검색
-
-
[우주의 속삭임(78)] 목성에는 단단한 땅이나 바위가 없다…그 이유는?
- 목성에는 지구에서 밟는 풀이나 흙과 같이 사람이 걷거나 우주선이 착륙할 수 있는 단단한 표면이 없다. 그 이유는 뭘까. 온갖 특이한 현상을 연구하는 물리학계에서도 '표면이 없는 세계'라는 개념은 이해하기 어렵다고 한다. 나사(NASA)의 로봇 탐사선 주노(Juno)가 이상한 행성인 목성 궤도를 9년째 공전하고 있는 지금도 목성의 많은 부분은 여전히 미스터리로 남아 있다. 태양에서 다섯 번째 행성인 목성은 화성과 토성 사이에 있다. 태양계에서 가장 큰 행성으로, 1000개 이상의 지구가 들어갈 만큼 크고 여유 공간도 있다. 태양계의 수성, 금성, 지구, 화성 등 네 개의 내행성은 모두 단단한 암석 물질로 이루어져 있지만, 목성은 태양과 유사한 구성을 가진 가스 행성이다. 소용돌이치고, 폭풍우가 몰아치며, 격렬하게 난기류를 일으키는 가스 덩어리의 거대 구체다. 목성의 일부 지역에서는 바람이 시속 약 640km 이상으로 불고 있다. 이는 지구의 5등급 허리케인보다 약 3배 빠른 속도다. 지구 대기권 꼭대기에서 시작해 약 100km 아래로 내려가면 기압이 지속적으로 증가한다. 궁극적으로는 땅이든 물이든 지구 표면에 부딪힌다. 목성의 경우, 대부분이 수소와 헬륨으로 이루어진 대기권의 꼭대기에서 내려가기 시작하면 지구와 마찬가지로 더 깊이 들어갈수록 압력이 증가한다. 목성의 압력은 엄청나다. 위의 가스층이 점점 더 아래로 밀려 내려감에 따라, 그것은 마치 바다 밑바닥에 있는 것과 같다. 지구의 물 대신 목성은 가스로 둘러싸여 있다. 압력이 너무 강해져서 인체가 붕괴될 것이다. 압력에 눌려 사망하게 되는 것이다. 1600km 아래로 내려가면 뜨겁고 밀도가 높은 가스가 이상하게 작동하기 시작한다. 가스는 액체 수소 형태로 바뀌어 물이 없는 바다를 만들어낸다. 물이 없다는 점은 다르지만, 태양계에서 가장 큰 바다라고 할 수 있다. 약 3만 2000km를 내려가면 수소는 흐르는 액체 금속에 더욱 가까워진다. 이 물질은 너무 이질적이다. 과학자들도 그 때문에 큰 어려움을 겪었으며, 최근에야 실험실에서 이 물질을 재현했다. 이 액체 금속 수소의 원자는 매우 단단히 압축돼 전자가 자유롭게 돌아다닐 수 있다. 이러한 층 전환은 갑작스러운 것이 아니라 점진적으로 이루어진다. 수소 가스에서 액체 수소로, 그리고 금속 수소로의 전환은 천천히 부드럽게 이루어진다. 어떤 지점에도 날카로운 경계나 고체 물질 또는 표면은 없다. 이렇게 내려가면 궁극적으로 목성의 핵에 도달하게 된다. 이것은 목성 내부의 중심 영역이며 표면과 혼동해서는 안 된다. 학자들은 여전히 목성 핵 물질의 정확한 성질에 대해 논쟁하고 있다. 그중에서 가장 호응을 받는 모델은 암석과 같은 고체가 아니라, 액체와 고체의 뜨겁고 밀도가 높은 금속성 혼합물과 비슷하다는 것이다. 목성 핵의 압력은 엄청나서 마치 지구 대기 1억 개가 누르는 것과 같다. 또는 신체의 각 제곱인치 위에 엠파이어 스테이트 빌딩 두 개가 얹히는 것과 같다. 압력만이 유일한 문제는 아니다. 목성의 핵에 도달하려는 우주선은 섭씨 2만 도의 극심한 열에 녹을 것이다. 이는 태양 표면보다 3배 더 뜨거운 온도다. 목성은 이상하고도 무서운 곳이다. 그러나 목성이 없었다면 인간이 존재하지 않았을 수도 있다. 그 이유는 목성이 지구를 포함한 태양계 내행성을 보호하는 방패 역할을 하기 때문이다. 목성은 엄청난 중력으로 수십억 년 동안 소행성과 혜성의 궤도를 바꾸어 놓았다. 목성의 개입이 없었다면 우주 잔해 중 일부가 지구에 충돌했을 수도 있다. 만약 하나의 충돌이 대격변 수준이었다면 지구는 멸종 수준의 사건을 일으켰을 것이다. 공룡의 대멸종을 연상하면 납득할 수 있다. 목성은 지구 생명체의 존재에 도움을 주었을지 모르지만, 목성 자체는 생명체가 살기에 매우 부적합한 곳이다. 그러나 목성의 위성인 유로파는 다르다. 태양계의 다른 곳에서 생명체를 찾을 수 있는 가장 좋은 기회가 될 수 있다. 나사의 유로파 클리퍼(Europa Clipper)는 지난 10월에 발사된 로봇 탐사선으로, 유로파를 약 50회 비행하며, 이를 통해 위성의 거대한 지하 바다를 연구할 계획이다. 탐사선은 2030년 4월에 도착할 예정이다.
-
- IT/바이오
-
[우주의 속삭임(78)] 목성에는 단단한 땅이나 바위가 없다…그 이유는?
-
-
[우주의 속삭임(74)]토성 위성 타이탄, 10km 두께 메탄 얼음층 존재…행성 과학 새 지평 열어
- 토성의 위성 중 하나인 타이탄의 메탄 층에 대한 미스터리가 한겹 풀렸다. 타이탄은 토성의 위성 중 가장 큰 천체로, 태양계 내에서는 목성의 위성 가니메데에 이어 두 번째로 크다. 미국 하와이대학교 마노아 캠퍼스의 행성 과학자들은 새로운 연구를 통해 타이탄의 얼음 속에 메탄 가스가 갇혀 최대 10km 두께의 독특한 지각을 형성하고 있음을 밝혀냈다고 사이테크데일리가 보도했다. 이 지각은 그 아래 얼음층을 따뜻하게 하고 타이탄의 메탄 대기를 설명하는 데 도움이 될 것으로 예상된다. 타이탄의 메탄 미스터리 풀다 토성의 가장 큰 위성인 타이탄은 태양계에서 지구 외에 대기와 액체 상태의 바다, 강, 호수를 가진 유일한 천체다. 극도로 추운 기온 때문에 이 액체들은 메탄과 에탄 같은 탄화수소로 이루어져 있으며, 표면은 단단한 고체 물 얼음으로 구성되어 있다. 하와이 지구물리학 및 행성학 연구소(HIGP)의 로렌 슈어마이어 연구원이 이끄는 연구팀은 타이탄의 충돌 크레이터가 예상보다 수백 미터 얕다는 사실을 발견했다. 나사(NASA) 데이터에 따르면 타이탄에서 확인된 크레이터는 90개에 불과하며, 이는 타이탄의 표면과 지질학적 역사에 대한 흥미로운 질문을 제공한다. 크레이터 분석을 통한 통찰 슈어마이어 연구원은 "다른 위성들을 기반으로 했을 때 타이탄 표면에 더 많은 충돌 크레이터가 있고, 그 크레이터들은 우리가 관찰한 것보다 훨씬 더 깊을 것으로 예상했기 때문에 분화구가 실제로는 얕다는 사실이 매우 놀라웠다"고 말했다. 그는 "우리는 타이탄 특유의 무언가가 크레이터를 얕게 만들고 비교적 빠르게 분화구를 사라지게 한다는 것을 깨달았다"고 덧붙였다. 연구팀은 이 미스터리를 조사하기 위해 컴퓨터 모델을 사용해 타이탄의 얼음층이 메탄 클래스레이트 얼음층으로 덮여 있을 경우, 충돌 후 지형이 어떻게 변화흐는 지 시뮬레이션했다. 메탄 클래스레이트 얼음은 결정 구조 내에 메탄가스가 갇힌 일종의 고체 물 얼음이다. 타이탄 크레이터의 초기 형태는 알려져 있지 않기 때문에 연구팀은 비슷한 크기의 목성의 가니메데의 크레이터를 기반으로 두 가지 초기 깊이를 모델링하여 비교했다. 슈어마이어 연구원은 "이 모델링 접근 방식을 사용하여 메탄 클래스레이트 지각의 두께를 5~10km로 제한할 수 있었다. 이 두께를 사용한 시뮬레이션에서 관측된 크레이터와 가장 일치하는 크레이터 깊이가 생성되었기 때문이다"라고 설명했다. 그는 "메탄 클래스레이트 지각은 타이탄의 내부를 따뜻하게 하고 놀라울 정도로 빠른 지형 이완을 유발하며, 이는 지구의 빠르게 움직이는 따뜻한 빙하와 비슷한 속도로 크레이터를 얕게 만든다"라고 부연했다. 타이탄 대기에 미치는 메탄의 영향 메탄 얼음층의 두께를 추정하는 것은 타이탄의 메탄 대기 기원을 설명하고 연구자들이 타이탄의 탄소 순환, 액체 메탄 기반 '수문 순환(물이 끊임 없이 이동하는 현상)' 및 기후 변화를 이해하는 데 도움이 되기 때문에 중요하다. 슈어마이어 연구원은 "타이탄은 온실가스 메탄이 대기를 어떻게 따뜻하게 하고 순환하는지 연구할 수 있는 천연 실험실"이라고 말했다. 그는 "시베리아 영구 동토층과 북극 해저 아래에서 발견되는 지구의 메탄 클래스레이트 수화물은 현재 불안정해지고 메탄을 방출하고 있다. 따라서 타이탄에서 얻은 교훈은 지구에서 일어나는 과정에 중요한 통찰력을 제공할 수 있다"고 덧붙였다. 타이탄의 생명체 존재 가능성 이러한 새로운 발견에 비추어 볼 때 타이탄에서 볼 수 있는 지형은 따뜻할 수도 있다. 메탄 클래스레이트 얼음 지각의 두께를 제한함으로써 타이탄의 내부가 이전에 생각했던 것처럼 차갑고 딱딱하며 비활성 상태가 아니라 따뜻할 가능성이 있음을 알 수 있다는 것. 슈어마이어 연구원은 "메탄 클래스레이트는 일반적인 물 얼음보다 강하고 단열성이 뛰어나다"면서 "클래스레이트 지각은 타이탄의 내부를 단열하고 물 얼음층을 매우 따뜻하고 연성으로 만들며 타이탄의 얼음층이 천천히 대류하고 있거나 대류했음을 의미한다"고 설명했다. 향후 탐사 임무 슈어마이어 연구원은 "두꺼운 얼음층 아래 타이탄의 바다에 생명체가 존재한다면, 생명체의 흔적(바이오마커)은 우리가 미래 임무를 통해 더 쉽게 접근하거나 볼 수 있는 곳까지 타이탄의 얼음층 위로 운반되어야 할 것"이라면서 "이는 타이탄의 얼음층이 따뜻하고 대류하는 경우 발생할 가능성이 더 크다"고 말했다. 연구팀은 2028년 7월 발사되어 2034년 타이탄에 도착할 예정인 NASA 드래곤플라이 미션을 통해 이 위성을 가까이에서 관찰하고, 셀크라는 크레이터를 포함한 얼음 표면을 추가로 조사할 수 있는 기회를 갖게 될 것이다. ◇ 참고: Schurmeier, L. R., Brouwer, G. E., Kay, J. P., Fagents, S. A., Marusiak, A. G., & Vance, S. D. (2024). Rapid Impact Crater Relaxation Caused by an Insulating Methane Clathrate Crust on Titan. The Planetary Science Journal, DOI: 10.3847/PSJ/ad7018
-
- IT/바이오
-
[우주의 속삭임(74)]토성 위성 타이탄, 10km 두께 메탄 얼음층 존재…행성 과학 새 지평 열어
-
-
[우주의 속삭임(73)] 지구에 떨어지는 운석, 대부분 '같은 곳'에서 왔다?
- 밤하늘을 가로지며 떨어지는 유성은 늘 보는 사람들을 매료시킨다. 그렇다면 지구에 도달해 밤하늘을 환하게 밝히는 유성은 과연 어디에서 왔을까? 우리 말에 유성과 별똥별이 있다. 일반적으로 비슷한 의미로 혼동하기 쉽지만 유성과 별똥별은 엄밀히 말하면 다른 뜻이다. 우주 공간을 돌아다니는 아주 작은 먼지나 돌멩이를 유성체라고 한다. 유성체가 지구 대기권으로 진입하면서 공기와의 마찰로 인해 빛을 내는 현상을 유성이라고 한다. 유성체가 대기 중에서 완전히 타지 않고 지표면까지 떨어진 것을 운석, 우리말로는 별똥별이라고 부른다. 매년 약 1만7000개의 유성이 지구 대기권에 진입하며, 그중 일부는 지표면에까지 도달한다. 과학자들은 이러한 운석을 통해 우주의 비밀을 탐구한다. 운석의 기원은 달이나 화성 등 다양하지만 대부분은 소행성에서 유래한다고 PHYS가 전했다. 최근 네이처(Nature)지에 발표된 두 연구는 이러한 운석의 기원을 더욱 명확히 밝혀냈다. 체코 카렐 대학교의 미로슬라프 브로즈(Miroslav Brož)와 유럽 남방 천문대의 미카엘 마셋(Michaël Marsset)이 이끄는 연구팀은 대부분의 운석이 소수의 소행성, 심지어는 특정 소행성에서 비롯되었다고 밝혔다. 이는 지구와 태양계 역사를 형성한 사건들에 대한 이해를 넓히는 데 기여한다. 이번 연구 결과는 학술지 네이처(Nature)에 게재됐다. 운석이란 무엇인가? 앞서 설명했듯이 유성이 지구 표면에 도달하면 '운석(meteorite)'이라고 부른다. 운석은 크게 석질운석, 철질운석, 석철질 운석 세 가지로 나뉜다. 석질운석 중 가장 흔한 종류는 '콘드라이트(chondrites)'로, 용융된 액체 방울 형태의 구형 입자를 포함하며 전체 운석의 85%를 차지한다. 대부분은 '일반 콘드라이트'로 철 함량과 광물 성분에 따라 H, L, LL의 세 가지 유형으로 나뉜다. '탄소질 콘드라이트(Carbonaceous chondrites)'는 점토 광물에 다량의 물과 아미노산 같은 유기물을 함유하고 있으며, 용융되지 않는 태양계 초기의 먼지 샘플이다. 반면 '아콘드라이트(achondrites)'는 콘드라이트와 달리 구형 입자가 없으며, 행성체에서 용융 과정을 거쳤다. 운석의 주요 공급원 '소행성대' 태양 주위를 공전하는 작은 천체인 소행성은 운석의 주요 공급원이다. 행성처럼 태양 주위를 돌지만, 행성보다 훨씬 작고 모양도 불규칙적인 경우가 많다. 대부분의 소행성은 화성과 목성 궤도 사이에 있는 '소행성대(Asteriod belt)'에 모여있으며, 목성의 중력에 의해 궤도를 돌고 있다. 목성과의 상호작용은 소행성 궤도를 교란시켜 충돌을 유발하고, 그 결과 발생한 파편들이 모여 '돌무더기 소행성'을 형성한다. 최근 하야부사와 오시리스-렉스 탐사선은 이러한 소행성에서 샘플을 채취해 지구로 가져왔다. 과학자들은 이룰 통해 특정 소행성 유형과 지구에 떨어지는 운석 사이의 연관성을 확인했다. 석질운석과 S형 소행성은 소행성대 안쪽에, 탄소질 콘드라이트와 유사한 C형 소행성은 바깥쪽에 분포한다. 소행성 '코로니스'와 '마살리아' 이번의 새로운 두 연구는 일반 콘드라이트 유형의 기원을 특정 소행성군, 특히 '코로니스'와 '마살리아' 소행성군으로 추적했다. 이는 운석 궤적 분석, 개별 소행성 관측, 모체 궤도 진화 모델링 등의 복잡한 과정을 통해 이루어졌다. 브로즈가 주도한 연구에 따르면 일반 콘드라이트는 3000만년 전에 발생한 지름 30km 이상의 소행성 충돌에서 비롯된 것으로 밝혀졌다. 상세한 컴퓨터 모델링에 따르면 코로니스와 마살리아 소행성군은 적절한 크기의 천체를 가지고 있으며 지구에 운석을 공급할 수 있는 위치에 있다. 특히 코로니스 소행성군의 '코로니스'와 '카린'은 H 콘드라이트의 주요 공급원일 가능성이 높으며 마살리아(L)와 플로라(LL) 계열은 L- 및 LL- 콘드라이트의 주요 공급원이다. 마셋이 주도한 연구는 마살리아에서 발견된 L 콘드라이트 운석의 기원에 대해 자세히 설명한다. 연구팀은 화성과 목성 사이의 소행성대에서 분자의 지문이 될 수 있는 특징적인 빛의 세기인 분광 데이터를 수집했다. 그 결과 지구에 있는 L 콘드라이트 운석의 구성이 마살리아 소행성 계열의 운석과 매우 유사하다는 사실이 밝혀졌다. 그런 다음 과학자들은 컴퓨터 모델링을 사용하여 약 4억 7000만 년 전에 발생한 소행성 충돌이 마살리아 소행성군을 형성했음을 보여주었다. 우연히도 이 충돌로 인해 스웨덴의 오르도비스기 석회암에서 풍부한 화석 운석이 발견되기도 했다. 이러한 연구 결과는 지구에 떨어지는 운석의 기원을 밝히고 태양계 형성 과정에 대한 이해를 높이는 중요한 역할을 한다. 또한 향후 운석의 기원 소행성을 탐사하는 임무의 기초 자료로 활용될 수 있을 것으로 기대된다.
-
- IT/바이오
-
[우주의 속삭임(73)] 지구에 떨어지는 운석, 대부분 '같은 곳'에서 왔다?
-
-
[퓨처 Eyes(53)] 세계 최초, 나노 크기 물방울 생성 실시간 포착
- 수소와 산소를 결합하는 과정을 통해 나노크기의 물방울 생성 장면이 처음으로 포착됐다. 미국 노스웨스턴 대학교 연구팀이 은백색 금속인 팔라듐(Pd)을 이용해 수소와 산소를 결합, 나노 크기의 물방울을 실시간으로 생성하는 과정을 세계 최초로 관찰하고 촬영하는 데 성공했다. 이 연구는 심우주 탐사에서 물을 생산하는 혁신적인 기술로 활용될 가능성을 제시하며 주목받고 있다. PHYS.org, IFL사이언스, 사이언스 얼러트 등 다수 외신이 이 같은 내용을 중점적으로 다루었다. 팔라듐 반응으로 나노 물방울 생성 물(H₂O)의 성분은 간단하다. 수소 원자 2개와 산소 원자 1개를 섞으면 지구 생명체 유지에 가장 중한 물 분자가 만들어진다. 연구팀은 팔라듐 반응을 직접 관찰하기 위해 20나노미터(1나노미터는 10억분의 1미터) 너비의 팔라듐 조각 표면에 수소와 산소 원자를 추가하고 멤브레인을 사용해 이어지는 상호작용을 포착했다. 팔라듐은 수소를 흡수하고 저장하는 능력이 뛰어난 금속으로, 수소가 팔라듐 구조 내부로 들어가 산소와 빠르게 결합하면서 물을 생성한다. 이번 연구에서는 벌집 모양의 나노 반응기와 초박막 유리 멤브레인을 사용해, 팔라듐 표면에서 수소와 산소가 결합해 물방울을 형성하는 과정을 실시간으로 시각화했다. 연구팀은 고진공 투과 전자 현미경을 이용해 이 극미세 반응을 관찰했다. 벌집 모양의 나노 반응기는 기체 분자를 가두어 서로 반응하게 한 후, 그 과정을 초박막 멤브레인을 통해 실시간으로 관찰할 수 있는 기술을 구현했다. 이를 통해 연구팀은 팔라듐이 수소와 산소를 빠르게 물로 변환하는 나노 단위의 과정을 확인했다. 전자 에너지 분광법을 통한 분석 연구팀은 팔라듐 표면에서 생성된 나노 크기의 물방울을 전자 에너지 분광법(EELS)을 사용해 분석했다. 이 방법은 전자를 시료에 쏘아 전자의 에너지 손실을 측정함으로써 시료의 화학적 결합 상태를 파악하는 기술이다. 이를 통해 연구팀은 팔라듐 표면에서 발생하는 물 분자의 결합 상태와 생성 과정을 정밀하게 관찰할 수 있었다. 이는 또한 인도의 달 탐사선 찬드라얀 1호가 달에서 물의 존재를 확인하는데 사용된 것과 동일한 기술이기도 하다. 2008년 발사된 찬드라얀 1호는 얼름, 헬륨-3을 포함한 달의 자원을 조사했다. 물은 인류 생존에 중요한 요소로 과학자들은 달의 남극에서 상당한 양의 물을 발견했으며, 미래의 우주 임무에서 달의 물을 활용하는 점에 주목하고 있다. 게다가 지난 2023년 8월 23일 찬드라얀 3호가 달에서 물이 풍부한 지역으로 알려진 남극 지역에 세계 최초로 착륙해 달 탐사의 새로운 이정표를 세웠다. 우주에서 물 생성 응용 가능성 이번 연구는 심우주 탐사에서 물을 현지에서 생산할 수 있는 가능성을 열었다. 팔라듐을 이용해 수소를 미리 우주선에 저장해두면, 우주 비행사들은 산소만 추가해 식수를 생산할 수 있는 방법을 제시한 것이다. 이는 달, 화성,목성 탐사와 같은 장기 우주 미션에서 중요한 자원 확보 방식으로 활용될 수 있다. 연구의 시니어 저자인 노스웨스턴 대학교 비나약 드라비드 교수는 "나노 규모의 물방울을 직접 시각화함으로써, 극한의 반응 조건 없이도 가스와 금속 촉매를 사용해 빠르게 물을 생성할 수 있는 최적의 조건을 파악할 수 있었다"고 밝혔다. 그는 "이 기술은 우주 환경뿐만 아니라, 수소 연료 전지와 같은 에너지 생산 기술에도 중요한 영향을 미칠 것"이라고 덧붙였다. 팔라듐의 촉매 역할과 수소 에너지 팔라듐은 연성과 전성이 뛰어나 가공하기 쉽고, 내부식성이 강하며 고온에서도 안정적이다. 특히 촉매 활성이 뛰어나 다양한 화학 반응에 활용되며, 수소를 흡수하는 능력 덕분에 최근 수소 에너지와 연료 전지 분야에서 그 중요성이 더욱 커지고 있다. 이번 연구는 팔라듐이 수소와 산소를 결합해 물을 생성하는 속도가 수소와 산소의 주입 순서에 따라 크게 달라진다는 사실을 밝혀냈다. 이는 우주 공간과 같은 특수 환경에서 물을 효율적으로 생산하는 기술 개발에 기여할 것으로 기대된다. 영화 '마션'의 현실화 연구팀은 영화 '마션'에서 주인공 마크 와트니(맷 데이먼 분)가 화성에서 로켓 연료를 태워 수소를 추출하고 산소와 결합해 물을 만든 장면을 언급하며, "우리 기술도 극한 환경 없이 팔라듐과 기체만으로 물을 생성할 수 있다"고 설명했다. 이는 우주 탐사에서 더 간단하고 효율적인 물 생산 방법을 제시한 것이다. 이 연구 결과는 미국 국립과학원회보(PNAS)에 게재되었으며, 향후 우주 탐사 및 수소 에너지 분야에서 중요한 응용 가능성을 제시하고 있다.
-
- 포커스온
-
[퓨처 Eyes(53)] 세계 최초, 나노 크기 물방울 생성 실시간 포착
-
-
[우주의 속삭임(61)] NASA, 지구 근접 통과한 거대한 눈사람 모양 소행성 이미지 공개
- 나사(NASA)의 천문학자들이 지구에 근접해 통과한 눈사람 모양의 매혹적인 소행성 이미지를 공개했다고 라이브사이언스가 전했다. '2024 ON'이라는 이름의 이 소행성은 지난 17일 지구에서 100만km 떨어진 거리에서 안전하게 지구를 지나갔다. 이는 달과 지구 사이의 거리의 약 2.6배에 해당하는 거리다. 이 소행성은 시속 3만1933km로 이동 중이었으며, 이는 음속의 약 26배이다. 나사가 공개한 새로운 이미지는 16일 캘리포니아 중부 바스토우 근처의 골드스톤 태양계 레이더(Goldstone Solar System Radar)에 의해 포착됐다. 이미지는 고층 빌딩 크기의 이 소행성이 땅콩과 매우 닮았다는 사실을 보여주었다. 그러나 실제로 눈사람 또는 땅콩 모양의 소행성은 아니었다. 2024 ON은 사실은 두 개의 소행성이 서로 밀접하게 가까워진 후 자체 중력에 의해 접촉한 쌍성의 형태로 고정되었기 때문에 일어난 모양이었다. 과거 유명한 다른 접촉 쌍성으로는 화성과 목성 사이의 주요 벨트에 있는 소행성 딘키네시(Dinkinesh)를 공전하는 소행성 '인 셀람(Selam)'과 2015년 나사의 뉴 호라이즌 탐사선이 연구한 명왕성 궤도 너머의 극저온 천체인 '아로코스(Arrokoth)'가 있었다. 나사는 이와 관련 "발견된 소행성은 잠재적으로 위험한 천체로 분류되었지만 가까운 미래에 지구에 위험을 초래하지는 않는다"라며 "골드스톤 태양계 레이더 측정을 통해 천문학자들은 수십 년 동안 지구와 소행성 사이의 거리 측정과 함께 소행성의 미래 운동에 대한 불확실성을 크게 줄일 수 있었다"고 밝혔다. 나사는 지구에서 750만km 이내에 들어오는 모든 우주 물체들이 지구에 즉각적인 위협이 되지 않더라도 '잠재적으로 위험하다'고 간주한다. 그 이유는 그러한 소행성의 궤도를 조금만 움직여도(예를 들어 다른 소행성과 부딪히는 경우) 지구와 충돌할 수 있기 때문이다. 나사는 24시간마다 밤하늘 전체를 스캔해 약 2만 8000개에 달하는 소행성의 위치와 궤도를 추적한다. 나사는 이 모든 지구 근처 소행성의 예상되는 향후 궤적을 추정해 냈는데, 그 결과 지구는 앞으로 최소한 100년 동안은 종말론적인 소행성 충돌 위험에 직면하지 않을 것임을 발견했다.
-
- IT/바이오
-
[우주의 속삭임(61)] NASA, 지구 근접 통과한 거대한 눈사람 모양 소행성 이미지 공개
-
-
[우주의 속삭임(57)] 다량의 철분 섞인 바람 부는 외계 행성 발견
- 다양한 환경 조건을 갖춘 외계 행성이 새로 발견되었다. 'WASP-76b'라는 이름이 붙여진 이 외계 행성은 낮 온도가 무려 2000도 이상으로 치솟는 극단적인 행성 중 하나라고 사이언스얼라트가 전했다. 스위스 제네바 대학교가 주축이 된 천문학자 팀은 이 외계 행성에 대한 연구를 진행, 천문학 및 천체물리학(Astronomy & Astrophysics) 저널에 WASP-76b 대기에 강렬한 '철분 섞인 바람, 소위 철풍'이 불고 있다는 증거를 발견했다고 발표했다. 보고서에 따르면 연구진은 이 행성이 10년 전 발견됐던 당시에 생각했던 것보다 훨씬 더 특이하다는 사실을 발견했다. 이 행성은 모항성에 단단히 고정되어 있어 행성을 둘러싸고 강렬한 바람이 불고 있다. 바람에는 대기의 하층에서 상층으로 흐르는 많은 양의 철 원자가 포함되어 있다고 한다. 지구에서는 찾을 수 없는 철풍이 불고 있다는 것이다. 외계 행성은 태양계 밖에 존재한다. 따라서 태양이 아닌 다른 항성을 공전한다. 외계 행성의 첫 발견은 지난 1990년대로 거슬러 올라간다. 그 이후 현재까지 5200개 이상의 외계 행성이 발견되었다. 그중 다수는 목성이나 토성과 같은 거대 가스 행성이고, 다른 것들은 거주 가능성을 배제한 '작은 암석의 지구'와 유사하다. 더욱 진보된 망원경과 탐지 기술이 개발됨에 따라, 관찰 범위와 수준은 더욱 높아지고 있기 때문에 외계 행성을 찾아내거나 탐사할 수 있는 능력도 높아질 것으로 기대된다. 발견된 외계 행성 중 하나인 WASP-76b는 최근 많은 주목을 받았다. 이 행성은 물고기자리 방향으로 지구로부터 640광년 떨어진 초고온 가스 거성이다. 지난 2013년에 발견되었으며, 모항성과 매우 가까운 궤도를 돌고 있다. 지구 기준으로 단 1.8일 만에 궤도를 한 바퀴 돌았다. 항성과 매우 가까운 거리에 있어 주간 기온은 2000도 이상으로 극심하게 상승했다. 강렬한 열이 지표면의 철을 증발시켜 대량의 철 원소가 바람에 실려 날리고, 밤에 차가워지면 다시 액체로 응축돼 철비로 떨어지는 것으로 추정된다. 천문학자들은 이 행성이 발견된 이후 초고온 목성의 대기 메커니즘을 규명하기 위해 이 행성 연구에 집중해 왔다. 같은 초고온 가스 거성이었기 때문이다. 이 행성은 진정 매혹적인 모습을 보여주었다. 지난해 4월에는 무지개도 감지되었다. 연구팀은 온도가 훨씬 높은 낮 시간대에 더욱 세심한 주의를 기울였다. 팀은 유럽 남방천문대의 초대형 망원경에 설치된 에스프레소(ESPRESSO) 분광기를 사용했다. 이 분광기는 안정성과 높은 광분해 능력으로 유명하여 항성에서 분출되는 빛 스펙트럼에서 놀라울 정도로 미세한 수준의 세부 사항까지 식별할 수 있다. 연구팀은 고해상도 방출 분광법 기술을 사용해 가시광선 스펙트럼을 연구했다. 이 방식은 스펙트럼에서 방출선을 감지해 내 화학적 구성을 디코딩할 수 있다. 여기서 연구팀은 철의 화학적 특징을 감지했고, 철분이 대기의 낮은 층에서 높은 층으로 이동하고 있음을 발견했다. 한편 외계 행성의 대기 연구는 우주 행성들의 환경을 더 깊이 이해할 수 있도록 한다. 가스 행성인 WASP-76b에 대한 연구는 모항성에서 극한 수준의 방사선 폭격을 받는 태양계를 비롯, 우주 세계의 기후에 대한 많은 정보를 제공해 주고 있다.
-
- IT/바이오
-
[우주의 속삭임(57)] 다량의 철분 섞인 바람 부는 외계 행성 발견
-
-
[우주의 속삭임(52)] NASA, 목성 생명체 탐사 위해 유로파 클리퍼 임무 우주선 10월 발사
- 목성의 생명체 탐사를 위한 나사(NASA)의 유로파 클리퍼(Europa Clipper) 임무 우주선이 오는 10월 발사된다고 스페이스닷컴이 전했다. 이를 위해 현재 목성 위성 주변의 혹독한 방사선 환경을 견딜 수 있는지를 확인하는 테스트가 진행되고 있다. 유로파 클리퍼 우주선은 목성의 얼음 위성인 유로파(Europa)를 연구하는 것을 목표로 한다. 유로파는 지구의 모든 바다를 합친 것보다 두 배나 많은 물을 가진 지하 바다를 품고 있는 것으로 알려져 있다. 카메라, 지상 투과 레이더, 분광기 등 9개의 장비를 탑재한 이 우주선은 유로파를 여러 번 근접 비행하고, 유로파의 얼음 지각 아래 환경을 조사하며 생명체의 흔적을 찾을 계획이다. 우주선은 플로리다에 있는 나사 케네디 우주 센터의 39A 발사장에서 스페이스X(SpaceX) 팰컨 헤비(Falcon Heavy) 로켓에 실려 발사될 예정이다. 나사는 오는 10월 10일이 발사 목표일이라고 발표했다. 나사 관계자는 "유로파 클리퍼의 주요 탐사 목표는 유로파 위성의 표면 아래에 생명체가 살 수 있는 곳이 있는지 확인하는 것"이라고 밝혔다. 관계자는 또 "이 임무의 세 가지 주요 목표는 얼음 표면과 그 아래의 바다의 특성, 유로파 위성의 구성 및 지질을 이해하는 것이다. 유로파에 대한 우주선의 자세한 탐사는 과학자들이 지구 너머에 있는 거주 가능한 세계의 천체생물학적 가능성을 더욱 깊이 이해하는 데 도움이 될 것"이라고 부연했다. 이전에는 목성의 강력한 자기장으로 인해 생성된 높은 방사선 환경에서 우주선이 견딜 수 있는가에 대한 우려가 제기됐다. 이때 탐사선의 전기 흐름을 제어하는 장치인 트랜지스터가 예상보다 낮은 방사선량에서도 고장을 일으킨 바 있다. 10월 발사가 예정된 우주선에 대한 방사선 환경 테스트도 이 때문에 시행되고 있는 것. 나사 관계자는 최근의 테스트에서 우주선의 트랜지스터가 기본 임무를 지원할 수 있음이 확인되었다고 밝혔다. 이번에 발사되는 우주선은 2030년 목성에 도착할 예정이며, 2031~2034년 사이에 유로파를 약 50회 비행할 것으로 예상된다. 한편 나사는 오는 9일 실시될 핵심 검토를 통해 유로파 클리퍼 우주선이 최종 발사 준비에 들어갈 수 있는지의 여부를 판단할 방침이다.
-
- IT/바이오
-
[우주의 속삭임(52)] NASA, 목성 생명체 탐사 위해 유로파 클리퍼 임무 우주선 10월 발사
-
-
[우주의 속삭임(51)] 토성 고리, 6개월 후에 못본다
- 가스 행성 토성의 고리는 태양계에서 가장 매혹적이고 상징적인 천체적 특징이다. 17세기에 이탈리아 천문학자 갈릴레오 갈릴레이가 고대 망원경으로 처음 발견했다. 다만 망원경의 성능적 한계로 인해 토성의 모습을 '귀'가 달린 것처럼 비유했다. 그 이후 최첨단 연구와 관찰을 통해 학계는 토성 고리의 복잡한 수수께끼를 풀고 고리의 구성과 이를 형성하는 역동적인 과정을 밝혀냈다. 빠르게 다가오는 중요한 우주적 사건이 곧 토성에 대한 우리의 시각을 극적으로 바꿀 것이라고 한다. 2025년 3월이 되면 토성의 장엄한 고리는 지구서는 사실상 보이지 않게 될 것이라고 지구 및 천체 물리학을 다루는 어스닷컴이 전했다. 물론 고리가 물리적으로 사라지는 것은 아니다. 보이지 않는 현상은 토성의 축이 기울어져 고리가 우리 시야에 가장자리로 위치하기 때문에 발생한다는 것이다. 이는 역설적으로 천문학자와 관찰자 모두에게 독특한 천체 변화를 목격할 수 있는 희귀한 기회를 제공한다. 이 현상은 토성이 태양을 공전하는 데 걸리는 시간인 29.5년마다 반복되는 이벤트다. 2025년 3월 이후에는 토성의 축 기울기의 변동으로 고리가 다시 관측자의 시야에 들어오고, 2025년 11월에 다시 사라지게 된다. 천문학자들은 이는 결국 일종의 숨바꼭질을 하면서 천체 게임을 하는 것이라고 말했다. 토성의 고리는 대부분 얼음 입자, 암석 파편, 우주 먼지로 구성되어 있다. 고리를 구성하는 입자는 모래 크기의 작은 먼지에서 버스, 집이나 학교만큼 거대한 덩어리까지 다양하다. 이러한 혼합으로 고리가 흥미로운 모습을 갖게 된다. 토성의 고리는 견고한 하나의 구조가 아니다. A, B, C 고리와 보기 어려운 희미한 D, E, F, G 고리를 포함한 여러 개로 구성되어 있다. 이러한 부분은 A와 B 고리 사이의 '카시니 분할'과 같은 틈새로 구분되어 있으며, 너비는 약 4800km이다. 고리의 모양과 구성은 주로 토성의 많은 위성과의 중력적 상호 작용에 의해 형성된다. 위성 중 일부는 고리의 가장자리 근처에 매달려 있으며 중력으로 고리 입자를 끌어당겨 고리 모양을 유지하는 데 도움을 준다. 토성의 고리가 어떻게 생겨났는지는 천문학자들 사이에서 여전히 뜨거운 주제다. 파괴된 토성의 위성, 토성의 강한 중력에 의해 찢어진 혜성의 잔재, 40억 년 전 토성이 형성될 때 남은 물질 등 수많은 이론이 제안됐다. 새로운 이론이 계속 등장하고 있다. 나사(NASA), 유럽우주국(ESA), 이탈리아우주국(ASI)이 토성과 위성들을 탐사할 목적으로 공동 발사한 카시니-하위헌스(Cassini-Huygens) 임무는 많은 성과를 가져다 주었다. 우주선의 탐사는 2004년 토성에 도착하면서 시작되어 2017년에 마무리된 13년간 이루어졌다. 카시니-하위헌스 임무는 활동 내내 토성과 복잡한 위성 및 고리 시스템에 대한 귀중한 정보를 제공했다. 가장 멋진 발견 중 하나는 고리의 틈새, 특히 A와 B 고리 사이의 눈에 띄는 공간인 카시니를 발견한 것이었다. 이 공간은 토성의 위성의 중력에 의해 형성되어 고리 시스템이 실제로 얼마나 역동적이고 끊임없이 변화하는지를 보여준다. 우주선은 또 많은 위성에 대한 더 깊은 지식을 제공, 위성의 고유한 구성과 지질학적 특징을 알려주었다. 예를 들어 토성의 얼음 위성 중 하나인 엔셀라두스에는 수증기와 유기 물질을 뿜어내는 간헐천이 있어 지하 바다의 가능성을 암시한다. 토성은 고리 외에 최소 145개에 달하는 위성이 있으며, 각각 고유한 특성을 갖고 있다. 태양계에서 두 번째로 큰 위성인 타이탄은 두꺼운 대기와 흥미로운 표면으로 주목받고 있다. 타이탄은 목성보다 약하지만 지구보다는 강한 자기장을 가지고 있어 토성과의 복잡한 상호 자기작용을 나타낸다. 향후 진행될 드래곤플라이 탐사 임무는 타이탄에서 생명체의 흔적을 찾을 계획이다. 엔셀라두스에서는 생명체에 필수적인 구성 요소가 존재한다는 것을 발견했다. 토성은 망원경이나 고성능 쌍안경을 가진 관찰자들에게 여전히 매혹적인 대상이다. 무수한 얼음 입자와 암석 파편으로 구성된 고리는 특히 태양계의 신비다. 토성의 고리가 내년 3월 사라지기까지 천체 관찰자는 고리를 달리 관찰할 독특한 기회를 얻게 될 것이다.
-
- IT/바이오
-
[우주의 속삭임(51)] 토성 고리, 6개월 후에 못본다
-
-
[우주의 속삭임(50)] 목성 위성 '가니메데' 고대 소행성 충돌로 자전축 이동
- 목성의 최대 위성인 가니메데가 과거 거대한 소행성 충돌로 자전축이 이동했다는 연구 결과가 나왔다. 목성은 태양계의 다섯번째이자 가장 큰 행성이다. 목성은 95개의 자연위성을 가지고 있으며 갈릴레이 위성으로 알려져 있는 이오, 유로파,가니메데, 칼리스토가 가장 큰 네 개의 위성이다. 최근 과학 학술지 '사이언티픽 리포츠(Scientific Reports)'에 게재된 연구에 따르면, 약 40억년 전 가니메데에 충돌한 소행성은 지구에서 공룡 멸종을 초래한 소행성보다 20배 이상 컸던 것으로 추정된다. 이 충돌로 인해 가니메데 표면에는 거대한 고랑 지형이 형성되었으며, 위성의 자전축까지 변화시켰다는 것이 연구팀의 설명이다. 해당 내용에 대해서는 영국 일간지 가디언을 비롯해 뉴스위크, 기즈모도 등 다수 외신이 조명했다. 일본 고베 대학의 히라타 나오유키 연구원은 컴퓨터 시뮬레이션을 통해 가니메데 표면의 고랑 구조를 형성할 수 있는 소행성의 크기를 추정했다. 그 결과, 충돌 당시 생성된 임시 크레이터는 지름이 약 1400~1600km에 달했으며, 이는 가니메데의 자전축을 현재 위치로 이동시킬만큼 강력한 충돌이었음을 시사한다. 히라타 연구원은 "이 거대 충돌은 가니메데의 초기 진화에 상당한 영향을 미쳤을 것"이라며, "앞으로 얼음 위성의 내부 진화를 적용한 추가 연구가 필요하다"고 밝혔다. 한편, 유럽우주국(ESA)의 목성 얼음 위성 탐사선 '주스(JUICE)'가 2031년 목성계에 도착 후 2034년 가니메데를 6개월간 관측할 예정이다. 이를 통해 가니메데의 지질학적 역사는 물론, 생명체 존재 가능성에 대한 단서를 찾을 수 있을 것으로 기대된다. 가니메데와 유로파는 얼음 표면 아래 바다가 존재할 가능성이 제기되어 왔으며, 2021년에는 가니메데 대기에서 수증기가 발견되기도 했다. '주스' 미션은 이러한 얼음 위성들의 비밀을 밝히고, 태양계 내 생명체 존재 가능성을 탐색하는 중요한 역할을 수행 할 것이다.
-
- IT/바이오
-
[우주의 속삭임(50)] 목성 위성 '가니메데' 고대 소행성 충돌로 자전축 이동
-
-
[우주의 속삭임(47)] 제임스 웹 망원경, 별처럼 탄생한 떠돌이 행성 6개 발견
- 천문학자들이 제임스 웹 우주 망원경(JWST)을 사용해 별을 공전하지 않고 자유롭게 떠다니는 특이한 우주 천체인 자유 부유 행성을 발견했다. 제임스웹은 지구에서 960광년 거리의 페르세우스 분자 구름에서 홀로 떠도는 6개의 자유 부유 행성을 발견했다고 CNN과, 스페이스닷컴, 라이브사이언스 등 다수 외신이 전했다. 천문학자들은 제임스웹을 통해 별 형성 성운, 즉 가스와 먼지구름인 NGC1333을 들여다 보았다. 이 행성들은 목성 질량의 5~10배에 이르며 항성 주위를 공전하지 않고 성간 가스에서 직접 응축되어 별처럼 형성된 것으로 추정된다. 특히 이 중 하나는 가스와 먼지 원반으로 둘러싸여 있어 위성 또는 '미니 행성'을 형성 중일 가능성도 제기됐다. 일반적으로 별은 가스와 먼지 구름에서 형성된다. 그런 다음 별의 형성에서 남은 물질이 행성의 형성으로 이어진다. 하지만 항성체도 행성과 비슷하게 형성될 수 있다고 연구 저자들은 지적했다. 제임스웹이 자유 부유 행성을 발견한 것은 이번이 처음은 아니다. 지난 2023년에는 오리온 성운에서 목성 질량 이진 천체 또는 점보(JUMBO)라고 알려진 42쌍의 자유 부유 가스 거대 행성을 발견하기도 했다. 이러한 천체는 많은 질량이 가스 행성 및 갈색 왜성과 겹치기 때문에 행성과 별의 경계가 모호하다. 이번에 발견된 6개의 천체는 지구에서 약 960광년 떨어진 북쪽 별자리 페르세우스 자리에 위치한 NGC 1333이라는 반사 성운 및 산개성단 복합체에서 발견됐다. 허블 우주 망원경은 이전에 성운의 이미지를 포착했지만 먼지로 인해 별 형성 과정을 볼 수 없었다. 제임스웹은 목성 질량보다 5배 작은 작은 떠돌이 행성도 감지할 수 있지만 NGC 1333에서는 그런 행성을 찾지 못했다. 이 사실은 자유롭게 떠다니는 행성의 형성 과정에 대한 중요한 정보를 제공한다. 성운 안에는 신생 별, 갈색 왜성(별이나 행성이 아닌 천체), 행성과 같은 질량을 가진 물체가 있었다. 태양계 행성 중에서 가장 큰 목성은 질량이 지구 질량의 약 318배에 해당하는 엄청나게 큰 크기다. 새로 발견된 천체 중 하나는 목성 5개, 즉 지구 1600개 정도의 질량을 가지고 있는 것으로 추정된다. 천체를 둘러싼 먼지가 많은 원반은 별과 비슷하게 형성되었을 가능성이 제기됐다. 두 가지 행성 형성 과정 태양계의 행성들은 원시 행성 원반에서 물질이 쌓여 점점 더 커지는 '상향식 과정'을 통해 탄생했다. 반면, 행성을 행성하는 다른 방식은 '하향식 과정'으로, 중력 하에서 별처럼 가스와 먼지 구름에서 직접 붕괴해 형성되는 것이다. 목성 질량의 약 1~5배 범위에서 자유롭게 떠다니는 행성이 발견되지 않았다는 것은 목성 질량 5개가 하향식 형성 과정의 하한선이라는 것을 강력하게 시사한다. 물론 행성계에서 방출된 후 지구 크기의 암석 행성들도 많이 존재할 수 있지만, 이들은 JWST로 감지하기에 너무 작을 가능성이 있다. 연구팀은 제임스웹을 이용해 인간의 눈에는 보이지 않는 적외선으로 성운을 자세히 연구했고, 희귀한 현상인 갈색 왜성과 행성 질량을 가진 동반 천체를 발견했다. 영국의 세인트 앤드류스 대학교의 천체물리학자이자 연구 공동 저자인 알렉스 숄츠는 성명을 통해 "거대 행성과 비슷한 질량을 가진 작은 물체는 스스로 행성을 형성할 수가 있다"고 밝혔다. 이번 발견에 참여한 존스 홉킨스 대학교의 천체 물리학자 레이 자야와르다나(Ray Jayawardhana)는 "우리의 관측은 자연이 적어도 두 가지 다른 방식으로 행성 질량 전체를 생성한다는 것을 확인시켜준다. 하나는 별이 생성되는 방식처럼 가스와 먼지 구름의 수축이고, 다른 하나는 우리 태양계의 목성처럼 어린 별 주위의 가스와 먼지 원반에서 생성되는 것이다"라고 설명했다. 연구원들은 다음 단계로 JWST를 이용해 천체를 추적하고. 대기와 구성을 연구해 천체의 형성에 관한 단서를 찾고 다른 우주 천체와 어떻게 다른 지 알아내는 것이라고 밝혔다. 이번 연구 결과는 '천문학 저널(The Astronomical Journal)'에 게재가 수락됐으며, 사전 인쇄 서버 arXiv에서 이용할 수 있다.
-
- IT/바이오
-
[우주의 속삭임(47)] 제임스 웹 망원경, 별처럼 탄생한 떠돌이 행성 6개 발견
-
-
[우주의 속삭임(34)] 주노 탐사선, 목성의 구름 신비 담은 초고화질 이미지 전송
- 나사(NASA)의 목성 탐사 우주선 주노(Juno)가 목성을 61번째 근접 비행하는 과정에서 북반구의 구름과 폭풍의 신비를 담은 고화질 이미지를 포착해 지구로 전송했다. 이들 이미지는 '접힌 필라멘트'로 알려진 지역에서 구름과 사이클론 폭풍에 대한 자세한 모습을 제공하고 있다고 사이테크데일리가 전했다. 원본 사진을 찍을 당시 주노 우주선은 목성의 적도 북쪽 약 68도 위도의 2만 9000km 상공에 위치해 있었다. 주노캠으로 찍혀 지구로 전송된 목성 구름 이미지는 공개된 주노 미션 공식 사이트에 게됐으며, 과학자 개리 이어슨이 디지털 기기와 프로그램으로 색상과 선명도를 높여 편집한 초고화질 이미지를 생성했다. 주노는 태양계에서 가장 큰 행성인 목성을 연구하기 위해 쏘아 올려진 나사의 우주 탐사선이다. 지난 2011년 8월 발사된 주노의 임무는 목성의 구성, 중력장, 자기장, 그리고 극지방의 자기권을 탐구하는 것이었다. 또 목성이 어떻게 형성되었는지에 대한 단서를 찾는 것도 숙제였다. 탐사를 통해 태양계의 초기에 대한 더 깊은 이해와 정보를 제공할 수 있을 것으로 기대됐다. 주노 미션은 태양계 탐사를 책임지는 나사의 '뉴 프론티어(New Frontiers)’ 프로그램의 일부다. 주노는 태양 전지판을 이용한 태양광 발전으로 전력을 공급받았는데, 이는 발사 당시로서는 태양으로부터 가장 멀리 떨어져 작동하는 우주선이었기 때문에 주목받기도 했다. 주노는 2016년 7월 4일 목성 궤도에 진입했고, 그 이후 데이터를 수집하면서 목성 궤도를 돌고 있다. 우주선은 목성 조사를 위해 다양한 장비를 사용하는데, 특히 짙은 구름 아래를 볼 수 있는 마이크로파 방사계와 함께 목성 자기장과 중력장을 매핑할 수 있는 카메라 및 센서가 장착돼 있다. 이번에 보여준 주노의 구름과 폭풍 이미지는 목성의 대기에 대한 전례 없는 새로운 데이터를 제공하고 있다. 목성의 폭풍, 구름의 띠나 오로라 구성에서의 복잡한 구조를 드러냈다. 원래 2018년 완료될 예정이었던 주노의 임무는 여러 차례 연장돼 목성 주변의 지속적인 탐사와 발견을 이어가고 있다.
-
- IT/바이오
-
[우주의 속삭임(34)] 주노 탐사선, 목성의 구름 신비 담은 초고화질 이미지 전송
-
-
[우주의 속삭임(32)] 태양계 최대 소용돌이 '목성 대적반', 크기가 점점 줄어드는 이유는?
- 태양계에서 가장 큰 소용돌이 폭풍인 목성의 대적반(Great Red Spot: 대적점이라고도 함)의 크기는 지속적으로 줄어들고 있다. 그런데 이번에 대적반에 대한 연구와 함께 대적반이 줄어드는 이유에 대한 설득력 있는 주장이 나왔다고 PHYS가 전했다. 목성 대적반은 목성 표면의 적갈색 소용돌이로, 6일 동안 1회의 비율로 반시계방향으로 회전한다. 목성의 남반구에 위치한 대적반은 폭이 1만 6000km가 넘는 고압의 붉은 오렌지색 타원형 소용돌이다. 시계 반대 방향으로 시속 320km 이상으로 불고 있다. 기술적으로는 안티사이클론이라고 부른다. 지구의 북반구에서 사이클론은 반시계방향으로 불고 남반구에서는 시계방향으로 회전하는데 목성 대적반은 반대로 돌기 때문이다. 목성 대적반은 과거 한 세기 동안, 특히 지난 50년 동안 지속적으로 줄어들었다. 나사(NASA)의 주노 궤도 우주선 측정 결과, 위도는 상대적으로 일정하게 유지됐지만 경도는 19세기 후반 40도에서 2016년 14도로 축소됐다. 연구는 예일대, 노스캐롤라이나 주립대 등 연합팀이 수행했으며, '이카루스(Icarus)' 저널에 실렸다. 재미있는 것은 이번 연구팀원의 다수는 전문 천문학자가 아니고 예술 등 다양한 분야였다는 사실이다. 대적반에 대한 연구는 광범위하게 진행됐지만, 여전히 핵심 미스터리는 풀리지 않았다. 천문학자들은 대적반이 언제 형성되었는지, 어떻게 형성되었는지, 왜 붉은색을 띄는지, 그 이유를 정확히 파악하지 못했다. 연구팀원인 예일대 칼렙 캐벤니 박사, 노스캐롤라이나 대학 개리 랙크만 박사, 루이빌 대학 티모시 다우링 박사 등은 빈번하게 발생하며 일시적인 작은 폭풍들이 대적반에 미치는 영향에 초점을 맞췄다. 팀은 다우링이 1990년대에 개발한 행성 대기 모델(EPIC)을 사용해 대적반에 대한 일련의 3D 시뮬레이션을 수행했다. 대적반과 다양한 작은 폭풍 사이의 상호 작용에 대한 시뮬레이션 비교 결과, 다른 다양한 폭풍의 존재가 대적반의 크기에 영향을 미치는 것으로 나타났다. 캐벤니 박사는 "연구팀은 수치 시뮬레이션을 통해 목성에서 발생하는 작은 폭풍이 대적반에 직접적인 영향을 미치면서 크기를 조절할 수 있다는 것을 발견했다"라고 말했다. 연구팀은 부분적으로, 지구 대기권에서 도심지에서 발생하는 '열돔(히트돔)' 현상도 모델링했다. 열돔은 5~7km 상공의 대기권에서 발달한 고기압이 정체해 뜨거운 공기를 지면에 가둬 더위가 극심해지는 현상을 말한다. 열돔 시스템은 지구 중위도를 순환하는 서쪽 제트기류에서 정기적으로 발생해 폭염 및 가뭄과 같은 극심한 기상 현상을 일으키는 중요한 요인이 된다. 이런 열돔 현상은 목성의 대적반과도 밀접한 관련이 있다. 고압 소용돌이 및 고기압의 기상 메커니즘과의 상호 작용 때문이다. 캐벤니 박사는 "지구에서 인근 기상 시스템과의 상호 작용은 열돔을 유지하거나 증폭시키는 것으로 나타났는데, 이는 목성의 유사한 상호 작용이 대적반의 유지에 영향을 미칠 수 있음을 시사한다"고 지적했다. 연구팀은 향후 대적반에 대한 추가 모델링을 통해 새로운 정보를 축적하고 대적반이 초기에 형성된 과정을 밝힐 수 있을 것이라고 기대했다.
-
- IT/바이오
-
[우주의 속삭임(32)] 태양계 최대 소용돌이 '목성 대적반', 크기가 점점 줄어드는 이유는?
-
-
[우주의 속삭임(27)] '어두운 혜성', 과거 지구에 물 공급 가능성 제기
- 지구 근처에서 혜성처럼 움직이며 물과 얼음을 포함할 수 있는 소행성인 '어두운(Dark) 혜성'은 대부분 화성과 목성 사이에서 왔으며 지구 근처에 있는 모든 물체의 최대 60%를 차지할 수 있다는 연구 결과가 나왔다고 스페이스닷컴이 전했다. 더불어 이들 어두운 혜성이 과거 지구에 물을 공급했을 가능성도 제기됐다. 어두운 혜성은 2023년 코넬 대학의 대릴 셀리그먼이 이끄는 연구팀이 6개를 식별하면서 처음으로 드러났다. 소행성은 태양의 중력에 따라 궤도를 돈다. 그러나 여섯 개의 어두운 혜성은 태양의 중력만으로는 설명할 수 없는 궤도를 나타낸다. 일반적으로 혜성은 가열될 때 얼음이 승화되어 추진력을 받아 속도를 높이며 가스를 방출해 궤도를 변경할 수 있다. 방출된 가스는 혜성을 안개와 같은 물질로 덮고 꼬리를 형성한다. 그러나 셀리그먼 팀이 발견한 6개의 어두운 혜성은 가스 방출로 인한 안개나 꼬리가 없다. 눈에 보이는 가스 방출이 없음에도 불구하고, 혜성의 얼음이 승화되는 방출은 있을 것으로 추정됐고, 이 때문에 어두운 혜성이라는 별명이 붙었다. 셀리그먼 교수가 포함된 미시간 대학의 아스터 테일러 교수 연구팀은 계속해서 컴퓨터 시뮬레이션에 동적 모델링 기술을 적용함으로써 어두운 혜성의 궤도를 추적, 이 혜성이 어디에서 왔는지를 알아냈다. 이 어두운 혜성이 지구 근처 궤도에 도달할 수 있음도 확인했다. 연구 결과는 이카루스 저널에 발표됐다. 연구 결과, 어두운 혜성은 거의 화성과 목성 사이의 소행성대에서 유래한 것으로 나타났다. 또한 이번 연구는 소행성대에 있는 어두운 혜성 표면 아래에 많은 얼음이 존재할 것이라고 예측했던 1980년대의 초기 이론을 증명했다. 나사의 다운(Dawn) 임무는 왜행성 세레스에서 얼음을 발견했고 소행성 베스타에서 얼음이 있을 것이라는 강한 증거를 발견했는데, 이들 둘 다 주요 소행성대다. 그러나 세레스와 베스타는 대부분의 소행성보다 훨씬 크며, 태양계 초기에 완전한 행성으로 성장하지 못한 원시행성의 잔해로 추정된다. 훨씬 더 작은 소행성에도 얼음이 존재하는지 여부는 확실하지 않았지만, 이번 어두운 혜성 연구에 따르면 실제로 얼음이 존재하는 것으로 나타났다. 활성 소행성(꼬리까지 달려 혜성처럼 움직이는 소행성대의 물체)과 어두운 혜성 사이의 연관성에 대해서는 여전히 논쟁이 있지만, 테일러 박사는 어두운 혜성 및 활성 소행성이 지구의 물 공급원이었을 가능성이 있다고 추정했다. 테일러는 "어두운 혜성이 지구에 물을 공급했는지를 확신할 수는 없지만, 지구의 물 공급에 대한 논쟁이 여전히 남아 있으며, 우리의 연구는 어두운 혜성이 태양계의 나머지 부분 어딘가에서 지구가 얼음을 얻는 또 다른 경로라는 것을 보여준다"고 말했다. 연구팀의 계산과 모델링에 따르면 지구 근처 물체의 최대 60%가 어두운 혜성일 수 있다. 나사의 오시리스 렉스(OSIRIS-REx) 탐사선이 최근 샘플을 채취했던 소행성 베누(Bennu)도 가스 방출 활동을 했음이 드러났으며, 이는 지구에서는 볼 수 없지만 미세한 가스를 방출하는 소행성이 흔할 수 있음을 암시한다. 지구 근처를 공전하는 물체의 수명은 중력에 의해 태양이나 목성 또는 행성으로 흩어지기까지 약 1000만 년 정도다. 따라서 지구 근처의 물체가 현재 숫자를 유지하려면 어두운 혜성이 소행성대에서 나오는 새로운 물체로 지속적으로 보충되어야 한다. 테일러는 "우리가 생각했던 것보다 소행성대에 더 많은 얼음이 있을 수 있다"고 말했다. 어두운 혜성은 '2003 RM'을 제외하고 일반적으로 크기가 수십m 정도에 불과하며 빠르게 회전하고 있다. 파악하지 못하는 상당히 적은 양의 가스 방출은 어두운 혜성의 빠른 회전과 작은 크기의 원인이다. 얼음 조각이 승화하기 시작하면 생성된 증기가 소행성 표면을 통해 폭발하며 가스 방출 기둥을 생성한다. 가스 방출에 의해 전달된 추진력은 소행성을 결국에는 부서질 만큼 빠르게 회전하도록 한다. 그 결과 생성된 파편도 가스를 배출하면서 회전하기 시작하고 점차 오늘날 우리가 볼 수 있는 작은 어두운 혜성의 크기로 작아진다고 연구팀은 밝혔다.
-
- IT/바이오
-
[우주의 속삭임(27)] '어두운 혜성', 과거 지구에 물 공급 가능성 제기
-
-
[우주의 속삭임(12)] 금성, 생생한 용암 흐름 감지…화산 활동 활발
- 레이더 이미지에서 금성 표면에 신선한 용암의 흐름이 나타났다. 이는 금성에 활화산이 있음을 시사하는 것이라고 CBS뉴스가 전했다. 이탈리아 국제 행성과학연구학교(International Research School of Planetary Sciences)의 과학자들은 금성의 전체 표면을 최초로 촬영한 마젤란 우주선이 1990~1992년까지 촬영한 이미지를 현재 상태와 비교해 행성 표면의 변화에 대한 증거를 발견했다고 밝혔다. 학자들은 새로 관측된 암석이 정해진 길을 따라 흐르면서 형성되었다고 판단했다. 그 암석층은 시프 몬스(Sif Mons) 화산의 서쪽 지역과 니오베 플래니티아(Niobe Planitia)의 넓은 화산 저지대 두 지역에서 화산 활동으로 인한 '새로운 용암 흐름의 증거'로 설명하는 것이 가장 합리적이라는 의견이다. 연구팀은 미 항공우주국(나사·NASA)을 통한 보도자료에서 "이 지도를 비교하면 금성이 이전에 생각했던 것보다 훨씬 더 화산 활동이 많을 수 있다는 사실을 보여준다"면서 "연구팀은 금성의 두 곳에서 용암 흐름을 분석함으로써, 금성의 화산 활동이 지구에서의 화산 활동과 비슷할 수 있다는 것을 발견했다"고 밝혔다. 이번 발견은 금성에 화산이 다수 존재한다는 지난해의 연구 결과를 뒷받침한다. 당시 연구도 마젤란 우주선의 이미지를 이용해 화산의 증거를 찾았다. 알래스카 대학과 캘리포니아 공과대학의 연구원들은 금성의 고지대에서 두 개의 큰 화산을 발견했고, 화산 분출구의 위치도 확인했다. 알래스카 대학교 페어뱅크스 지구물리학 연구소의 로버트 헤릭 교수는 이번 연구 결과에 대해 "오자 및 마트 몬스(Ozza and Maat Mons)의 부피는 지구의 최대 화산과 비슷하지만 경사가 더 낮아 용암이 더 넓게 퍼져 있다"고 말했다. 나사는 '지구의 사악한 쌍둥이'라고도 부르는 행성인 금성에 활화산이 있다고 오랫동안 믿어왔다. 금성은 열을 가두는 두꺼운 대기를 가지고 있어 태양계에서 가장 뜨거운 행성을 만들고 있다. 금성의 표면에는 화산과 기형적인 산이 대거 포함돼 있다. 연구팀은 금성의 화산이 목성의 달 이오(Io)의 화산보다 덜 활동적이라고 추정했다. CBS뉴스는 과거에도 연구팀이 포착한 모든 이미지에서 '여러 차례의 지속적인 화산 폭발이 있다'고 보도한 바 있다.
-
- IT/바이오
-
[우주의 속삭임(12)] 금성, 생생한 용암 흐름 감지…화산 활동 활발
-
-
[우주의 속삭임(11)] 태양계 6개 행성 정렬 '우주쇼' 6월 초 만난다
- 태양계의 6개 행성이 일렬로 정렬하는 보기 드문 현상이 지구의 하늘에서 6월 초 포착될 예정이다. 수성, 화성, 목성, 토성, 해왕성, 천왕성 등 태양계의 6개 행성이 2024년 6월 3일 짧은 시간 동안 '행성 퍼레이드'로 알려진 일렬 정렬 현상이 나타날 예정이라고 사이언스얼럿이 전했다. 이번 행성 정렬에는 초승달도 참여하지만 금성만은 유일하게 찾아볼 수 없다. 한 번에 여러 행성이 하늘에 있는 경우는 드물지 않지만, 여러 행성이 일렬로 정렬하는 경우는 흔하지 않다. 5~6개의 행성이 모이는 것을 큰 정렬이라고 하며 5개 행성 정렬이 6개보다 훨씬 더 빈번하게 발생한다. 이러한 정렬은 아래 태양계의 도표나 그림에서 볼 수 있는 것처럼 행성이 우주에 일렬로 늘어선 모습이 아니다. 안타깝게도 우주에서 실제로 일어나는 일은 아니다. 행성 정렬은 태양계의 모든 행성이 황도라는 평평한 평면에서 태양을 어느 정도 공전하기 때문에 발생한다. 일부 행성은 이 횡도보다 약간 위 또는 아래에 있지만 거의 동일하게 나란히 있는 수준이다. 이는 태양을 포함한 별이 형성되는 방식 때문에 관측 가능하다. 물질 구름 속의 아기 별이 회전하기 시작하면 주변의 구름이 소용돌이치며 원반이 되어 아기 별을 먹이로 삼는다. 원반의 잔해에서 행성이 형성되며, 그대로 두면 그 위치에 그 상태로 머물게 된다. 때때로 행성들이 궤도를 따라 이동하면서 태양의 같은 쪽에 위치하게 되므로 우리는 하늘에서 동시에 나란히 서 있는 것같은 행성들을 볼 수 있다. 즉, 이 행성들은 모두 황도에 있기 때문에 일직선상에 있는 것처럼 보이는 것이다. 미국에서는 오는 6월 3일과 4일 사이 일출 약 한 시간 전에 행성 퍼레이드가 일어난다. 수성, 화성, 목성, 토성은 육안으로 볼 수 있을 만큼 밝지만 천왕성과 해왕성은 너무 멀고 희미하기 때문에 관측하기 위해서 쌍안경이나 망원경이 필요하다. 앞으로 몇 달 동안 같은 태양계 행성들의 정렬이 몇 차례 더 예정되어 있다. 2024년 8월 28일과 2025년 1월 18일에는 모두 새벽 시간대에 6개의 행성으로 이루어진 대규모 행성 정렬을 볼 수 있다. 2025년 2월 28일 저녁에는 다른 7개 행성이 모두 동시에 하늘에 나타날 것이다.
-
- IT/바이오
-
[우주의 속삭임(11)] 태양계 6개 행성 정렬 '우주쇼' 6월 초 만난다
-
-
[우주의 속삭임(8)] 천문학자, 폭신폭신한 솜사탕 같은 밀도의 외계 행성 발견
- 지구에서 1200광년 떨어진 곳에 푹신푹신한 솜사탕과 비슷한 밀도를 가진 거대한 외계 행성이 발견됐다. 이는 미국 MIT(메사추세츠공대), 벨기에 리에주 대학교의 천문학자들이 발견했으며, 그 결과는 네이처 '천문학저널'에 발표됐다. MIT 홈페이지에 실린 연구 요약 게시글에 따르면, 태양계 외부에 위치하는 ‘WASP-193b’라는 이름의 새로운 행성은 태양계에서 가장 큰 행성인 목성보다 50% 더 크지만 밀도는 10분의 1 정도로 매우 낮기 때문에 질량은 7배나 작다고 한다. 밀도만 보면 솜사탕과 비슷할 정도로 매우 낮은 수준이다. 이 행성은 해왕성과 유사한 더 작은 행성으로 10년 전에 발견된 케플러 51d에 이어 현재까지 발견된 행성 가운데 두 번째로 가볍다. 크기와 밀도의 특징으로 인해 WASP-193b는 현재까지 발견된 5400개 이상의 행성 중에서도 매우 특이한 존재로 기록됐다. 연구팀원인 MIT 칼리드 바르카우이 박사는 "이렇게 작은 밀도를 지닌 거대한 물체를 발견하는 것은 매우 드문 일이다"라면서 "지난 15년 동안 미스터리였던 푹신푹신한 목성이라고 불리는 행성 종류가 있는데, 이번 행성은 여기에 속한 행성 중에서도 매우 극단적인 사례"라고 말했다. 이 행성 자체가 '우주의 미스터리'라는 것이다. MIT의 줄리앙 드 위트 박사도 "이 행성은 너무 가벼워서 고체 물질이라고 생각하기가 어렵다. 솜사탕에 가까운 이유는 공기가 많기 때문이며 기본적으로 푹신푹신하다"고 설명했다. 드 위트는 "행성의 대기가 두텁고 클수록 더 많은 빛이 통과할 수 있기 때문에 이번에 발견된 이 행성이 천체의 대기를 연구하는 최고의 로제타스톤이 될 것”이라며, 제임스 웹 우주 망원경을 통해 대기의 특성을 측정하고 푹신한 행성의 신비가 풀리기를 기대했다. 안달루시아 천체물리학 연구소는 "이 행성을 현재까지의 모든 천체 형성 이론의 어디에 위치시켜야 할지를 모르겠다. 고전적인 진화 모델로는 이 행성이 어떻게 형성되었는지 설명할 수 없다. 관찰을 더 잰행해야 행성의 진화 과정을 알 수 있을 것”이라고 밝혔다. 연구팀은 "WASP-193b가 태양계의 태양과 같이 자신이 속한 항성을 6.25일마다 공전하고 있는데, 행성의 대부분은 수소와 헬륨으로 이루어져 있을 것으로 추정한다. 이들 가스가 대기를 엄청나게 부풀렸을 가능성이 높지만, 그 이유는 알 수 없다"고 부연했다. 새로운 행성은 행성 광각 탐색(WASP)에 의해 발견됐다. 이는 북반구와 남반구에 각각 하나씩, 두 개의 로봇 관측소를 운영하는 학술 기관의 국제 협력 프로그램이다. 각 관측소는 일련의 광각 카메라를 사용해 하늘 전체에 걸쳐 있는 수천 개의 별의 밝기를 측정한다. 발견된 행성은 지난 2006년부터 지속적으로 관측해 왔던 것으로 크기와 밀도 등이 이번에 최종적으로 밝혀지게 됐다. 연구팀은 이 행성이 극도로 가볍다는 사실을 최종 확인했다. 팀이 계산한 질량은 목성의 약 0.14배였다. 그리고 질량으로 계산한 밀도는 입방센티미터당 약 0.059g으로 나타났다. 대조적으로 목성은 입방센티미터당 약 1.33g이며 지구는 입방센티미터당 5.51g이다. 그리고 솜사탕의 실제 밀도는 입방센티미터당 약 0.05g이다. 발견된 행성이 거의 솜사탕에 가깝다는 의미다. 과학자들은 솜사탕과 같은 밀도를 지닌 독특한 종류의 외계 행성을 '슈퍼퍼프(Super-Puffs)'라는 용어를 사용해 지칭한다. 나사(NASA)는 태양계에는 그런 행성이 존재하지 않는다고 밝혔다. 한편 2019년 천문학자들은 다른 푹신한 외계 행성인 WASP-107b 발견 사실을 발표했다. 당시 발견된 WASP-107b의 크기는 목성과 비슷했지만, 질량은 10분의 1에 불과했다.
-
- IT/바이오
-
[우주의 속삭임(8)] 천문학자, 폭신폭신한 솜사탕 같은 밀도의 외계 행성 발견
-
-
[우주의 속삭임(4)] 지구 근처 소행성 2만7500개 발견
- 우리 눈에는 보이지 않지만 지구 주변에는 엠파이어 스테이트 빌딩 크기의 우주 암석(소행성)이 산재해 있다. 지구 궤도를 통과하면서 이들 소행성과 지구 또는 우주선과의 충돌 위험은 항상 내포돼 있다. 그러나 이제 소행성과의 충돌을 두려워할 필요가 없게 됐다. 소행성 탐지 전문가들이 최첨단 기술을 사용해 그 동안 간과되었던 지구 근처 소행성 2만 7500개를 식별, 미래에 닥칠 수 있는 지구의 종말(아마겟돈)을 막을 수 있게 됐다고 뉴욕포스트가 전했다. 이 연구는 워싱턴 대학교 및 소행성 연구소(Asteroid Institute)가 주도했다. 연구팀은 전통적인 망원경으로 별을 관찰하는 대신, ‘인터스텔라 포렌식’의 한 형태로 오래된 우주 사진을 정밀하게 읽는 토르(THOR:Tracklet-less Heliocentric Orbit Recovery)라는 새로운 알고리즘을 고안해 냈다. 이 방법을 사용해 연구팀은 태양계를 스캔, 지난해 전 세계 모든 망원경으로 발견한 것보다 더 많은 수만 개의 소행성을 새로 식별해 찾아냈다. 그중 가장 중요한 것은 지구 궤도를 통과하는 100개의 지구 근처 소행성이다. 이들 중 대다수는 화성과 목성 궤도 사이의 소행성대 내에 존재한다. 소행성 연구소의 에드 루(Ed Lu) 책임자는 뉴욕타임스와의 인터뷰에서 이 연구가 천문학 연구 방법론의 엄청난 변화를 의미한다고 말했다. 새로 발견된 태양계 소행성들이 지구와 충돌할 가능성은 보이지 않았지만, 검색 알고리즘은 잠재적으로 위험할 수 있는 소행성을 식별하는 데 도움이 될 수 있다는 것이다. 과거 매사추세츠주 케임브리지에 소재한 하버드&스미소니언 천체물리학센터의 검색 알고리즘 전문가 매튜 홀먼 박사도 지난 2022년 태양계를 포괄하는 지도는 천문학자들에게 과학과 행성 방어 모두에 중요한 정보와 지식을 제공하고 대응할 수 있도록 지원한다고 말했다. 천체 상태를 분석하는 전통적인 방법은 시간대 별로 촬영된 동일한 여러 우주 사진을 분석하는 것이다. 이를 통해 퍼즐이나 플립북처럼 물체의 궤도를 하나로 모을 수 있다. 그러나 토르는 한 이미지에서 관찰된 빛의 작은 점을 다른 사진의 같은 점과 연결하여 동일한 물체라고 추론하고, 그 비행 경로를 효과적으로 예측하는 방식이다. 사진은 국립광적외선천문학연구소(NOIRLab)가 보유한 41만 2000개의 디지털 아카이브를 이용했으며, 이들 이미지는 무려 17억 개의 빛 점을 나타내고 있다. 토르는 구글 클라우드를 이용해 약 5주에 걸쳐 이미지를 탐색, 과거에는 그냥 지나쳤던 모든 소행성을 식별했다고 한다. 지난 2월에는 이층버스 크기에 가까운 소행성이 지구를 지나 달보다 더 가까운 14만 마일의 거리에 접근했다. 워싱턴대학 e사이언스연구소(UW eScience Institute)의 마리오 주릭 연구원은 “천문학자들은 현재의 기술과 기존의 망원경으로 우주의 미세한 부분을 추가로 발견하는 데 한계를 절감하고 있다”면서 “이번 알고리즘 개발과 연구 결과는 천문학 발전을 위한 큰 진전”이라고 말했다. 토르가 우주 망원경이 찾을 수 있는 소행성의 수를 크게 늘리는 데 기여할 것이라는 기대다. 토르는 현재 지구 근처에서 직경이 140m 이상인 소행성의 80%를 찾을 수 있다. 이는 의회에서 2005년 명시된 목표보다는 10% 부족한 수치이다.
-
- IT/바이오
-
[우주의 속삭임(4)] 지구 근처 소행성 2만7500개 발견
-
-
목성의 위성 유로파, 얼음 지각 두께 최소 20km
- 미국 천문학자들이 목성의 얼음 위성인 유로파의 얼음 지각 두께가 최소 20km(킬로미터)에 달한다고 밝혔다. 행성 과학자들은 최근 충돌 크레이터(분화구) 이미지와 물리 법칙을 이용해 유로파의 얼음 두께를 측정했다. 유로파는 얼음 지각으로 둘러싸인 지구의 두 배에 달하는 바닷물이 있는 암석의 위성이다. 과학자들은 오랫동안 유로파가 태양계에서 외계 생명체를 찾기에 가장 좋은 곳 중 하나라고 추정했다. 생명체의 존재 가능성과 성격은 얼음 껍질의 두께에 따라 크게 달라지는데, 천문학자들은 아직 이 부분을 밝혀내지 못했다. 20일(이하 현지시간) 과학전문 웹사이트 피즈닷오그(Phys. ORG)에 따르면 미국 퍼듀대학교 과학대학 지구, 대기 및 행성 과학과의 브랜든 존슨 부교수와 연구 과학자 시게루 와키타 등 행성 과학 전문가로 구성된 연구팀이 유로파의 얼음 지각의 두께가 최소 20km에 달한다고 발표했다. 또다른 매체 IFL사이언스도 이날 갈릴레오 탐사선의 데이터 분석에 따르면 유로파의 바다를 보호하는 얼음 지각의 두께는 최소 20km에 달하는 것으로 시사한다고 전했다. 행성 과학자들은 유로파의 대형 분화구를 연구하고 다양한 모델을 실행하여 어떤 물리적 특성의 조합이 그와 같은 표면 구조를 만들 수 있는지 조사했다. MIT의 시게루 와키타(Shigeru Wakita) 박사가 이끄는 팀은 유로파의 '타이어(Tyre)'와 '칼라니쉬(Callanish)'로 알려진 두 개의 분지가 지각 두께를 결정하는 데 핵심이 될 수 있음을 발견했다. 타이어(Tyre)와 칼라니쉬(Callanish)는 모두 다중 고리 분지다. 와키타 박사와 연구팀은 적절한 크기의 소행성이 서로 다른 두께의 지각에 충돌할 때 어떤 일이 일어날지 모델링하고 두께가 20km 이상인 얼음만이 유로파 표면과 같은 결과를 가져올 것이라고 추정했다. 이 연구는 학술 저널 ‘사이언스 어드밴스’에 게재됐다. 와키타 박사는 "유로파의 이렇게 큰 분화구에 대한 연구는 이번이 처음이다"라고 말했다. 그는 "이전 추정치에서는 두꺼운 바다 위에 매우 얇은 얼음층이 있는 것으로 나타났다. 그러나 우리 연구에 따르면 두꺼운 얼음층이 있고, 그 두께가 너무 두꺼워 이전에 논의되었던 얼음 대류가 일어났을 가능성이 높다"고 설명했다. '얼음 대류(Ice convection)'는 얼음 내부에서 열이나 다른 물리적 성질의 차이로 인해 발생하는 물질의 이동 과정을 말한다. 얼음 대류의 기본 원리는 물질이 온도에 따라 밀도가 변한다는 점에 기반한다. 이 현상은 특히 대규모 얼음층이나 얼음이 두꺼운 행성의 위성, 예를 들어 유로파와 같은 곳에서 중요한 역할을 할 수 있다. 얼음 대류는 얼음의 내부나 얼음과 액체 물 사이에서 열을 전달하는 중요한 메커니즘 중 하나다. 유로파의 얼음 층 아래에 있는 액체 물이 얼음 층과 접촉하는 부분에서 얼음을 녹이면 상대적으로 더 따뜻한 물이 위로 상승하고, 냉각되어 얼음이 될 때 다시 내려갈 수 있다. 과학자들은 오랫동안 유로파의 얼음 두께에 대해 논쟁을 벌여왔지만, 아무도 직접 방문해서 측정한 적이 없다. 이에 과학자들은 유로파의 얼음 표면에 있는 크레이터(분화구)를 활용했다. 존슨 박사는 1998년 유로파를 탐사한 우주선 갈릴레오의 데이터와 이미지를 사용해 충돌 크레이터를 분석해 유로파의 얼음 지각 구조를 분석했다. 행성 물리학 및 거대 충돌 분야의 전문가인 존슨은 태양계의 거의 모든 주요 행성을 연구해 왔다. 그는 "충돌 크레이터는 행성을 형성하는 가장 보편적인 표면 과정"이라며 "분화구는 우리가 지금까지 본 거의 모든 고체에서 발견된다. 분화구는 행성을 변화시키는 주요 동인"이라고 부연했다. 존슨은 "유로파의 분화구의 크기와 모양을 이해하고 수치 시뮬레이션으로 그 형성을 재현함으로써 얼음 지각의 두께에 대한 정보를 유추할 수 있다"고 덧붙였다. 유로파는 얼어붙었만, 빙하 속에는 바위로 이루어진 핵이 있다. 하지만 얼음 표면은 정체되어 있지 않다. 해양의 판구조론과 대류, 얼음 때문에 유로파는 표면이 자주 바뀐다. 유로파는 표면에 크레이터가 거의 없는 특이한 위성으로 얼음 지각이 계속해서 새로 생성되면서 크레이터를 없앴다는 주장이 힘을 얻고 있다. 이는 지표면 자체의 나이가 5000만 년에서 1억 년에 불과하다는 것을 의미하는데, 인간과 같이 수명이 짧은 생물에게는 오래된 것처럼 보이지만 지질학적 시기로 보면 젊다는 지적이다. 표면이 매끄럽고 젊다는 것은 분화구가 명확하게 구분되어 있고 깊지 않다는 것을 의미한다. 분화구는 유로파의 암석 중심부에 대한 많은 정보를 전달하기보다는 얼음 지각과 그 아래 존재할 수 있는 수중 바다에 대해 더 많은 것을 담고 있다. 존슨은 "얼음의 두께를 이해하는 것은 유로파의 생명체 존재 가능성에 대한 이론을 세우는 데 필수적이다"라고 말했다. 그는 "얼음 지각의 두께는 그 안에서 어떤 과정이 일어나고 있는지를 제어하며, 이는 지표와 바다 사이의 물질 교환을 이해하는 데 매우 중요하다. 이는 유로파에서 일어나는 모든 종류의 과정을 이해하는 데 도움이 되며, 생명체의 가능성을 이해하는 데도 도움이 될 것"이라고 말했다. 국립과천과학관에 따르면 천문학자들은 이전 연구를 통해 목성의 위성인 유로파, 가니메데, 칼리스토에 지구의 바다보다 6배나 되는 양의 물을 표면 아래에 품고 있다는 사실을 발견했다. 생명체가 살기 위해서는 물, 원소, 에너지라는 3가지 요소가 필요하다. 외행성계 위성에는 이 3가지 요소가 적절하게 있는 것으로 추측되고 있다. 목성은 태양에서 멀기 때문에 표면 온도가 영하 110도이며, 목성의 위성인 유로파의 표면 온도는 영하 220도에 이른다. 유로파의 얼음 지각의 두께는 생명체가 존재할 수 있는 잠재적인 물 존재의 환경을 숨기고 있을 수 있다. 물 존재는 행성에서 생명의 가능성을 탐색하는 데 있어 중요한 요소 중 하나가 될 수 있다. 그러나 실제로 생명체가 존재하는지 여부를 확인하기 위해서는 유로파에 대한 추가적인 탐사와 연구가 필요하다.
-
- IT/바이오
-
목성의 위성 유로파, 얼음 지각 두께 최소 20km
-
-
목성의 달 '유로파'에 생명체 존재할 수 있을까?
- 목성의 달 유로파(Europa)에 산소와 탄소가 있는 것이 알려지면서 지하 바다의 생명 존재에 대한 기대감도 더욱 커지고 있다. 태양계에서 목성의 위성 유로파만큼 사람들의 상상력을 사로잡는 곳은 거의 없다. 과학자들은 유로파에 외계 생명체가 존재할 수 있다고 오랫동안 의심해 왔다. 거대한 얼음덩어리를 닮은 '유로파'는 20~30km 두께의 얼음 껍질 아래에 액체 상태의 바닷물 바다가 존재하는 것으로 알려졌다. 이는 보이저호와 갈릴레오 우주 탐사선의 측정과 모델 계산에 의한 추정이다. 독일 매체 메르커닷컴(Merker)은 11일(현지시간) 몇 달 전, 연구자들은 '유로파'에서 생명체의 가장 중요한 구성 요소인 탄소를 발견했다고 전했다. 그러나 유로파에서 생명체를 가능하게 할 수 있는 또 다른 원소인 산소는 이전에 추정했던 것보다 훨씬 더 희귀할 것이라는 관측이 나왔다. 비즈니스 인사이더는 지난 9일(현지시간) 미 항공우주국(NASA·나사)의 주노(Juno) 탐사선은 목성의 얼음 위성 유로파가 24시간마다 1000톤의 산소를 생산한다는 사실을 발견했다고 보도했다. 유로파에서 매일 발생하는 1000톤이라는 산소는 1백만 명의 사람이 하루 동안 숨을 쉴 수 있는 충분한 양이지만 이전에 생각했던 것보다 훨씬 적은 양이다. 이 새로운 데이터는 유로파가 광대한 지하 바다에서 생명체를 유지할 수 있는 확률이 낮아질 수 있다. NASA, 유로파 산소 생산량 현저히 낮아 NASA의 연구원들은 '유로파' 표면이 이전 연구에서 추정했던 것만큼 많은 산소를 생산하지 못한다고 계산했다. 지난 3월 4일, NASA는 유로파가 24시간마다 1000톤의 산소를 생산한다며 이는 이전 추정치보다 86배 이상 적은 양이라고 발표했다. NASA에 따르면 유로파에 생명체가 존재한다면 미생물처럼 보일 수도 있고 더 복잡한 것일 수도 있다. 하지만 그것들은 얼어붙은 사막인 유로파 표면에서는 보이지 않을 수도 있다. 유로파 표면의 산소 생산량 데이터는 NASA의 주노(Juno) 탐사선에서 가져온 것이다. 목성의 위성인 유로파는 초당 12kg(킬로그램)의 산소를 생산하는데, 이는 이전에 생각했던 것보다 휠씬 적은 양이다. 이전 연구에서 추정치는 초당 몇 킬로그램에서 1000킬로그램 이상까지 다양했다. 유로파, 수중기도 탐지 NASA에 따르면 1979년 7월 9일 보이저(Voyager) 우주선은 목성의 위성 중 하나인 유로파(Europa)의 근접 촬영 이미지를 처음으로 촬영했다. 이를 통해 달의 얼음 표면을 자르는 갈색 균열이 드러났는데, 유로파는 마치 핏줄이 있는 눈알처럼 보였다. 그 이후로 수십 년 동안 외부 태양계에 대한 임무는 유로파에 대한 충분한 추가 정보를 축적하여 NASA의 생명체 탐색에서 최우선 조사 대상이 됐다. NASA는 2019년 11월 17일 메릴랜드 주 그린벨트에 있는 NASA의 고다드 우주 비행 센터 의 국제 연구팀이 유로파 표면 위에서 처음으로 수증기를 감지했다. 이 연구팀은 하와이에 있는 세계 최대 망원경 중 하나를 통해 유로파를 들여다보며 증기를 측정했다. 당시 유로파의 물 탐지 조사를 주도한 NASA 행성 과학자 루카스 파가니니는 “생명의 세 가지 요구 사항 중 두 가지인 필수 화학 원소(탄소, 수소, 산소, 질소, 인, 황)와 에너지원은 태양계 전체에서 발견된다. 그러나 세 번째인 액체 물은 지구 밖에서는 찾기가 다소 어렵다”라고 말했다. 유로파가 산소를 생산하는 방법 산소 생산은 지구와 유로파에서 매우 다르다. 지구는 광합성을 통해 산소를 얻는 반면, 유로파는 모행성인 목성으로부터 얻는다. 목성은 유로파에 고에너지 입자를 쏟아붓는 강력한 방사선을 방출한다. 이 입자들은 달 표면의 얼어붙은 얼음(H₂O)과 상호작용한다. 유로파에서 입자들의 상호 작용은 H₂O 분자를 수소와 산소 가스로 분리한다. 그러나 그 산소가 어디로 가는지는 아직 상세히 밝혀지지 않았다. 산소 중 일부는 얼음 속에 갇힐 수도 있고, 일부는 우주로 탈출할 수도 있으며, 일부는 유로파의 지하 바다로 내려가는 경우도 있다. 충분한 산소가 지하에 도달한다면, 이는 유로파의 바다가 우리가 알고 있는 생명체에 중요한 요소 중 하나를 가지고 있다는 것을 의미한다. 뉴저지 주 프린스턴 대학교의 과학자 제이미 샬레이는 "'유로파'는 목성의 알려진 95개 위성 중 네 번째로 큰 위성이며 목성의 방사선 벨트 중간에 있다. 이 거대 가스 행성은 위성에 하전 입자 또는 이온화 입자를 쏟아붓는다. 이것들은 물 분자를 두 부분으로 나누어 얼음 표면에 산소를 생성한다"고 말했다. 샬레이는 "유로파는 흐르는 시냇물 속에서 서서히 물을 잃어버리는 얼음 덩어리와 같다"면서, 입자들이 표면의 얼음을 분자 단위로 분해하는 과정을 비교했다. 그는 "어떤 면에서, 전체 얼음 표면은 해변으로 밀려온 하전 입자의 파도에 의해 지속적으로 침식된다"라고 말했다. NASA의 주노 탐사선은 유로파 표면에서 생성되는 총 산소량에 대해 더 많은 정보를 제공한다. 그러나 지하 바다로 얼마나 많은 양의 산소가 스며드는지는 아직 확실하지 않다. 유로파에서 산소 측정 유로파 표면에서 생성되는 산소의 양을 측정하기 위해 과학자들은 주노에 탑재된 목성 오로라 분포 실험(JADE) 장비를 사용했다. JADE는 목성의 오로라 영역 에서 하전 입자를 측정하도록 설계됐다. 그러나 2022년 9월 주노가 유로파를 비행했을 때 JADE는 최초로 달 대기에서 떨어져 나온 하전 입자를 성공적으로 측정했다. 과학자들은 JADE 데이터를 사용해 유로파의 얇은 대기에 있는 수소(산소 아님) 가스의 총량을 추정했다. 물 분자에는 수소(H) 원자 2개당 산소(O) 원자 1개가 있기 때문에 과학자들은 수소 가스 데이터를 사용해 표면에서 생성된 산소의 양을 계산할 수 있다. NASA의 과학자들은 이제 생산된 산소의 일부가 달 표면 아래로 떨어질 수 있다고 추정한다. 그곳에서 산소는 지하 소금 바다로 추정되는 곳에서 대사 에너지원이 될 수 있다. NASA에 따르면 연구원들은 "표면 아래에서 생명을 유지할 수 있는 조건의 잠재력에 대해 궁금해하고 있다"고 한다. 목성의 위성이 생명체가 거주 가능한지 아닌지에 대한 질문은 앞으로도 계속 될 것이다. 샌안토니오에 있는 사우스웨스트 연구소의 주노 수석 연구원인 스콧 볼튼은 "아직 끝나지 않았다. 더 많은 달 비행과 목성의 가까운 고리와 극지방의 대기에 대한 첫 번째 탐사는 아직 오지 않았다"고 말했다. NASA의 유로파 클리퍼(Europa Clipper) 탐사선은 2024년 10월에 발사될 예정이다. 이 탐사선의 주요 목표는 유로파가 거주 가능한지 여부를 결정하는 것이다. 유로파에 도착하면 클리퍼 탐사선은 유로파 표면, 기;ㅍ은 ㅁ내부, 얇은 대기, 지하 바다와 잠재적으로 더 작은 활성 통풍구에 대해 자세한 조사를 수행항 계획이다.
-
- 산업
-
목성의 달 '유로파'에 생명체 존재할 수 있을까?
-
-
토성의 위성 미마스, '지하 바다' 존재⋯생명체 존재 가능
- 토성의 소형 위성 미마스(Mimas)에서 지하 바다가 발견되었다는 사실은 과학계에 큰 파장을 일으켰다. 영화 '스타워즈'에 등장하는 '데스 스타(Death Star)'와 흡사한 외관을 가진 미마스에서 생명체 존재 가능성을 암시하는 바다가 발견되었다는 것은 과학적 흥미뿐만 아니라 대중의 상상력을 사로잡았다. 포브스 재팬은 미마스 내부에 바다가 존재할 수 있다는 발견이 지질학적으로 활발한 천체에만 해당될 것이라는 기존의 생각을 뒤집는, 실로 놀라운 발견이라고 지난 14일 보도했다. 프랑스 파리 천문대의 발레리 레이니 박사팀은 지난 2월 8일 과학 저널 '네이처(Nature)'에 게재된 연구에서 토성 탐사선 카시니(Cassini)의 관측 자료를 분석한 결과, 미마스가 수많은 충돌 분화구로 덮인 얼음 표면 아래에 비교적 최근에 형성되어 여전히 진화 중인 바다가 존재할 가능성이 있다고 발표했다. 지름이 390km로 토성의 주요 위성 중 가장 작으며 가장 안쪽 궤도를 22시간 만에 공전하는 미마스는 표면이 분화구(crater, 운석 충돌 등으로 생기는 거대한 구덩이)로 덮여 있고 변화가 없다는 점에서 지질학적으로 비활성 상태로 여겨져 왔다. 하지만 2010년 카시니 탐사선이 관찰한 미마스의 '흔들림(libration)' 현상은 과학자들의 관심을 끌었다. 이는 미마스 내부에 액체 상태의 물이 존재할 가능성을 시사하는 중요한 증거였다. 미마스는 표면의 광범위한 부분을 차지하는 거대한 충돌 분화구 '허셜'로 인해 영화 '스타워즈'에 등장하는 우주 요새 '데스 스타(Death Star)'와 유사한 외관을 가지고 있다. 허셜은 1789년 미마스를 처음 확인한 천문학자 윌리엄 허셜의 이름을 딴 분화구를 말한다. 하지만 미마스에서는 지질 활동의 징후가 발견됐다. 특히 남극 지역의 크레이터가 다른 지역의 크레이터보다 작게 보이는 것은, 이 지역에서 최근에 융해 현상이나 새로운 표면 형성이 일어나고 있음을 간접적으로 나타내고 있다. 일반적으로 얼음이나 다른 고체 표면 아래 존재하는 바다는 액체 상태로 인한 내부 역학이 표면에 변형을 일으키며 드러나곤 한다. 연구팀은 그러나 미마스의 경우, 표면 변화가 거의 관찰되지 않아, 그 아래에 액체 상태의 바다가 존재할 가능성이 매우 낮은 후보로 여겨졌다고 밝혔다. 카시니 탐사선의 관측 데이터를 활용한 이전 연구에서 미마스의 자전 운동과 궤도상의 흔들림 현상이 관찰됐으며, 이러한 현상을 설명하기 위해 내부에 길게 뻗은 암석 핵이 존재하거나, 심지어는 내부에 전체적으로 바다가 있을 수 있다는 가설이 제시됐다. 지질학적으로 활동하지 않는 것으로 여겨졌던 미마스 이번 연구를 요약한 논문에 따르면, 미마스의 바다는 약 20~30km 두께의 얼음층 아래에 위치하며, 형성 시기는 약 2500만 년 전보다 젊은 것으로 추정된다. 네이처에 따르면 미마스 내부에 전구적 규모의 액체 상태의 물로 이루어진 바다가 존재하는 것으로 확인됐다. 이 바다는 대략 1500만년에서 500만년 전 사이에 형성된 것으로 추정된다. 논문의 공동 저자이자 영국 런던 대학교 퀸 메리 대학의 물리화학 및 천문학 부문 명예 연구원인 닉 쿠퍼는 "이번 발견으로 미마스가 엔켈라두스나 유로파와 같이 내부 바다를 가진 위성 가운데 하나로 자리매김하게 됐다. 미마스의 바다가 특히 눈에 띄는 점은 그 젊은 나이다"라고 말했다. 미마스 내부의 바다는 토성과 미마스 간의 조류력 상호작용을 통해 탐지됐다. 연구 결과, 미마스 궤도의 불규칙성이 지하 바다에 의해 발생할 수 있는 현상이 아님을 밝혀냈다. 이 연구에는 미국 항공 우주국(NASA)의 토성 궤도 탐사선 카시니가 2004년부터 2017년까지 13년 동안 수집한 관측 데이터가 활용됐다. 미마스는 반경이 198km에 불과한 작은 천체이지만, 이번 발견이 큰 파장을 일으킬 수 있다고 포브스 재팬은 강조했다. 활발한 지질 활동의 징후가 없는 작은 위성이 숨겨진 바다를 가지고 있으며, 이로 인해 생명 유지에 필수적인 조건을 제공할 가능성이 있다는 것은, 과학자들이 태양계 어느 곳에서든 생명의 존재 가능성을 탐색할 수 있는 새로운 전망을 열어준다는 것이다. 바다 연대 젊어 생명체 없을 수도 영국의 일간지 가디언은 지난 7일 미마스의 바다 연대가 너무 젊어 생명체가 출현할 충분한 기회가 없었을 수 있다는 주장이 제기됐다고 보도했다. 가디언에 따르면 프랑스 파리 천문대의 천문학자 발레리 레이니는 미마스 내부에 따뜻한 암석과 접촉하는 물이 존재함으로써 생명체가 존재할 가능성을 완전히 배제할 수 없다고 말했다. 그러나 이 숨겨진 바다의 연대가 수천만 년에 불과하다면, 생명체가 출현할 기회가 부족했을 가능성도 있다. 레이니는 "바다의 나이가 생명체 출현에 충분히 오래되었는지 여부에 대해 아무도 확신할 수 없다"고 덧붙였다. 일반적으로 위성의 암석질 핵과 지하 바다 사이의 상호작용으로 인해 생명 유지에 필요한 화학 에너지가 생성될 수 있다고 여겨진다. 쿠퍼는 "최근에 발견된 액체 상태의 물 바다는 생명의 기원을 연구하는 학자들에게 미마스를 주요 조사 대상이 됐다"고 말했다. 미마스에서 바다가 발견되었다는 사실이 예상 밖일 수 있지만, 태양계 내 다른 행성의 위성에서 바다가 발견된 것은 이번이 처음이 아니다. 토성의 위성 엔켈라두스와 타이탄, 그리고 목성의 위성 유로파, 가니메데, 칼리스토에서 이미 행성 해양학자들이 지하 바다를 탐지해 왔다. 미마스에서의 이러한 바다 발견은 예상치 못한 장소에서 이루어졌으며, 이는 태양계 곳곳의 소형 얼음 위성에 대한 철저한 조사가 곧 시작될 것임을 시사한다.
-
- 산업
-
토성의 위성 미마스, '지하 바다' 존재⋯생명체 존재 가능