TCG아나돌루(TCG Anadolu)를 곧 도입할 예정이다. 이 항공모함은 주로 짧은 활주로에서 이륙 가능한 헬리콥터와 경비행기를 수용할 수 있는 규모로, 길이 약 232미터, 폭 32미터에 달하며 1개 대대 약 1400명의 병력을 실을 수 있다. 미국 공군, 6세대 '드론 윙맨' 개발 중 현재 미국 공군과 해군도 유인 항공기와 함께 다양한 역할을 수행할 수 있는 무인 항공기 함대의 개발을 계획하고 있다. 미국 공군의 차세대 항공 우위 프로그램(Next Aircraft Dominance Program)은 6세대 항공기 제품군에 속하는 '드론 윙맨'을 개발 중이다. 이 드론은 조종사가 조종하는 비행기와 함께 비행할 수 있도록 설계됐다. 공군은 또한 협력 전투기의 개발에도 착수했다. 이 프로젝트에 관여하는 관계자들은 조종사들이 이 협력 전투기를 통해 작업 범위를 확장하고 임무 수행 시의 작업량을 줄일 수 있게 될 것이라고 언급했다. 미 해군은 수년 동안 선박에서 소형 드론을 운용해 왔다. MQ-8B과 MQ-8C 무인 헬리콥터와 같은 이들 드론은 주로 호위함과 연안 전투함에서 활용되며 주로 정보와 감시, 정찰 임무를 수행한다. 미국 해군은 현재 항공모함용 MQ-25 Stingray(스팅레이) 공중급유 드론 개발에도 착수한 상태다. 이 MQ-25는 현재 F/A-18 전투기가 수행하는 항공모함 공중급유 임무를 대체할 뿐만 아니라, 미래에는 정보 수집과 같은 추가적인 역할을 맡을 가능성도 열려 있다. 오는 2026년에 배치될 예정인 스팅레이(Stingray)는 최초의 특수 목적으로 제작된 항공모함 기반 드론이 될 것으로 예상된다. 게다가 미 해군은 2045년까지 항공모함 함대의 60%를 무인화하는 것을 목표로 하고 있다. 유인 항공기 및 헬리콥터와 함께 항공모함 작전에 무인 항공기를 통합하는 것은 큰 도전이 될 것으로 보인다. 항공 전문가이자 저널리스트인 알렉스 홀링스(Alex Hollings)는 "해군 항공은 특히 항공모함 착륙과 관련해 오류가 발생할 여지가 거의 또는 전혀 없는 엄격한 작업이다"라며 "착륙 갑판이 때때로 파도로 인해 최대 30피트(약 9.1m)까지 기울어지기 때문에 항공모함 착륙은 일반 항공기에 심각한 손상을 입힐 만큼 단단하며 밤이나 악천후에만 상황이 더욱 악화된다"고 지적했다. 항공 전문가이자 저널리스트인 알렉스 홀링스는 이와 관련하여 "해군 항공, 특히 항공모함 착륙은 오류의 여지가 거의 없어야 하는 엄격한 작업이다"라고 언급했다. 그는 또한 "파도로 인해 항공모함의 착륙 갑판이 때때로 최대 30피트(약 9.1미터)까지 기울어질 수 있기 때문에, 밤이나 악천후의 항공모함의 착륙은 일반 항공기에 심각한 손상을 입힐 수 있는 위험한 작업이다"라고 설명했다. 베트남 전쟁 중 해군 조종사들은 날아오는 지대공 미사일 공격에 대응할 때보다 밤 시간대의 항공모함 착륙 직전에 더 높은 심박수를 기록했다고 한다. 이는 항공모함 착륙의 어려움과 긴장감을 보여주는 사례다. 한편, 원격제어가 가능한 무인 비행장치인 '드론'은 항공교통, 건설, 물류, 농업, 에너지, 방위산업 등 다양한 분야에서 그 쓰임새가 지속적으로 확장되고 있으며, 이에 따라 첨단 기술의 발전과 함께 더욱 진화하고 있다. 한국 드론 시장 전망 우리나라 국토교통부의 ‘2023년 국정감사 제출자료’에 따르면 전 세계 드론산업 시장규모는 2020년 225억달러(약 29조5200억원), 2025년 390.2억달러(약 51조1942억원), 2030년 557.7억달러(약 75조7635원) 수준으로 성장할 전망이다. 우리나라 국토교통부가 2023년 국정감사에 제출한 자료에 따르면, 전 세계 드론 산업의 시장 규모는 2020년에 약 225억 달러(약 29조 5200억 원)였으며, 2025년에는 약 390.2억 달러(약 51조 1942억 원), 2030년에는 약 557.7억 달러(약 75조 7635억 원)로 성장할 것으로 전망된다. 국내 드론시장 규모도 지속적으로 성장할 것으로 예측되고 있다. 2020년 4945억원이었던 시장이 2025년 약 1조392억원, 2030년 약 1조4997억원으로 커질 것으로 예상된다.
-
- 산업
-
영국 해군, '군수물자' 드론 항공모함 착륙 후 본토 복귀 첫 성공
-
-
사브의 그리펜 E 전투기, 날개가 갑자기 커진 이유는?
- 유럽 자동차 시장에서 한 축을 담당했던 스웨덴 사브(Saab). 자동차로 잘 알려진 사브는 원래 군사장비를 제조하고 판매하는 군수업체다. 특히, 사브의 전투기 그리펜은 현재 유럽 상공을 방어하고 있는 주력 전투기 중 하나다. 사브는 최근 그리펜 E 다목적 전투기의 날개를 크게 개조하여 생산 라인에 통합하는 작업을 진행 중이다. 전투기 날개 변화의 배경은 무엇일까. 군사 전문 매체 '워존(WarZone)'은 그리펜 E 시리즈 중 하나인 6002 모델의 최근 공개된 공식 사진에서 날개의 표면적이 확대되어 더욱 사다리꼴 모양을 갖게 됐다고 보도했다. 수정된 날개 형태는 기존의 엘레본(Elevon, 엘리베이터와 에일러론의 기능을 결합한 후미 조종면)을 더 큰 버전으로 교체함으로써 가능해진 것으로 분석된다. 워존에 따르면, 이러한 변경이 단순히 날개 면적을 확대하는 것처럼 보일 수 있지만 비행 제어 시스템에 대한 광범위한 테스트와 수정이 필요했다고 한다. 사브의 그리펜 사업부 책임자인 요한 세게르토프(Johan Segertoft)는 날개 변경의 동기에 대해 "개발 프로세스 초기 단계에서 그리펜의 향상된 고하중 운반 능력이 분명한 장점으로 확인됐다. 따라서 이 개선사항을 가능한 한 빨리 적용하기로 결정했다"라고 설명했다. 그는 "소프트웨어 업데이트와 카나드((Canard)와 엘러본 표면에 영향을 주는 일부 변경을 적용하여 이러한 변화가 즉시 이점을 제공하고, 지속적인 성장과 미래 항공기의 잠재력을 증진시킬 수 있음을 입증했다"고 덧붙였다. 엘러본은 비행기의 승강기와 보조날개를 결합한 말로, 좌우 엘러본이 동시에 위아래로 조작되면 승강기가 되고 한쪽이 위, 반대쪽이 아래로 조작되면 보조날개의 역할을 한다. 카나드는 비행기 동체 앞부분에 붙은 작은 날개로 기동성을 향상시킨다. 그리펜의 디자인 철학은 변화하는 작전 요구사항에 신속하고 효율적으로 적응하는 데 중점을 두고 있다. 요한 세게르토프의 설명에 따르면, 그리펜 E의 성능 범위는 이제 미래 임무의 요구를 충족시키기 위해 더욱 무거운 하중을 수용하고 통합할 수 있는 능력을 통해 개선되고 확장됐다. 개선된 날개 디자인은 최근에야 확인되었지만, 이 아이디어는 이미 오래전부터 고려되어 왔다. 초기 테스트 프로그램에서의 추가적인 조사를 통해 이러한 개선이 향후 작전에 가져올 이점이 부각되었고, 이에 따라 2021년에 기본 설계를 개선하기로 결정했다. 새로운 날개 디자인을 적용한 첫 번째 그리펜 E 항공기는 2021년 하반기에 비행을 시작했다. 현재 스웨덴과 브라질에는 총 16대의 그리펜 E 전투기가 운용 중이며, 브라질 공군과의 계약에 따라 36대 중 15대를 생산할 스웨덴 국내 생산 라인이 개설됐다. 이 생산 라인에서는 이미 새로운 날개 디자인이 적용된 일부 항공기가 제작되어 성공적인 비행을 마쳤다. 이 변경된 설계는 향후 사브에서 생산되는 그리펜 E 전투기의 표준 구성이 될 것으로 예상된다. 날개가 좀 더 커진 것에 대한 이점은 외부 무기, 연료 탱크 및 기타 형태로 더 무거운 짐을 운반할 수 있도록 그리펜 E의 능력을 향상 시킬 전망이다. 날개의 크기가 커짐으로써, 그리펜 E는 외부 무기, 연료 탱크 등 더욱 무거운 짐을 실을 수 있는 능력이 향상될 것으로 보인다. 이것은 특히 소형 전투기인 그리펜에게 상당한 이점을 제공한다. 이미 그리펜 E는 최대 4개의 대형 사브 RBS 15 대함 미사일을 포함해 상당한 무게의 짐을 운반할 수 있다는 점조 주목할만 하다. 외부 연료 탱크를 제외하고도 최대 9개의 공대공 미사일 또는 16개의 소구경 폭탄을 실을 수 있다. 더 큰 화물 운반 능력은 그리펜 E가 동시에 더 많은 무기를 동시에 장착할 수 있을 것으로 예상된다. 그리펜 E의 전투 능력 확장은 최근 스웨덴의 국방 전략과도 일치한다. 스웨덴은 러시아의 군사 활동 증가를 포함해 긴장이 고조되는 지역 안보 환경에서 자국의 전투기 함대 강화에 중점을 두고 있다. 이러한 맥락에서, 스웨덴은 NATO에 가입하는 것과 병행해 구형 그리펜 C/D 함대를 장기적으로 운용하고, 또한 차세대 그리펜 E 60대의 도입을 확정했다. 새롭게 디자인된 날개가 그리펜 E의 기동성에 미치는 효과는 무시할 수 없다. 확장된 날개 면적은 특히 저속 비행 성능을 개선시켜 가시 범위 내 공중전에서의 유용성을 높인다. 전체적으로, 더 크고 향상된 엘러본은 그리펜 E의 민첩성을 극대화하며, 피치와 롤 제어의 효율성을 증대시킨다. 또한, 이러한 변화는 특히 무거운 짐을 적재했을 때, 이륙과 착륙을 포함한 저속 비행 영역에서의 조종성 향상에도 도움이 될 수 있다. 한편, 유로파이터가 타이푼 전투기의 무거운 하중 운반 능력을 향상시키는 패키지도 제공한다는 점도 주목할 만하다. AMK(Aerodynamic Modification Kit)에는 동체 날개판, 앞쪽 루트 확장, 더 넓은 면적의 엘러본을 추가해 날개가 생성하는 최대 양력을 25% 증가시키는 작업이 포함됐다. 에어버스의 전투 항공기 시스템 부문장인 커트 로스너는 "이 변경사항은 항공기의 공기역학적 종방향 안정성을 크게 향상시켜 새로운 무기 통합의 잠재력을 제공한다"라고 언급했다. 타이푼은 무거운 제트기임에도 불구하고 증가된 선회율, 더욱 좁은 선회 반경, 그리고 저속에서의 기수 조준 능력 향상을 가능하게 한다는 것을 의미한다. 그리펜 E의 경우, 새로운 날개 평면 형태가 제트기의 표준 옵션으로 설정되었다. 현재 스웨덴과 브라질의 운영자들은 이번 날개 변경이 가져올 향상된 성능을 어떻게 활용할 지에 대해 주목하고 있다.
-
- 산업
-
사브의 그리펜 E 전투기, 날개가 갑자기 커진 이유는?
-
-
새로운 AI 기술, 음성 듣고 몇 초 만에 당뇨병 판단
- AI 기술이 단순한 음성 인식을 넘어, 이제는 수초 내에 당뇨병 여부를 판별하는 혁신적인 단계에 도달했다. 생성형 인공지능(AI)의 활용 범위가 마케팅, 엔터테인먼트, 산업, 교육, 금융 등 다양한 산업 분야를 아우르며 점차 확장되고 있는 가운데, 이제 의료 분야에서도 그 영향력을 발휘하고 있다. 최근에는 환자의 음성만으로 병을 진단해내는 기술이 등장했다. 영국의 인디펜던트 신문에 따르면, 캐나다의 의료 스타트업인 클릭 연구소(Klick Labs)가 개발한 AI는 6~10초 분량의 음성을 분석하여 제2형 당뇨병 환자의 여부를 구분해낼 수 있는 능력을 갖추고 있다고 한다. 이 기술은 여성에서 89%, 남성에서 86%의 높은 정확도로 테스트 결과를 보여주었다. 이 획기적인 연구 결과는 '메이요 클리닉 회보: 디지털 건강'(Mayo Clinic Proceedings: Digital Health) 의학 저널에도 게재되었다. 클릭 연구소의 연구원 제이시 코프먼은 “저희의 연구는 당뇨병 환자와 비당뇨병 환자를 간편하게 구분해내는 시스템을 통해, 당뇨병 진단 방식에 혁명을 가져올 잠재력이 있다”고 밝혔다. 이와 같은 AI의 진보는 향후 의료 진단 방식의 혁신적 변화를 예고하는 것으로 보인다. 제2형 당뇨병의 진단은 통상 많은 시간과 이동, 그리고 비용을 요구하지만, 이제 음성 인식 기술이 이러한 불편함을 해소할 가능성을 제시하고 있다. 연구팀은 이번 연구를 통해 건강한 성인 192명과 제2형 당뇨병 환자 75명의 나이와 성별, 키, 체중 등 기본적인 건강 정보를 포함한 체질량지수(BMI)를 조사했다. 참가자들은 2주 동안 매일 6회, 6~10초간 스마트폰에 제시된 문장을 녹음했다. 또 당뇨병 환자와 비당뇨병 환자를 구별하는 음향 특징을 식별하기 위해 1만8,000개의 녹음을 분석해 14가지 음향적 특징을 도출했다. AI는 인간의 귀로 감지할 수 없는 음조와 강도의 미묘한 변화를 감지해냈다. 국제당뇨병연맹(International Diabetes Federation)의 보고에 따르면, 전 세계 성인 당뇨병 환자 중 절반이 자신의 질환을 인지하지 못하고 있는 상황이며, 대다수 당뇨병 환자가 제2형 당뇨병을 앓고 있다. 이 기술은 특히 인슐린의 비효율적인 사용으로 인해 발생하는 제2형 당뇨병 환자들에게 큰 도움이 될 것으로 기대된다. 최근 연구에 따르면, 머신 러닝과 데이터 과학을 융합한 새로운 접근법이 의료 분야에서 환자 치료 개선과 의학적 발견 지원에 기여하며, 인공지능(AI)의 역할이 점차 확대되고 있음을 시사한다. 연구진은 당뇨병 여부를 판단하기 위해 피험자의 기본 건강 데이터가 필요한 인공 지능 모델이 다른 건강 상태를 진단하도록 확장될 수 있다고 강조했다. 연구팀은 인공지능 모델이 기본 건강 데이터를 통해 당뇨병 판별뿐 아니라 다양한 건강 상태의 진단으로 그 범위를 넓혀갈 수 있음을 강조했다. 클릭연구소의 부사장이자 연구를 주도한 얀 포삿(Yan Fossat)은 "이 연구는 음성 인식 기술이 제2형 당뇨병뿐만 아니라 다양한 건강 상태를 식별할 수 있는 엄청난 잠재력을 가지고 있음을 드러냈다"며 "음성 인식 기술은 저렴하고 접근성이 뛰어난 디지털 진단 도구로서 의료 서비스에 혁신을 가져올 수 있는 가능성을 제시한다"고 밝혔다. 한편, 한국 중앙보훈병원은 최근 '초거대 AI 시대에 중소 공공병원의 현실과 미래'를 주제로 한 보훈병원 공공보건의료 콘퍼런스를 주최했다. 이는 의료 분야에서 디지털 변환이 가속화됨에 따라 AI 및 챗봇 기술을 효과적으로 활용하고, 이를 공공병원 시스템에 통합하는 방안에 대한 필요성이 제기됨에 따른 것이다. 또 '딥카스'는 AI를 기반으로 한 심정지 발생 위험 예측 솔루션이다. 전 세계적으로 고령화가 심화되어 급성 심정지 환자 수가 증가하는 가운데, 충분한 의료 인력 확보가 어려운 현실을 개선하기 위해 개발된 시스템이다.
-
- IT/바이오
-
새로운 AI 기술, 음성 듣고 몇 초 만에 당뇨병 판단
-
-
닛산, 1MW 출력 갖춘 전기 하이퍼카 공개
- 일본 자동차 제조업체 닛산이 일본 모빌리티 쇼를 앞두고 콘셉트카인 전기 하이퍼카를 공개했다. 기하학적인 디자인과 성능 면에서 흥미 유발에는 성공했지만 아쉽게도 이 차는 양산되지 않는다. 전기차 전문매체 일렉트렉(electrek)은 닛산이 1MW(메가와트)의 엄청난 출력을 자랑하는 하이퍼 포스(Hyper Force)를 공개했다고 보도했다. 1MW는 461명이 한 달을 사용할 수 있는 발전용량이며, 이 정도 규모의 발전용량을 위해서는 축구장 약 2.6개 크기의 발전소가 필요하다. 그러나 이 전기차는 생산계획이 없는 것으로 알려졌다. 우치다 마코토 닛산 사장 겸 CEO는 "쇼에 전시된 콘셉트 카는 미래의 상징에 불과하다"며 "전시된 다섯 대의 콘셉트 카는 모두 미래의 상징이며 남들이 하지 않는 일에 도전한다는 닛산 창립 정신을 구현한다"고 말했다. 닛산은 모빌리티를 넘어 더욱 지속가능한 세상을 만들기 위해 전기자동차(EV)를 혁신시켜 왔다고 밝혔다. 또한 전기자동차는 타협하지 않은 열정과 꿈을, 모든 사람을 위해 더 깨끗하고 안전하며 포용적인 세상을 만드는 닛산의 미래를 상징한다고 강조했다. 대부분의 콘셉트 카와 마찬가지로 닛산은 하이퍼 포스에 대한 사양을 공개하지 않았다. 다만 이 차량은 전고체 배터리를 사용하고 최대 1000kW(킬로와트)의 출력이 가능한 파워트레인을 갖췄으며, 4륜 구동 기술이 적용됐다. 이는 네 바퀴로 움직이는 작은 발전소와 같다는 일렉트렉의 설명이다. 닛산은 이 차량에 대해 '대담한 기하학' 디자인이 특징이라고 강조했다. 넓게 배치된 비율의 외부 디자인은 매끄러운 곡선과 그 성능을 반영하는 대담한 기하학적 모양이 조화롭게 결합되어 있다. 닛산의 고성능 자동차를 표현하는 전면과 후면 램프 등의 요소가 디자인 전반에 통합됐다. 다만, 닛산은 공기역학적 성능의 세부 사항을 밝히지 않은 채 자사의 니스모(NISMO) 레이싱 팀이 강력한 다운포스를 생성하는 설계 개발에 도움을 줬다고만 설명했다. 닛산은 이 차량의 공기역학적 성능과 관련해 다음의 다섯 가지 설명을 내놓았다. 첫째, 프론트 후드 아래의 2단 공기역학적 구조는 강력한 다운포스와 높은 냉각 성능을 모두 제공한다. 둘째, 듀얼 레벨 리어 디퓨저는 공기 흐름을 최적으로 제어한다. 셋째, 프론트 카나드, 프론트 펜더 플립 및 리어 윙의 양쪽 끝은 독특한 액티브 에어로 기능을 갖췄다. 넷째, 새로 개발된 플라즈마 액추에이터는 공기 이탈을 억제하여 그립을 최대화하고 코너링 중에 내부 휠 리프트를 최소화한다. 다섯째, 경량 단조 카본 휠은 공기역학과 브레이크 냉각에 도움이 된다. 이 하이퍼 포스에는 레이싱과 그랜드 투어링의 두 가지 모드가 있는 것으로 보이며 차량의 사용자 인터페이스와 전체 실내는 실제로 모드에 따라 변경된다. 일렉트렉은 닛산은 라이다(LiDAR)와 기타 센서를 갖춘 자율 주행 기능을 갖춘 차량에 대해서도 언급했지만 이는 콘셉트 카의 성격을 고려하면 대부분 가설적인 것이라고 지적했다. 이 매체는 콘셉트 카에 신경 쓰는 것보다 적절한 배터리 열 관리 기능을 갖춘 업데이트되고 경쟁력 있는 버전의 닛산 리프(또는 이와 유사한 것)를 생산했다면 더 좋았을 것이라고 덧붙였다. 닛산의 하이퍼 포스는 현실 세계와 가상 세계 모두에서 원활하게 운전할 수 있는 혁신적인 증강 현실(AR)과 가상현실(VR) 가능이 탑재돼 있다. 차량이 정지하면 운전자는 VR용 블라인드 바이저가 있는 특수 헬멧을 사용할 수 있어 게임화된 운전 경험을 즐길 수 있으며 시계 반대 경주나 온라인 레이서를 가능하게 하는 모드도 완비되어 있다. AR용 스켈레톤 바이저를 사용하면 운전자는 서킷에서 자기 자신, 친구 또는 전문 운전자의 디지털 고스트와 대결할 수 있어 사용자가 실제 트랙에서 안전하게 운전 기술을 발휘할 수 있다. 한편, 일본자동차판매협회연합회와 일본경자동차협회연합회가 발표한 2022년도 일본 승용차(경차 포함) 판매 실적에서 하이브리드 자동차(HEV), 플러그인 하이브리드 자동차(PHEV), 전기자동차(EV), 연료전지자동차(FCV) 등이 차지하는 비율은 전년 대비 5.7%p(포인트) 증가한 47.1%를 기록하면서 역대 최고치를 경신했다. 연료별 비율에서는 FCV를 제외한 3개 차종 모두 전년 대비 두 자릿수 이상 증가했다. 다만, HEV가 43.8%로 여전히 일본에서는 가장 많은 비중을 차지했다. 판매량 증가율에 있어서는 전기 자동차가 가장 큰 폭으로 성장하고 있는 것으로 나타났다.
-
- 산업
-
닛산, 1MW 출력 갖춘 전기 하이퍼카 공개
-
-
대한항공, EC에 아시아나 합병 시정안 제출⋯내년 말 통합 완료
- 재무건전성이 지속적으로 악화하고 있는 아시아나항공에 대해 대한항공이 자금 지원에 나선다. 아시아나항공은 2일 임시 이사회를 열고 유럽연합(EU) 집행위원회(EC)에 제출할 시정조치안 및 신주인수계약 합의서 체결을 승인했다. 지난달 30일 같은 안건을 승인한 대한항공은 아시아나 이사회 종료 직후 EC에 시정안을 보냈다. 이날 대한항공에 따르면 양사는 아시아나에 대한 재무지원 방안을 마련했다. 시정안의 EC 제출 이후 아시아나는 운영자금 용도로 계약금 및 중도금 인출 및 사용이 가능해진다. 또 아시아나는 기존 영구전환사채는 전액 상환하고 신규 영구전환사채를 발행해 자금 확보에 나설 계획이다. EC로부터 기업 결합을 승인 받으면 인수계약금 3000억원 중 1500억원을 이행보증금으로 전환, 인수 불확실성을 해소하기로 했다. 대한항공은 아시아나에 대한 자금 지원을 서두른 이유에 대해 "중동지역의 정세 불안, 유가상승, 고금리 등에 따라 영업환경 악화가 지속되고 있으며 최근 화물사업 매출의 급격한 감소 및 재무건전성 악화가 지속되고 있음을 감안한 조치"라고 설명했다. 양사는 승계 및 유지를 전제로 하는 아시아나 화물사업부문 고용에 대해서도 합의했다. 대한항공은 고용승계 및 유지 조건으로 화물사업 매각을 추진하되 대상 직원에 대해 충분한 이해와 협력을 구하는 한편 원활한 합의가 진행될 수 있도록 현실적인 방안도 마련할 방침이다. EC에 제출하는 시정안에는인천~파리, 인천~프랑크푸르트, 인천~로마, 인천~바르셀로나 노선 등 자사 14개 유럽 노선 중 4개 노선 반납과 합병 후 아시아나 화물사업부 매각안을 담을 계획이다. 아시아나 화물사업 매각을 결정한 이유에 대해 대한항공은 "경쟁환경 복원을 위해 장기간에 걸쳐 다양한 시정조치 방안을 제안했지만 EC에서 모두 수용하지 않았다"며 "EC와 협의한 결과, 승인을 받으려면 '아시아나항공의 전체 화물사업 매각'을 시정조치안으로 제출하는 것이 유일한 대안"이라고 설명했다. 한편 대한항공은 EU 경쟁당국의 기업결합 심사가 약 한달 넘게 소요돼 내년 1월말 심사가 승인될 수 있다고 예상했다. 남은 미국 경쟁당국의 승인을 위해선 DOJ와 시정조치 방안 협의를 통한 경쟁제한 우려를 해소하고, 일본의 경우 정식신고서 제출 후 내년 초 심사 종결을 목표로 아시아와의 합병을 완료한다는 구상이다. 대한항공은 이와 함께 아시아나항공과의 기업결합 완료 기한을 내년 말까지로 못 박았다. 아시아나항공 신주인수 거래 기한을 내년 12월 20일까지로 정했다고 공시한 것이다. 신주인수 거래는 통상 기업결합의 가장 마지막 단계에 이뤄진다. 대한항공은 최종적으로 1조5000억원 규모의 아시아나항공 유상증자에 참여해 주식을 취득할 때 기업결합이 성사됐다고 볼 수 있는데, 이 주식 취득의 기한을 내년 12월 20일까지로 정했다는 의미다.
-
- 산업
-
대한항공, EC에 아시아나 합병 시정안 제출⋯내년 말 통합 완료
-
-
리튬이온 전지, 저온 합성법 리튬 세라믹 개발
- 리튬이온 배터리는 에너지 저장장치의 최정점에 서 있지만, 고비용과 화재 위험이 단점으로 지적된다. 특히 원자재 가격의 상승이 이어지면서, 보다 경제적이고 효율적인 리튬이온배터리의 연구개발이 가속화되고 있다. 과학기술·의학전문 매체 '사이언스엑스(Science X)'는 최근 화학 학술지 '앙게반테 케미(Angewandte Chemie)'에 게재된 고체 전해질 역할을 대신할 수 있는 경제적인 저온 합성법 리튬 세라믹 개발 소식을 전했다. 이 연구는 전기자동차의 배터리 개발에 있어서 큰 전환점이 될 것으로 보이며, 기존의 문제점들을 해결하는 데 일조할 것으로 보인다. 전기 자동차용 배터리 개발을 좌우하는 두 가지 요소는 차량 범위를 결정하는 '전력'과 '비용'으로, 이는 내연기관과의 경쟁에서 매우 중요하다. 미국 에너지부는 2030년까지 전기자동차의 배터리 생산 비용을 절감하고, 에너지 밀도를 높이는 것을 목표로 하고 있다. 이를 통해 내연기관 차량에서 전기 차량으로의 전환이 가속화될 것으로 전망되고 있다. 그러나 기존의 리튬이온 배터리만으로는 이 목표를 달성하기 어려울 것으로 보인다. 훨씬 더 작고, 더 가볍고, 강력하며 안전한 배터리를 제작하기 위한 새로운 접근 방식은 흑연 대신 금속 리튬을 사용한 양극 고체 셀을 사용하는 것이다. LLZO합성법 혁신 LLZO를 사용한 리튬이온 배터리 제조 과정에서는 일반적으로 이 물질을 1050°C 이상에서 음극과 함께 소결하여 급속한 리튬 전도성 입방 결정상을 형성하고, 전극에 강력하게 결합시켜야 한다. 그러나 600°C 이상의 고온 조건은 지속 가능한 저코발트 또는 무코발트 양극재의 안정성을 해치며, 생산비용과 에너지 소비 또한 상승시킨다. 이런 문제점을 해결하고자, 보다 경제적이며 지속 가능한 새로운 리튬이온 배터리 생산 방법의 필요성이 대두됐다. 이러한 배경 속에서 미국 케임브리지 MIT와 독일 뮌헨 TU의 연구팀이 새로운 합성 공정을 선보였다. 제니퍼 엘엠 루프(Jennifer LM Rupp) 박사가 이끄는 이 팀은 세라믹 전구체 화합물을 기반으로 하지 않는 새로운 방법을 개발했다. 이 공정은 LLZO를 형성하기 위해 순차적 분해 합성을 통해 직접 치밀화하는 액체 공정을 사용한다. 이를 통해 기존 방법보다 낮은 온도에서도 효율적으로 LLZO를 합성할 수 있게 되어, 생산 과정에서의 에너지 소비와 비용을 절감할 수 있을 것으로 기대된다. 루프 박사와 그의 연구팀은 LLZO의 무정형 형태에서 결정질 형태(cLLZO)로의 다단계 상변환을 분석하기 위해 다양한 방법(라만 분광법, 동적 시차 주사 열량계 등)을 활용했다. 이를 통해 시간-온도-변환 다이어그램을 제작하며, 합성 경로의 조건을 최적화하는데 성공했다. 500도 이하에서 합성 성공 연구팀은 이러한 분석을 바탕으로 500°C라는 상대적으로 낮은 온도에서 10시간 동안 어닐링 과정을 거친 후, cLLZO를 조밀하고 견고한 필름 형태로 만드는 새로운 기술을 선보였다. 이 최적화된 합성 방법을 통해 미래의 배터리 설계에서는 코발트와 같은 사회 경제적으로 중요한 자원을 사용하지 않아도 되며, 지속 가능한 음극과 고체 LLZO 전해질을 통합할 수 있게 됐다. 연구팀은 최근의 연구 성과를 바탕으로 "전고체 배터리의 상용화가 한 걸음 더 가까워졌다"며 "앞으로의 연구를 통해 리튬 세라믹의 성능을 더욱 향상시키고, 다양한 종류의 전고체 배터리에 적용할 수 있을 것"이라고 밝혔다. 한편, 한국원자력연구원 창업기업 내일테크놀로지는 나노 신소재를 이용하여 리튬이온전지의 성능과 안정성을 향상시키는 새로운 기술을 선보였다. 질화붕소 나노튜브(BNNT)를 활용한 이 기술은, 900도 이상의 고온에서도 안정성을 유지하며, 화학적 반응성이 낮은 것이 특징이다. 내일테크놀로지의 이러한 기술은 배터리 제작 공정에 무리 없이 적용될 수 있으며, 배터리의 출력과 용량, 충전과 방전, 그리고 안전성 등 전반적인 성능 향상에 기여할 것으로 예상된다. 이로써, 배터리 관련 기술 분야에서의 혁신과 더불어 에너지 저장장치의 성능 향상이 기대된다.
-
- 산업
-
리튬이온 전지, 저온 합성법 리튬 세라믹 개발
-
-
중국, 1200km 장거리 양자 순간이동 실험 성공
- 중국 과학원이 약 1200km 떨어진 지역 간의 양자 순간이동 실험에 성공해, 보안 체계에 새로운 패러다임을 가져올 전망이다. 미국의 과학기술 전문 매체 '사이테크데일리(SciTechDaily)'는 중국 과학원이 양자 통신 위성 '묵자(墨子·Micius)'를 활용하여 1200km 이상되는 거리에서 양자 정보를 순간이동 시키는 데 성공했다고 최근 보도했다. 중국은 독자 개발한 세계 첫 양자위성 '묵자'호를 지난해 8월16일 오전 1시 40분 간쑤(甘肅)성 주취안(酒泉) 위성 발사 센터에서 창정(長征) 2-D 로켓에 탑재해 발사했다. 이 연구의 교신 저자인 치앙 슈(Qiang Zhou) 교수는 "고속 양자 순간이동을 실험실 밖에서 실현하기 위해서는 많은 어려움이 있다"며 "이번 실험 결과는 미래 양자 인터넷 발전을 위한 중요한 이정표가 될 것"이라고 말했다. 양자 순간이동 시스템에서의 주요 실험적 과제는 벨 상태 측정(BSM)을 실행하는 것이다. 양자 순간이동이 성공적으로 이루어지고 BSM의 효율성이 향상되려면, 광섬유를 통해 장거리로 전송된 후, 찰리가 앨리스와 밥의 광자를 구별하지 못하게 해야 한다. 과학자들은 해킹이나 도청이 불가능한 양자 암호통신인 정보를 한 곳에서 다른 곳으로 빛보다 빨리 옮기는 '원격전송'을 찰리와 앨리스, 밥으로 설명했다. 앨리스의 정보를 밥에게 주면 밥과 친한 찰리가 앨리스처럼 변한다. 결국 앨리스가 찰리를 거쳐 전송된다는 것. 엄격히 말하면 원격전송은 '양자 정보'만 전송하는 것이다. 연구팀은 광자의 경로 길이 차이와 편광의 신속한 안정화를 위한 효과적인 피드백 시스템을 성공적으로 개발했다. 또한 연구팀은 얽힌 광자 쌍을 생성하기 위해 섬유 피그테일 주기적 극화 리튬 니오베이트 도파관의 단일 조각을 사용했다. 이를 바탕으로, 순간이동 시스템에 사용될 500MHz의 반복률을 가진 고품질의 양자 얽힘 광원이 개발됐다. 양자 순간이동은 광자의 양자 얽힘 상태를 활용하여 양자정보를 한 위치에서 사라지게 하고 동시에 다른 위치에서 나타나게 하는 전송 방법이다. 이러한 양자광학 기반의 고속 양자 순간이동을 위해서는 많은 이벤트를 수집할 수 있는 강력한 광자 센서가 필요하다. 리싱 유(Lixing You) 교수가 이끄는 팀은, 포톤 기술회사(Photon Technology Co., LTD)와 협력하여 고성능 초전도 나노와이어 단일 광자 검출기를 실험에 활용했다. 효율이 뛰어나고 노이즈가 거의 없는 이 검출기의 장점을 활용하여 고효율 BSM과 양자 상태 분석을 구현한 것이다. 연구팀은 양자 상태 단층 촬영과 미끼 상태 방법을 함께 사용하여 순간이동 충실도를 계산했는데, 이는 고전적 한계(66.7%)를 훨씬 초과하여 고속 대도시 양자 순간이동이 달성됐음을 확인했다. 이번 'UESTC 제1위의 대도시 양자인터넷' 프로젝트는 앞으로 통합 양자 광원, 양자 중계기, 양자 정보 노드 등을 결합하여 '고속, 고충실도, 다중 사용자, 장거리'를 지원하는 양자 인터넷 인프라를 개발할 계획이다. 연구팀은 이렇게 개발된 인프라가 양자 인터넷의 실질적인 활용을 더욱 가속화하는 데 기여할 것이라고 예상하고 있다. 양자통신은 정보 보안의 새로운 패러다임을 제시하는 차세대 통신 방법으로 주목받고 있다. 전파를 사용하는 대신, 레이저를 통해 암호화된 광자를 전송한다. 광자, 즉 빛의 최소 단위는 조작되면 속성이 변경되어 중간에서 정보의 도청이나 간섭이 발생하면 암호 키가 손상되어 원본 내용을 복원할 수 없게 된다. 이러한 특성으로 인해 양자통신은 정보 보안이 중요한 금융, 군사 통신 등의 핵심 기술로 주목받고 있다. 지상에서의 양자통신은 광섬유를 통해 이루어진다. 우주에서는 광섬유 설치가 어렵기 때문에 과학자들은 양자 순간이동 기술에 주목하고 있다. 중국의 연구팀은 묵자호 위성을 이용하여 양자 순간이동의 최장 거리 기록을 갱신했다. 묵자호는 중국의 칭하이, 우루무치, 운남 성에 위치한 지상국들과 통신했다. 이번 실험에서는 약 1203km 떨어진 칭하이와 운남성 간의 양자통신에 성공했다.
-
- 산업
-
중국, 1200km 장거리 양자 순간이동 실험 성공