검색
-
-
'최후의 날' 남극 빙하, 예상보다 빨리 녹아…지구공학 논의 촉발
- '최후의 날 빙하(Doomsday Glacier)'라고도 불리는 남극의 스웨이츠 빙하(Thwaites Glacier)가 기후 변화로 예상보다 빠르게 녹아내리고 있다. 이로 인해 기후 변화 솔루션으로서 지구 공학에 대한 논의가 본격화되고 있다고 PHYS가 전했다. UC 어바인 캠퍼스와 워털루 대학교 전문가들이 주도한 최근의 연구에서, 연구진은 온난화된 조류가 스웨이츠 빙하의 녹는 속도를 높이고, 컴퓨터 모델에서 예측한 것보다 더 빨리 후퇴하고 있다는 사실을 발견했다. 스웨이츠 빙하의 운명이 여전히 불확실한 가운데, 학계 일각에서는 빙하가 녹는 속도를 늦추기 위해 환경을 바꾸는 아이디어로 눈을 돌리고 있다. ◇ 따뜻한 조류로 인한 가속 용융의 이해 스웨이츠 빙하는 서남극 빙상(WAIS)의 바다를 마주한 가장자리를 따라 위치한 빙하 중 하나다. WAIS는 텍사스의 거의 3배 크기의 거대한 얼음으로, 서남극 대륙의 해수면 아래 분지에 위치해 있다. 바다가 분지를 채우고 얼음을 녹이거나 떨어뜨리는 것을 막는 유일한 방벽은 빙하이다. 이러한 상황으로 인해 과학자와 언론은 플로리다주 전체보다 큰 스웨이츠 빙하를 '최후의 날 빙하'라고 부르게 되었다. 그 이유는 이 빙하가 무너지면 따뜻한 바닷물이 WAIS를 녹여 해수면을 거의 335cm까지 올릴 수 있기 때문이다. 이렇게 되면 많은 해안 대도시와 작은 섬나라들이 극도의 위험에 처하게 된다. 참고로 스웨이츠 빙하는 한국 면적의 약 1.9배에 달하는 엄청나게 큰 규모이다. 텍사스는 한국 면적의 약 6.9배에 달한다. 스웨이츠 빙하는 기후 변화로 인해 매년 500억 톤의 얼음을 잃으면서 빠르게 후퇴하고 있으며, 이미 지구 해수면 상승의 4%를 차지하고 있다. 재앙적인 해수면 상승으로 인해 스웨이츠 빙하의 붕괴와 그에 따른 WAIS의 퇴출은 기후 과학에서 티핑 포인트(임계점)라고 알려졌다. 티핑 포인트는 임계점(이 경우 대기 및 해양 온난화)을 넘어 기후 시스템에 대규모의 가속화되고 돌이킬 수 없는 변화로 이어지는 경우이다. 스웨이츠 빙하가 녹으면 WAIS가 붕괴되고, 이는 돌이킬 수 없는 해수면 상승을 일으켜 수백만 명을 위험에 빠뜨리고 다른 빙하의 온난화를 가속할 것이다. UC 어바인과 워털루 대학교 연구진이 주도한 이번 빙하 연구는 고해상도 위성 이미지와 수문 데이터를 사용해 얼음 아래의 따뜻한 조류 흐름과 그에 따라 얼음이 더 빨리 녹는 지역을 식별했다. 얼음이 녹는 속도를 이해하는 것은 해수면 상승을 예측하는 데 중요하다. 워털루 대학교의 빙하학과 크리스틴 다우 교수는 "우리는 그 얼음이 사라지는데 100년, 또는 500년이 걸리기를 바랬지만 그보다 훨씬 빨리 사라질 수도 있다는 우려가 있다"고 말했다. 물론 WAIS에 대한 희망이 없는 것은 아니다. 다트머스 대학과 에든버러 대학교 연구진의 분석에 따르면, 스웨이츠 빙하는 이전에 생각했던 것처럼 해양 빙하 절벽 불안정성(MICI)이라는 과정에 그리 취약하지 않다. MICI 가설은 높은 빙하 절벽은 빙하가 후퇴하면서 불안정하고 더 쉽게 무너진다는 것이지만, 이 연구는 스웨이츠 빙하가 얇아지면 실제로 빙하 붕괴 속도가 감소하고 빙하 절벽이 안정화될 수 있다고 주장한다. ◇ 해결책으로서의 지구공학에 대한 논쟁 불확실성과 함께 스웨이츠 빙하가 예상보다 빨리 녹아 급격하고 극심한 해수면 상승 발생 가능성에 직면하여, 일부 과학계에서는 가능한 해결책으로 빙하 지구공학에 초점을 맞추고 있다. 빙하 지구공학은 지구 온도가 상승하더라도 빙하 후퇴를 늦추거나 멈추도록 기술과 인프라를 사용하는 프로세스를 말한다. 시카고 대학의 '기후 시스템공학 이니셔티브'에 소속된 빙하학자 그룹은 지난 7월 급속히 녹는 빙하 위협에 대응해 빙하 지구공학에 대한 더 많은 연구를 진행할 것을 촉구하는 보고서를 발표했다. 보고서에 참여한 라플란드 대학교 북극 센터의 존 무어 교수는 빙하 지구공학 연구의 시급성을 설명했다. 그는 빙하 지구공학을 적용할 만큼 충분히 이해하려면 15~30년이 걸릴 것이기 때문에 즉시 시작해야 한다고 역설했다. 빙하 지구공학 아이디어 중에는 스웨이츠 빙하 등 위험에 처한 곳에 따뜻한 조류가 흘러드는 것을 막는 거대한 잠수함 커튼을 만드는 것도 포함돼 있다. 커튼은 천으로 만들 수 있으며, 커튼에 구멍을 뚫고 공기를 펌핑하는 파이프를 설치해 스웨이츠 빙하와 따뜻한 바닷물 사이에 놓는다는 것이다. 이와 같은 빙하 지구공학적 개입은 올바르게 구현된다면 매우 유용할 수 있다는 지적이다. 그러나 아이디어 중 다수는 달성하기 어렵거나 불가능하다는 주장도 만만치 않다. 오히려 탄소 배출을 줄이자는 목표를 흐리게 만든다는 주장이다. 지구공학에 지나치게 의존하면 탄소 배출을 억제하는 조치를 취하지 못할 수 있다는 것이다. 그러나 학계는 지구공학이 만병통치약은 아니더라도 강력한 치료제가 될 수는 있다고 본다. 빙하 지구공학이 기후 변화에 대한 만병통치약과 같은 해결책은 아니지만, 진통제 역할은 할 수 있다고 본다. 진통제는 심한 고통을 덜어 주면서 신체가 병을 치료할 수 있도록 지원한다. 여전히 빙하 지구공학에 대한 논쟁은 진행 중이다.
-
- 포커스온
-
'최후의 날' 남극 빙하, 예상보다 빨리 녹아…지구공학 논의 촉발
-
-
[우주의 속삭임(76)] 블랙홀, 우주 팽창의 비밀 쥐고 있나…암흑 에너지 연관성 연구 결과 발표
- 우주의 팽창을 가속화시키는 미지의 힘, 암흑 에너지의 정체를 밝힐 단서가 블랙홀에 있을 가능성이 제기됐다. 미국 애리조나주립대학교 케빈 크로커(Kevin Croker) 교수 연구팀은 블랙홀이 암흑 에너지와 연관되어 우주 팽창에 영향을 미칠 수 있다는 연구 결과를 발표했다고 사이언스얼라트가 전했다. 현재 이론에 따르면 우주의 초기 성장 시기는 인플레이션 시기였다. 빅뱅 직후 우주는 무(無)에서 상당히 큰 무언가로 순식간에 변했다. 이후 한동안 상대적으로 느리게 성장하다가 약 50억년 전 암흑 에너지에 의해 팽창이 지배되기 시작했다. 연구팀은 암흑 에너지 분광기(DESI)를 이용하여 거대 질량 별의 붕괴로 생성되는 블랙홀의 성장 속도를 분석하고, 이를 우주 팽창 속도와 비교했다. 그 결과 블랙홀의 형성과 우주 팽창 사이에 뚜렷한 상관관계가 있음을 확인했다. 즉, 블랙홀이 생성될수록 우주 팽창 속도가 빨라지는 경향을 보인 것이다. 이러한 현상은 '우주론적 결합(cosmological coupling)' 이론으로 설명될 수 있다. 이 이론에 따르면, 블랙홀은 일반 물질을 암흑 에너지로 변환시키는 역할을 하며, 이 과정에서 우주 팽창이 가속화된다. 연구팀은 블랙홀의 암흑 에너지 변환율을 계산한 결과, 현재 우주에서 관측되는 팽창 속도와 일치하는 것을 확인했다. 또한, 이 연구는 블랙홀이 암흑 에너지의 근원일 가능성을 제시하며, 우주 팽창의 미스터리를 풀 수 있는 중요한 단서를 제공한다는 점에서 학계의 주목을 받고 있다. 연구팀은 향후 추가적인 연구를 통해 블랙홀과 암흑 에너지의 연관성을 더욱 명확히 규명할 계획이다. 이 연구 결과는 우주론 및 천체입자물리학 저널(Journal of Cosmology and Astroparticle Physics)에 게재됐다.
-
- IT/바이오
-
[우주의 속삭임(76)] 블랙홀, 우주 팽창의 비밀 쥐고 있나…암흑 에너지 연관성 연구 결과 발표
-
-
[기후의 역습(80)] 나사, 남극 빙하의 특이한 '바다 연기' 공개
- 남극 서부의 주요 빙하가 이달 초 나사(NASA) 위성 관측에서 마치 '연기를 피우고 있는 듯한' 희귀한 광경을 포착했다고 CNN, 어스닷컴 등 외신이 전했다. 빙하에서 나타난 ‘바다 연기’는 실제 연기가 아니라 안개였던 것으로 밝혀졌다. 위성 이미지에서 파인 아일랜드 빙하(Pine Island Glacier)는 바다와 만나는 어두운 바닷물 표면 위에서 솜털 같은 흰색 연기처럼 보였다. 파인 아일랜드 빙하 및 인근의 스웨이츠 빙하는 서남극 빙상에서 아문센해로 흐르는 얼음의 주요 경로 중 하나로 주목받고 있다. 또한 남극 대륙에서 가장 빠르게 후퇴하는(녹아내리는) 빙하 중 하나다. 기묘한 이미지였던 ‘바다 연기’는 물과 바람이 만들어낸 것이었다. 나사에 따르면 강한 바람이 얼음과 차가운 물을 밀어내고 심해의 더 따뜻한 물이 표면으로 솟구치게 했다. 따뜻한 물이 매우 건조하고 차가운 공기에 따뜻하고 습한 공기를 불어 넣었다. 온도 차이로 인해 그 공기의 수분이 응축되어 안개가 형성된 것이다. CNN은 이를 지상에서 보면 마치 누군가가 물 위의 유령의 집에서 안개를 만드는 기계를 작동한 것처럼 보이다고 전했다. 물 표면에 가까운 지역은 연기와 비슷한 안개에 휩싸이게 되기 때문에 '바다 연기'라는 별명이 붙었다. 바다 연기 자체는 드문 일은 아니라고 한다. 차갑고 건조한 공기가 예외적으로 따뜻한 수역을 지날 때마다 발생할 수 있다. 때때로 북극의 첫 번째 겨울 폭풍이 비교적 따뜻한 호수를 지날 때 볼 수 있다. 그러나 나사에 따르면 이런 현상을 아일랜드 빙하에서 위성으로 관측하는 것은 드문 일이었다. 이 지역은 보통 구름에 가려져 있기 때문이라고. 파인 아일랜드 빙하는 남극 대륙에서 중요하고 엄격하게 모니터링되는 지역이다. 지구 온난화의 영향을 받아 존재가 위협받고 있기 때문이다. 이 빙하는 인접한 거대한 빙상의 배관 역할을 하여 인접한 바다로 얼음을 흘려보낸다. 이런 얼음의 흐름은 빙하가 1990년대부터 따뜻한 공기, 물, 눈 부족으로 균형을 잃고 얼음이 축적되지 않게 되면서 크게 증가해 왔다. 이 빙하는 인근 '최후의 보루'라고 알려진 빙하인 스웨이츠 빙하와 함께 지난 수십 년 동안 가속적으로 얼음을 잃고 있다. 얼음이 녹아 해수면을 몇 피트(1피트는 30.48cm) 올릴 가능성이 있다. 스웨이츠 빙하는 또 해수면을 10피트(약 3m)나 올릴 만큼 얼음이 많은 남극 빙상들이 붕괴되는 것을 막는 중요한 댐 역할을 담당하고 있다.
-
- 포커스온
-
[기후의 역습(80)] 나사, 남극 빙하의 특이한 '바다 연기' 공개
-
-
[우주의 속삭임(75)] 태양계 밖 황소자리에서 처음으로 복합 탄소 발견
- 지구에서 430광년 떨어진 황소자리 분자 구름 내에 위치한 심우주에서 거대 복합 탄소가 발견됐다고 스페이스닷컴이 전했다. 이는 천체화학의 오랜 미스터리, 즉 '생명의 핵심 구성 요소인 탄소가 어디에서 왔는가'를 해결하는 데 도움이 될 수 있는 추가 단서를 제공할 것으로 기대된다. 피렌(pyrene)이라고 불리는 이 분자는 탄소의 4개의 융합된 평면 탄소 고리로 구성되어 있다. 따라서 다환 방향족 탄화수소(PAH)로 분류되며, 이는 가시 우주에서 가장 풍부한 복합 분자 중 하나다. PAH는 1960년대에 탄소질 콘드라이트로 알려진 운석에서 처음 발견되었는데, 이는 우리 태양계를 형성한 원시 성운의 잔해이다. 매사추세츠 공과대학(MIT) 화학과 브렛 맥과이어 교수는 "별과 행성 형성의 큰 의문 중 하나는 초기 분자 구름에서 추출한 화학 물질 중 얼마나 많은 부분이 유전되어 태양계의 기본 구성 요소를 형성하는가 하는 것이다"라고 말했다. PAH는 우주에서 발견되는 탄소의 약 20%를 차지하는 것으로 추정되며, 별의 형성에서 사멸까지의 별의 일생 여러 단계에서 존재한다. PAH는 자외선(UV) 방사선에 대한 안정성과 복원력으로 인해 심우주의 혹독한 환경에서도 생존할 수 있다. 연구진은 지구 근처에서 발견된 소행성 류구(Ryugu)로부터 수집한 샘플에서 피렌이 높은 수준으로 발견된 후, 황소자리 구름에서도 다른 PAH를 찾기 시작했고 이번에 복합 탄소 분자를 발견하게 된 것이다. 태양계의 발상지에서 이런 분자를 발견한 것은 천문학자들이 오랫동안 찾아왔던 직접적인 연결 고리를 제공한다. 맥과이어는 "이는 초기 분자 구름에서 나온 이 물질이 우리 태양계를 구성하는 얼음, 먼지 및 암석체로 들어간다는 매우 강력한 증거"라고 설명했다. 이 발견은 전파 천문학을 이용한 것으로, 전파 천문학은 별, 행성, 은하, 먼지 구름과 같은 천체를 전파의 파장으로 관찰하는 천문학의 주요 분야다. 천문학자들은 다양한 천체에서 발생하는 전파를 연구함으로써 특정 대상의 구성, 구조 및 운동을 파악한다. 우주에서 분자를 식별하는 데 사용되는 다른 장비와 비교해, 전파 망원경은 일반 분자 그룹이 아닌 개별 분자를 관찰할 수 있는 기능을 제공한다. 전파 망원경은 분자가 특정 주파수에서 방출하거나 흡수하는 전자기파의 고유한 ‘지문(특성)’을 감지하고 출력한다. 각 분자는 고유한 회전 및 진동 에너지 레벨을 갖는다. 특성 전파는 분자가 이러한 레벨 사이를 전환할 때 생성된다. 전파 망원경은 이를 탐지해 연구에 제공하는 것이다. 이번 탄소 분자에 대해 UBC 화학과의 일사 쿡 교수는 "이는 2021년 처음 발견한 이후 우주에서 확인된 일곱 번째 개별 PAH"라고 말했다. 그는 "PAH는 생명의 구성 요소와 유사한 화학 구조를 갖고 있다. 이 분자가 어떻게 형성되고 우주로 운반되는지에 대해 더 많이 알게 되면 우리 태양계와 그 안의 생명에 대해 더 많이 알게 될 것이다"라고 부연했다. 태양계의 기원지에서 피렌을 발견한 것 외에도, 연구팀에게 더욱 흥미로웠던 것은 구름의 온도가 단지 10켈빈(섭씨 영하 263도)으로 측정되었다는 사실이다. 지구에서 PAH는 화석연료의 연소와 같은 고온 과정을 통해 형성된다. 따라서 이 추운 환경에서 PAH를 발견한 것은 놀라운 일이었다. 쿡 교수는 "향후 연구는 PAH가 극도로 추운 곳에서 형성될 수 있는지, 아니면 우주의 다른 곳에서 오래된 별의 죽음을 통해 형성돼 이동할 수 있는지 여부를 탐구하는 것이 목표"라고 말했다.
-
- IT/바이오
-
[우주의 속삭임(75)] 태양계 밖 황소자리에서 처음으로 복합 탄소 발견
-
-
[우주의 속삭임(74)]토성 위성 타이탄, 10km 두께 메탄 얼음층 존재…행성 과학 새 지평 열어
- 토성의 위성 중 하나인 타이탄의 메탄 층에 대한 미스터리가 한겹 풀렸다. 타이탄은 토성의 위성 중 가장 큰 천체로, 태양계 내에서는 목성의 위성 가니메데에 이어 두 번째로 크다. 미국 하와이대학교 마노아 캠퍼스의 행성 과학자들은 새로운 연구를 통해 타이탄의 얼음 속에 메탄 가스가 갇혀 최대 10km 두께의 독특한 지각을 형성하고 있음을 밝혀냈다고 사이테크데일리가 보도했다. 이 지각은 그 아래 얼음층을 따뜻하게 하고 타이탄의 메탄 대기를 설명하는 데 도움이 될 것으로 예상된다. 타이탄의 메탄 미스터리 풀다 토성의 가장 큰 위성인 타이탄은 태양계에서 지구 외에 대기와 액체 상태의 바다, 강, 호수를 가진 유일한 천체다. 극도로 추운 기온 때문에 이 액체들은 메탄과 에탄 같은 탄화수소로 이루어져 있으며, 표면은 단단한 고체 물 얼음으로 구성되어 있다. 하와이 지구물리학 및 행성학 연구소(HIGP)의 로렌 슈어마이어 연구원이 이끄는 연구팀은 타이탄의 충돌 크레이터가 예상보다 수백 미터 얕다는 사실을 발견했다. 나사(NASA) 데이터에 따르면 타이탄에서 확인된 크레이터는 90개에 불과하며, 이는 타이탄의 표면과 지질학적 역사에 대한 흥미로운 질문을 제공한다. 크레이터 분석을 통한 통찰 슈어마이어 연구원은 "다른 위성들을 기반으로 했을 때 타이탄 표면에 더 많은 충돌 크레이터가 있고, 그 크레이터들은 우리가 관찰한 것보다 훨씬 더 깊을 것으로 예상했기 때문에 분화구가 실제로는 얕다는 사실이 매우 놀라웠다"고 말했다. 그는 "우리는 타이탄 특유의 무언가가 크레이터를 얕게 만들고 비교적 빠르게 분화구를 사라지게 한다는 것을 깨달았다"고 덧붙였다. 연구팀은 이 미스터리를 조사하기 위해 컴퓨터 모델을 사용해 타이탄의 얼음층이 메탄 클래스레이트 얼음층으로 덮여 있을 경우, 충돌 후 지형이 어떻게 변화흐는 지 시뮬레이션했다. 메탄 클래스레이트 얼음은 결정 구조 내에 메탄가스가 갇힌 일종의 고체 물 얼음이다. 타이탄 크레이터의 초기 형태는 알려져 있지 않기 때문에 연구팀은 비슷한 크기의 목성의 가니메데의 크레이터를 기반으로 두 가지 초기 깊이를 모델링하여 비교했다. 슈어마이어 연구원은 "이 모델링 접근 방식을 사용하여 메탄 클래스레이트 지각의 두께를 5~10km로 제한할 수 있었다. 이 두께를 사용한 시뮬레이션에서 관측된 크레이터와 가장 일치하는 크레이터 깊이가 생성되었기 때문이다"라고 설명했다. 그는 "메탄 클래스레이트 지각은 타이탄의 내부를 따뜻하게 하고 놀라울 정도로 빠른 지형 이완을 유발하며, 이는 지구의 빠르게 움직이는 따뜻한 빙하와 비슷한 속도로 크레이터를 얕게 만든다"라고 부연했다. 타이탄 대기에 미치는 메탄의 영향 메탄 얼음층의 두께를 추정하는 것은 타이탄의 메탄 대기 기원을 설명하고 연구자들이 타이탄의 탄소 순환, 액체 메탄 기반 '수문 순환(물이 끊임 없이 이동하는 현상)' 및 기후 변화를 이해하는 데 도움이 되기 때문에 중요하다. 슈어마이어 연구원은 "타이탄은 온실가스 메탄이 대기를 어떻게 따뜻하게 하고 순환하는지 연구할 수 있는 천연 실험실"이라고 말했다. 그는 "시베리아 영구 동토층과 북극 해저 아래에서 발견되는 지구의 메탄 클래스레이트 수화물은 현재 불안정해지고 메탄을 방출하고 있다. 따라서 타이탄에서 얻은 교훈은 지구에서 일어나는 과정에 중요한 통찰력을 제공할 수 있다"고 덧붙였다. 타이탄의 생명체 존재 가능성 이러한 새로운 발견에 비추어 볼 때 타이탄에서 볼 수 있는 지형은 따뜻할 수도 있다. 메탄 클래스레이트 얼음 지각의 두께를 제한함으로써 타이탄의 내부가 이전에 생각했던 것처럼 차갑고 딱딱하며 비활성 상태가 아니라 따뜻할 가능성이 있음을 알 수 있다는 것. 슈어마이어 연구원은 "메탄 클래스레이트는 일반적인 물 얼음보다 강하고 단열성이 뛰어나다"면서 "클래스레이트 지각은 타이탄의 내부를 단열하고 물 얼음층을 매우 따뜻하고 연성으로 만들며 타이탄의 얼음층이 천천히 대류하고 있거나 대류했음을 의미한다"고 설명했다. 향후 탐사 임무 슈어마이어 연구원은 "두꺼운 얼음층 아래 타이탄의 바다에 생명체가 존재한다면, 생명체의 흔적(바이오마커)은 우리가 미래 임무를 통해 더 쉽게 접근하거나 볼 수 있는 곳까지 타이탄의 얼음층 위로 운반되어야 할 것"이라면서 "이는 타이탄의 얼음층이 따뜻하고 대류하는 경우 발생할 가능성이 더 크다"고 말했다. 연구팀은 2028년 7월 발사되어 2034년 타이탄에 도착할 예정인 NASA 드래곤플라이 미션을 통해 이 위성을 가까이에서 관찰하고, 셀크라는 크레이터를 포함한 얼음 표면을 추가로 조사할 수 있는 기회를 갖게 될 것이다. ◇ 참고: Schurmeier, L. R., Brouwer, G. E., Kay, J. P., Fagents, S. A., Marusiak, A. G., & Vance, S. D. (2024). Rapid Impact Crater Relaxation Caused by an Insulating Methane Clathrate Crust on Titan. The Planetary Science Journal, DOI: 10.3847/PSJ/ad7018
-
- IT/바이오
-
[우주의 속삭임(74)]토성 위성 타이탄, 10km 두께 메탄 얼음층 존재…행성 과학 새 지평 열어
-
-
[기후의 역습(77)] 울긋불긋 단풍은 옛말?…기후변화로 잎 갈화 현상 일반화
- 과거 오랫동안 지구가 그리는 색상은 계절의 변화만큼이나 신뢰할 수 있었다. 가을에는 잎이 선명한 주홍색으로 변했고 플로리다 해안의 수정처럼 맑은 물은 반짝이는 청록색이었다. 그런데 최근 들어 기후 변화가 이러한 자연의 경이로운 색상을 바꾸고 왜곡하고 있다고 독립매체 인디펜던트가 전했다. 지난해는 지구 역사상 가장 더운 해로 기록됐다. 올해는 또 육지 안팎에서 여러 차례의 기상 기록이 세워졌다. 멕시코만에서 극강한 허리케인이 발생했고, 미국 남부 전역에서는 폭우로 인해 수십 명이 사망했다. 가을은 일반적으로 무더위가 한풀 꺾이는 계절이지만, 애리조나주의 주도 피닉스는 가을이 시작된 지 며칠 만에 폭염이 닥쳐 기온 최고치를 기록했고, 북동부도 비정상적으로 뜨겁고 건조한 날씨를 보였다. 비영리 단체인 클라이밋 센트럴(Climate Central)에 따르면 1970년 이후 미국 도시 수백 곳에서 가을 평균 기온이 섭씨 2.5도 상승했다. 단풍을 구경하는 가을의 즐거움이 이제 기후 위기로 취약해지고 있다는 지적이다. 지난 8월 클라이밋 센트럴의 보고서에 따르면, 기후 변화로 인해 나뭇잎에 단풍이 드는 요인이 근본적으로 바뀌고 있다고 한다. 잎이 나오는 시기와 색깔은 모두 기온, 강수량 및 기타 기후 조건의 영향을 받는다. 일반적으로 선선한 기온은 단풍을 촉진하지만, 1970년부터 작년까지 전국 212개 지역의 가을밤 기온은 평균 2.7도 이상 올랐다. 더운 기온은 겨울이 오기 전에 식물이 성장을 멈추는 자연스러운 신호를 늦춘다. 식물이 성장을 멈춘다는 의미는 포도당을 만드는 잎의 엽록소가 줄어들고 그 자리를 단풍 색깔로 물들인다는 뜻이다. 이게 늦어지면 단풍도 지연된다. 그 결과 북동부 수목선을 단풍으로 물들이는 시즌이 더 늦어지고 시기는 더욱 짧아진다. 해가 짧아지고 햇빛에 노출되는 시간이 줄어들면서 식물은 광합성을 줄인다. 광합성은 햇빛을 이용해 식물이 생존에 필요한 에너지를 만드는 과정이다. 광합성이 줄어들면 엽록소가 감소하고, 잎은 밝은 주황색, 노란색, 빨간색, 심지어 보라색으로 변한다. 그러나 극심한 가뭄과 더위는 단풍을 물들이기 전에 잎을 갈색으로 바꿀 수 있다. 한편, 뉴잉글랜드의 다채로운 수목 지대에서 거의 1만 마일(약 1만6093km) 떨어진 얼어붙은 남극 대륙이 녹색으로 변하고 있다. 네이처 지구과학 저널에 최근 발표된 연구에 따르면 남극 반도 전역의 식물은 지난 40년 동안 10배 이상 증가했다. 남극은 지구 평균보다 더 빨리 온난화되고 있다. 이 연구는 식물이 남극 대륙에서 빠르게 확산되고 있으며, 기온의 지속적인 상승으로 미세 조류가 섞인 녹색 눈은 더 넓게 퍼질 가능성이 있음을 보여주고 있다. 기후 변화 영향으로 인해 세계의 바다도 푸른색에서 녹색으로 변하고 있다. 국제 연구진은 20년 이상 축적된 나사(NASA) 위성 이미지를 분석해 세계 바다의 절반 이상에서 이러한 변화를 발견했다. 연구는 바다의 녹색화가 엽록소를 생성하는 식물성 플랑크톤과 같은 미세 조류의 증가를 의미하며, 이로 인해 상대적으로 바닷물의 비율이 감소하기 때문일 수 있다고 주장했다. 이는 바다가 탄소와 지구의 열을 흡수하는 능력에 큰 영향을 미친다. 지구 온난화가 계속되고 화석 연료 소모에 의한 탄소 배출이 온난화를 가속함에 따라 악순환은 이어진다. 그럴수록 지구 전역에서 나뭇잎들이 가을이 되어도 종래와는 다른 색깔이 나타날 것이라는 지적이다.
-
- IT/바이오
-
[기후의 역습(77)] 울긋불긋 단풍은 옛말?…기후변화로 잎 갈화 현상 일반화
-
-
[신소재 신기술(124)] COF 소재, 탄소 포집 능력 극대화⋯소량으로도 효과 탁월
- 소량의 물질로 대기 중 이산화탄소를 효과적으로 제거하는 새로운 탄소 포집 기술이 미국에서 개발됐다. 이산화탄소를 비롯한 온실가스는 배출은 쉽지만, 이를 다시 포집하는 것은 어려운 과제였다. 대기 중 탄소를 제거하는 기술은 기후 위기의 영향을 줄이는 중요한 방법이지만, 아직 많은 기술이 설계 단계에 있거나 효율성이 낮아 실질적인 효과를 거두기가 어려웠다. 미국 캘리포니아 버클리캠퍼스(UC Berkeley) 연구팀은 대기 중 이산화탄소(CO₂)를 직접 포집하는 과정을 단순화하는 새로운 기술을 개발했다고 홈페이지를 통해 발표했다. 해당 내용은 IFL사이언스에서 다루었다. 현재 이산화탄소를 포집하는 기술은 크게 자연 기반 기술과 인공 기술로 나눌 수 있다. 먼저 자연 기반 기술에는 나무를 심고 관리하는 방법이 있다. 가장 오래되고 검증된 방법이지만 토지 이용에 제약이 있고 효과가 나타나기까지 시간이 오래 걸린다는 단점이 있다. 또한 토양의 탄소를 제거해 대기 중 이산화탄소 농도를 낮추는 방법과 해조류 등을 통해 해양의 이산화탄소 흡수 능력을 향상시키는 해양 기반 기술이 있다. 인공 기술 중 직접 공기 포집(DAC)은 공기 중 이산화탄소를 직접 포집해 저장하거나 활용하는 기술이다. 이는 토지 사용 면적이 적고, 이산화탄소를 직접 제거해 효과가 빠르다. 그밖에 이산화탄소를 암석이나 광물과 반응시켜 탄산염 형태로 저장하는 기술, 바이오에너지 탄소 포집 및 저장(BECCS) 등이 있다. 나사(NASA) 과학자들에 따르면 인간 활동의 여파로 현재 이산화탄소 수치는 산업혁명 이전보다 50% 더 높다. COF 소재란? UC버클리 연구팀이 이번에 개발한 새로운 탄소 포집 기술인 다공성 소재 '공유 결합 유기 골격(COF)'은 기존 DAC 기술의 한계 중 하나인 물이나 기타 오염 물질에 의한 분해 없이 주변 공기에서 CO₂를 포집한다. 이 기술의 핵심은 '공유 결합 유기 골격-999(COF-999)'라는 소재이다. COF-999는 규칙적인 내부 기공을 가진 단단한 결정 구조로, 이산화탄소와 상호 작용하는 아민(amine, NH₂ 그룹)으로 내부가 장식되어 있다. 아민은 이산화탄소를 흡착한 후 방출하는 사이클을 통해 탄소를 포집하고 저장하는 데 사용될 수 있다. 이 기술은 기존 탄소 포집 기술의 한계를 극복하는 획기적인 발전으로 평가 받는다. 기존 탄소 포집 기술은 이산화탄소 농도가 높은 곳에서 효과적으로 작동했다. 반면, 연구팀이 개발한 새로운 다공성 물질은 공기 중의 이산화탄소가 다공성 물질 사이를 통과하면서 흡착되는 방식으로, 대기 중의 낮은 이산화탄소 농도를 효율적으로 제거할 수 있다. 연구 책임자인 오마르 야기 교수는 "이 물질을 튜브에 넣고 버클리의 바깥 공기를 통과 시켰더니 공기 중 이산화탄소가 완전히 제거되었다"며 "성능 면에서 비교할 대상이 없을 정도로 획기적인 기술"이라고 강조했다. 소량으로도 높은 탄소 포집 효과 연구팀은 250g의 물질로 1년에 20kg의 이산화탄소를 제거할 수 있을 것으로 예상했다. 팀은 이는 다 자란 나무가 1년 동안 공기 중의 이산화탄소를 제거하는 것과 같은 효과를 지닌다며, 기존 탄소 포집 시스템과 함께 사용하여 효율성을 높일 수 있다고 설명했다. 야기 교수는 "COF-999는 화학적 및 열적으로 안정적인 구조를 가지고 있으며, 에너지 소비가 적고 100회 이상 사용해도 성능 저하가 없다"며 "대기 중 탄소 포집에 가장 적합한 물질"이라고 설명했다. 머신러닝 활용으로 기술 개선 기대 연구팀은 머신러닝 기술을 활용해 이 기술을 더욱 발전시킬 계획이다. 이와 더불어 기후 위기를 늦추기 위해서는 배출량 감소 노력과 파리협정 준수가 중요하다고 강조했다. 이번 연구 결과는 국제 학술지 네이처(Nature)에 게재됐다.
-
- IT/바이오
-
[신소재 신기술(124)] COF 소재, 탄소 포집 능력 극대화⋯소량으로도 효과 탁월
-
-
[퓨처 Eyes(55)] 우주 쓰레기, 인류의 우주 꿈을 위협한다: 4300톤의 그림자, 지구 덮치나?
- 인류의 우주 탐사 역사는 아직 60년 남짓에 불과하지만, 그 짧은 시간 동안 지구 궤도에는 엄청난 양의 우주 쓰레기가 축적되었다. 유럽우주국(ESA)에 따르면 지구 궤도를 도는 위성 파편 등 우주 쓰레기의 무게는 무려 1만3000톤에 달한다. 그중 작은 파편에 해당하는 우주 쓰레기는 4300톤으로, 자유의 여신상(약 204톤) 약 21개에 달하는 무게의 우주 쓰레기가 지구 주위를 맴돌며 인류의 우주 꿈을 위협한다. 1960년대 본격적인 우주 탐사 시대가 열린 이후, 수많은 국가들이 앞다투어 우주로 진출했다. 1969년 아폴로 11호의 달 착륙은 인류에게 새로운 가능성을 제시했고, 이후 미국, 러시아, 중국, 일본, 인도, 유럽연합 등 우주 강국들은 탐사선 개발에 박차를 가하며 우주 경쟁을 펼쳐왔다. 최근에는 한국과 아랍에미리트까지 가세하며 우주를 향한 열망은 더욱 뜨거워지고 있다. 통제 불능의 우주 쓰레기 증가 그러나 우주 탐사의 이면에는 어두운 그림자가 드리워져 있다. 바로 우주 쓰레기 문제다. 나사(NASA)에 따르면 2015년 기준 지구 상공에 위성을 포함해 약 3만 개의 물체가 돌고 있는 것으로 나타났다. 특히 고장난 인공위성, 탐사선의 파편, 로켓 발사 후 남은 잔해물 등이 지구 궤도를 떠돌며 심각한 위협으로 부상하고 있다. 이러한 우주 쓰레기는 운용 중인 인공위성이나 탐사선과 충돌하여 통신 장애, GPS 기능 중단 등의 문제를 일으킬 수 있다. 최근 몇 달 사이, 궤도상에서 폐기된 위성과 로켓 잔해가 잇따라 파손되면서 우주 쓰레기 문제가 더욱 심각해지고 있다. 우주 쓰레기가 급증하면서 '케슬러 증후군'이 현실화 될 것이라는 우려가 제기되고 있다. 1978년 NASA의 과학자 도널드 J. 케슬러가 제시한 케슬러 증후군은 우주 쓰레기가 서로 충돌하면서 기하급수적으로 늘어나, 결국 지구 궤도 전체를 뒤덮어 인공위성이나 우주선의 운용을 불가능하게 하는 현상을 말한다. 케슬러 증후군은 아직까지는 가설 단계지만 늘어난 우주 쓰레기들이 서로 충돌하면서 더욱 많은 파편들이 기하급수적으로 늘어나면서 현실적인 위협으로 인식되고 있다. 실제로 지난 6월에는 러시아의 RESURS-P1 위성이 지구 저궤도에서 파괴되어 100개 이상의 추적 가능한 파편을 생성했으며, 7월에는 미국의 DMSP 5D-2 F8 위성이 분해되었다. 8월에는 중국의 장정 6A 로켓 상단 부분이 파편화되면서 최소 283개의 추적 가능한 파편과 수십만 개의 미세 파편을 발생시켰다. 이처럼 폐기된 우주 물체의 파손은 크고 작은 파편들을 양산하며 우주 쓰레기 문제를 심화시키고 있다. 특히 미세 파편의 경우 추적이 어려워 더 큰 위험 요소로 작용한다. 이러한 파편들은 현재 운용 중인 위성이나 우주선과 충돌하여 심각한 피해를 초래할 수 있다. 최근 발생한 인텔샛 33e 위성(Intelsat 33e·대형 통신 위성) 파손 사고는 이러한 우려를 더욱 증폭시키고 있다. 인텔샛은 2024년 10월 19일, 인도양 상공 약 3만 5000km 궤도에서 인텔샛 33e 위성이 갑작스러운 전력 손실로 파괴됐다고 밝혔다. 최소 20개의 조각으로 분해된 이 위성은 유럽, 아프리카, 중동, 아시아 지역의 위성 통신 서비스에 큰 차질을 빚었다. 무게 6600kg에 리무진 크기의 인텔샛 33e 위성은 보잉에서 설계와 제작을 맡았고 2016년 궤도에 진입해 8년 동안 임무를 수행으나 갑자기 붕괴됐다. 위성이 갑자기 분해된 정확한 이유는 아직까지 불분명하다. 위성 파괴는 연쇄적인 충돌을 야기하여 피해 규모를 더욱 키울 수 있다는 점에서 우주 쓰레기 문제는 '시한폭탄'과 같다. 우주 쓰레기 추적과 관리의 어려움 유럽우주국(ESA)에 따르면, 현재 지구 궤도에는 10cm 이상의 우주 쓰레기가 4만 개 이상, 1cm 미만의 미세 파편은 무려 1억 3000만 개 이상 존재한다. 이를 무게로 환산하면 약 1만3000톤에 달하며, 그 중 4300톤이 작은 파편으로 추정된다. 나사(NASA)에 따르면 사과 크기의 우주 쓰레기가 약 2만1000개, 구슬 크기의 쓰레기가 50만개, 추적이 어려울 정도의 작은 쓰레기가 최고 1억개에 이른다고 추정한다. 특히 지구 저궤도(LEO)에 집중된 우주 쓰레기는 추적과 관리가 매우 어렵다. 정지궤도(GEO)에서 발생하는 파편들은 위치 추적이 더욱 까다로워 효과적인 관리 시스템 마련이 시급하다. 다행히 우주 쓰레기 문제 해결을 위한 노력도 활발히 진행되고 있다. JAXA(일본 우주항공연구개발기구)의 지원을 받는 스타트업 스타 시그널 솔루션스(Star Signal Solutions)는 '사테나비 S-CAN'이라는 혁신적인 충돌 회피 네비게이션 시스템을 개발했다. 이 시스템은 위성 운용자들이 우주 쓰레기의 궤도를 실시간으로 모니터링하고 충돌 위험을 사전에 예측하여 회피할 수 있도록 지원한다. 스타 시그널 솔루션스의 이와키 요타이 대표는 "위성 운용에는 전문 지식과 24시간 대응 체계가 요구되며, 막대한 운영 비용이 발생한다"고 지적하며, "사테나비 S-CAN은 최적의 회피 경로를 제시하여 운영 부담을 줄이고 연료 소비를 최소화하여 비용 절감 효과를 가져온다"고 강조했다. 하지만 기술 개발만으로는 우주 쓰레기 문제를 완전히 해결할 수 없다. 우주 쓰레기 문제는 본질적으로 전 지구적 차원의 문제이기 때문에 국제적인 협력이 필수다. 1972년 제정된 '우주물체에 의한 손해에 대한 국제책임협약'은 우주 물체 발사 국가의 손해 배상 책임을 명시하고 있지만, 실제 적용 사례는 매우 드물다. 우주 공간의 특수성으로 인해 책임 소재 규명이 어렵기 때문이다. 전문가들은 우주 쓰레기 문제 해결을 위해서는 각국의 협력을 통한 국제적 감시 시스템 구축 및 규제 강화가 시급하다고 강조한다. 우주 물체의 안전한 폐기, 추적 기술 개선, 파편 발생 최소화 등 다각적인 노력이 필요하며, 지속 가능한 우주 탐사를 위한 국제 사회의 공동 책임 의식이 무엇보다 중요하다. 국제우주정거장, 지구 재진입후 폐기 예정 참고로 국제우주정거장(ISS)은 2030년 운영 종료 후 2031년 1월에 폐기될 예정이다. NASA는 2031년 1월에 ISS를 지구 대기권으로 재진입시켜 태우는 방식으로 폐기할 계획이다. 잔해는 '우주선의 무덤'으로 불리는 남태평양의 포인트 니모(Point Nemo)에 수장된다. ISS는 1998년부터 운영되어 왔으며, NASA, 캐나다우주국(CSA), 유럽우주국(ESA), 일본우주항공연구개발기구(JAXA), 러시아 연방우주공사(Roscosmos) 등이 협력해 운영해 왔다. 하지만 ISS는 노후화로 인해 유지 보수 비용이 증가하고 있으며, 새로운 우주 탐사 계획을 위해 폐기가 결정됐다. ISS 폐기 후에는 민간 우주 정거장이 그 역할을 대신할 것으로 예상된다. 인류의 우주 탐사는 앞으로도 계속될 것이다. 하지만 우주 쓰레기 문제를 해결하지 못한다면 인류의 우주 꿈은 쓰레기 더미에 묻혀버릴지도 모른다. 지금부터라도 국제 사회가 힘을 모아 책임 있는 자세로 우주 쓰레기 문제 해결에 적극적으로 나서야 할 때다.
-
- 포커스온
-
[퓨처 Eyes(55)] 우주 쓰레기, 인류의 우주 꿈을 위협한다: 4300톤의 그림자, 지구 덮치나?
-
-
[신소재 신기술(123)] NASA, 중력파 관측소용 프로토타입 망원경 공개
- 나사(NASA)가 블랙홀과 다른 우주적 근원이 합쳐지면서 발생하는 시공간 파장인 중력파를 우주에서 감지할 수 있는 6개의 실물 크기 프로토타입 우주 망원경을 홈페이지를 통해 공개했다. 우주 망원경은 향후 10년 동안 진행될 나사의 우주 미션 리사(LISA: Laser Interferometer Space Antenna) 임무에 사용될 계획이다. 망원경은 2개가 한 쌍을 이루어 우주선에 탑재된다. 중력파를 관측하는 차세대 리사 임무는 유럽우주국(ESA)과 나사가 협력해 진행하는 미션으로, 레이저를 사용해 태양보다 더 광대하게 분산된 3대의 우주선 사이의 정확한 거리를 측정해 중력파를 감지하는 것이다. 거리 측정은 피코미터 또는 1조 분의 1미터 수준의 정밀도로 이루어진다. 삼각형 배열의 각 면은 약 250만km를 측정한다. 미국 메릴랜드주의 나사 고다드 우주비행센터의 라이언 드로사 박사는 "각 우주선에 탑재된 쌍둥이 망원경은 적외선 레이저 빔을 송수신해 동료 우주선을 추적하며, 리사 임무에 쓰이는 6대의 망원경은 나사가 모두 공급한다. 엔지니어링 개발 망원경 유닛(Engineering Development Unit Telescope)이라는 이름의 이 프로토타입은 우주를 비행할 우주선 하드웨어를 제작하는 작업을 지원하게 된다. 뉴욕주 로체스터에 소재한 L3해리스테크놀로지(L3Harris Technologies)에서 제조 및 조립한 프로토타입 망원경은 지난 5월 고다드 센터에 도착했다. 망원경의 주 거울은 적외선 레이저를 매우 잘 반사하고, 차가운 공간에 노출된 상태에서 열 손실을 줄이기 위해 금으로 코팅됐다. 망원경은 실내 온도에 가까울 때 가장 잘 작동한다. 프로토타입 망원경은 모두 독일 마인츠에 소재한 쇼트(Schott)에서 제조한 호박색 유리 세라믹(Zerodur)으로 만들어졌다. 이 소재는 폭넓은 온도 범위에서 모양이 거의 변하지 않기 때문에 망원경 거울과 고정밀이 필요한 응용 분야에 널리 사용된다. 리사 임무는 2030년대 중반에 시작될 예정이다.
-
- IT/바이오
-
[신소재 신기술(123)] NASA, 중력파 관측소용 프로토타입 망원경 공개
-
-
[기후의 역습(76)] 사하라 사막, 기습 폭우로 호수 생성…1년 이상 유지될 듯
- 사하라 사막의 세브카 엘 멜라(Sebkha el Melah) 호수가 기습 폭우로 일시적이나마 물로 채워졌다. 이는 사하라 사막의 과거가 푸르렀음을 보여주는 것이며, 전문가들이 기후 변화를 연구하는 데 도움이 된다고 사이테크데일리가 전했다. ◇ 고대의 녹색 사하라 약 1만1000~5000년 전 아프리카 습윤기 동안에는 사하라 사막이 오늘날보다 더욱 습하고 푸르렀다. 지질학 및 고고학적 증거에 따르면, 광활한 모래 언덕으로 뒤덮인 사하라 사막은 당시 초목과 습지, 심지어 큰 호수가 있었던 것으로 보인다. 지난 9월, 열대성 저기압이 북아프리카 일부 지역에 폭우를 몰고온 후 고대의 녹색 사하라 흔적이 잠시 다시 나타났다. 폭풍으로 흘러내린 물은 평상시에는 건조했던 사막의 몇몇 호수를 물로 채웠다. ◇ 세브카 엘 멜라 호수의 위성 이미지 나사(NASA)의 랜드샛 9호 위성은 9월 29일 이미지 장비(OLI-2)를 사용해 알제리의 세브카 엘 멜라 호수 중 하나의 이미지를 포착했다. 우가르타 산맥을 따라 위치한 이 호수는 9월 중순에 물이 채워지기 시작했다. 그전에는 호수 바닥이 소금으로 뒤덮인 모습이었다. 10월 16일 현재, 물은 호수의 191㎢면적을 덮고 있으며, 깊이는 2.2m로, 세브카 엘 멜라 호수 전체의 약 3분의 1이 채워졌다. 이는 기제작된 호수의 3D 지도와 위성 이미지 및 데이터를 바탕으로 한 호수의 수심 측량 결과 밝혀졌다. 2000년 6월 이후 이 호수에 물을 채운 것은 2008년과 2014년 두 번이었다. ◇ 담수의 희소성과 중요성 사하라 사막의 호수가 물로 채워지는 것은 '희귀하고 거의 기록되지 않은 일시적인 현상'이다. 이 지역에는 지상 기반 기상 관측소가 거의 없고, 연구원들은 나사의 위성 데이터 검색과 유럽 중기기상예보센터의 강우량 데이터를 사용해 호수를 물로 채우는 데 필요한 기상 조건을 연구해 왔다. 2000년 이후 세브카 엘 멜라 유역에 영향을 미친 수백 건의 강우 중 물을 채우기 시작할 만큼의 충분한 경우는 단 6번 뿐이었다. 이 모두는 열대성 저기압과 관련이 깊었는데, 습한 열대 공기가 산 위로 밀려 올라가는 지형으로 인해 특히 많은 비가 내렸다. 위성 관측에 따르면 세브카 엘 멜라흐의 경우 지질의 특성상 물로 채워지면 계속 고여 있을 수 있다. 지난 2008년에는 호수가 채워진 후 4년 만인 2012년에 완전히 말랐다. 앞으로 비가 더 내리지 않는다면 현재 2.2m 깊이의 호수 물이 완전히 증발하는 데 약 1년이 걸릴 것으로 보인다. ◇ 사막 호수 담수에 대한 역사적 관점 사하라가 아프리카 습윤기 동안 매우 습했다는 증거에도 불구하고, 얼마나 습했는가는 여전히 논쟁이다. 따라서 세브카 엘 멜라흐는 중요한 연구 대상인데, 이는 과거 강수 패턴에 대한 단서를 제공하는 거대한 '우량계' 역할을 하기 때문이다. 일부 학자들은 사하라 사막이 실제로는 고기후 전문가들이 생각하는 것만큼 비가 많이 내리지 않았으며, 따라서 그리 푸르지 않았을 것이라고도 추정한다. 사하라 사막의 호수에 채워진 물이 마르는 데 걸리는 시간을 감안할 때, 고대 사하라는 빈번한 강우 없이도 수 년 또는 수십 년 동안 호수가 부분적으로라도 채워질 만큼 물이 흔했을 수 있다는 추정이다. ◇ 사하라에 대한 기후 예측과 불확실성 고기후학자들은 밀란코비치 주기라고 불리는 작은 궤도 변화가 아프리카 습윤기의 주요 동인이었을 것이라고 인식한다. 그 이유는 밀란코비치 주기가 태양 복사의 분포에 약간의 변화를 일으키고, 북아프리카 몬순의 강도와 위치에 변화를 일으켰기 때문이다. 그런데 온실가스 배출과 기후 변화의 영향이 밀란코비치 주기의 순환적 효과에 더해지면서 사하라 사막이 앞으로 수 세기 또는 수천 년 동안 호수에 물이 차고 주변이 녹색으로 변할지도 모른다. 누구도 확신할 수 없는 미래다. 기후 변화에 관한 정부간 패널(IPCC)의 예측에 따르면 지구 온도가 상승함에 따라 사하라의 일부 지역은 강수량이 늘어날 수 있다. 그러나 예측의 불확실성은 예측된 변화보다 크다. 사하라에서 무슨 일이 일어날지는 매우 불확실하지만, 지속적인 변화의 관측은 사하라의 미래를 이해하는 데 도움이 될 것이라는 지적이다.
-
- 포커스온
-
[기후의 역습(76)] 사하라 사막, 기습 폭우로 호수 생성…1년 이상 유지될 듯
-
-
[우주의 속삭임(73)] 지구에 떨어지는 운석, 대부분 '같은 곳'에서 왔다?
- 밤하늘을 가로지며 떨어지는 유성은 늘 보는 사람들을 매료시킨다. 그렇다면 지구에 도달해 밤하늘을 환하게 밝히는 유성은 과연 어디에서 왔을까? 우리 말에 유성과 별똥별이 있다. 일반적으로 비슷한 의미로 혼동하기 쉽지만 유성과 별똥별은 엄밀히 말하면 다른 뜻이다. 우주 공간을 돌아다니는 아주 작은 먼지나 돌멩이를 유성체라고 한다. 유성체가 지구 대기권으로 진입하면서 공기와의 마찰로 인해 빛을 내는 현상을 유성이라고 한다. 유성체가 대기 중에서 완전히 타지 않고 지표면까지 떨어진 것을 운석, 우리말로는 별똥별이라고 부른다. 매년 약 1만7000개의 유성이 지구 대기권에 진입하며, 그중 일부는 지표면에까지 도달한다. 과학자들은 이러한 운석을 통해 우주의 비밀을 탐구한다. 운석의 기원은 달이나 화성 등 다양하지만 대부분은 소행성에서 유래한다고 PHYS가 전했다. 최근 네이처(Nature)지에 발표된 두 연구는 이러한 운석의 기원을 더욱 명확히 밝혀냈다. 체코 카렐 대학교의 미로슬라프 브로즈(Miroslav Brož)와 유럽 남방 천문대의 미카엘 마셋(Michaël Marsset)이 이끄는 연구팀은 대부분의 운석이 소수의 소행성, 심지어는 특정 소행성에서 비롯되었다고 밝혔다. 이는 지구와 태양계 역사를 형성한 사건들에 대한 이해를 넓히는 데 기여한다. 이번 연구 결과는 학술지 네이처(Nature)에 게재됐다. 운석이란 무엇인가? 앞서 설명했듯이 유성이 지구 표면에 도달하면 '운석(meteorite)'이라고 부른다. 운석은 크게 석질운석, 철질운석, 석철질 운석 세 가지로 나뉜다. 석질운석 중 가장 흔한 종류는 '콘드라이트(chondrites)'로, 용융된 액체 방울 형태의 구형 입자를 포함하며 전체 운석의 85%를 차지한다. 대부분은 '일반 콘드라이트'로 철 함량과 광물 성분에 따라 H, L, LL의 세 가지 유형으로 나뉜다. '탄소질 콘드라이트(Carbonaceous chondrites)'는 점토 광물에 다량의 물과 아미노산 같은 유기물을 함유하고 있으며, 용융되지 않는 태양계 초기의 먼지 샘플이다. 반면 '아콘드라이트(achondrites)'는 콘드라이트와 달리 구형 입자가 없으며, 행성체에서 용융 과정을 거쳤다. 운석의 주요 공급원 '소행성대' 태양 주위를 공전하는 작은 천체인 소행성은 운석의 주요 공급원이다. 행성처럼 태양 주위를 돌지만, 행성보다 훨씬 작고 모양도 불규칙적인 경우가 많다. 대부분의 소행성은 화성과 목성 궤도 사이에 있는 '소행성대(Asteriod belt)'에 모여있으며, 목성의 중력에 의해 궤도를 돌고 있다. 목성과의 상호작용은 소행성 궤도를 교란시켜 충돌을 유발하고, 그 결과 발생한 파편들이 모여 '돌무더기 소행성'을 형성한다. 최근 하야부사와 오시리스-렉스 탐사선은 이러한 소행성에서 샘플을 채취해 지구로 가져왔다. 과학자들은 이룰 통해 특정 소행성 유형과 지구에 떨어지는 운석 사이의 연관성을 확인했다. 석질운석과 S형 소행성은 소행성대 안쪽에, 탄소질 콘드라이트와 유사한 C형 소행성은 바깥쪽에 분포한다. 소행성 '코로니스'와 '마살리아' 이번의 새로운 두 연구는 일반 콘드라이트 유형의 기원을 특정 소행성군, 특히 '코로니스'와 '마살리아' 소행성군으로 추적했다. 이는 운석 궤적 분석, 개별 소행성 관측, 모체 궤도 진화 모델링 등의 복잡한 과정을 통해 이루어졌다. 브로즈가 주도한 연구에 따르면 일반 콘드라이트는 3000만년 전에 발생한 지름 30km 이상의 소행성 충돌에서 비롯된 것으로 밝혀졌다. 상세한 컴퓨터 모델링에 따르면 코로니스와 마살리아 소행성군은 적절한 크기의 천체를 가지고 있으며 지구에 운석을 공급할 수 있는 위치에 있다. 특히 코로니스 소행성군의 '코로니스'와 '카린'은 H 콘드라이트의 주요 공급원일 가능성이 높으며 마살리아(L)와 플로라(LL) 계열은 L- 및 LL- 콘드라이트의 주요 공급원이다. 마셋이 주도한 연구는 마살리아에서 발견된 L 콘드라이트 운석의 기원에 대해 자세히 설명한다. 연구팀은 화성과 목성 사이의 소행성대에서 분자의 지문이 될 수 있는 특징적인 빛의 세기인 분광 데이터를 수집했다. 그 결과 지구에 있는 L 콘드라이트 운석의 구성이 마살리아 소행성 계열의 운석과 매우 유사하다는 사실이 밝혀졌다. 그런 다음 과학자들은 컴퓨터 모델링을 사용하여 약 4억 7000만 년 전에 발생한 소행성 충돌이 마살리아 소행성군을 형성했음을 보여주었다. 우연히도 이 충돌로 인해 스웨덴의 오르도비스기 석회암에서 풍부한 화석 운석이 발견되기도 했다. 이러한 연구 결과는 지구에 떨어지는 운석의 기원을 밝히고 태양계 형성 과정에 대한 이해를 높이는 중요한 역할을 한다. 또한 향후 운석의 기원 소행성을 탐사하는 임무의 기초 자료로 활용될 수 있을 것으로 기대된다.
-
- IT/바이오
-
[우주의 속삭임(73)] 지구에 떨어지는 운석, 대부분 '같은 곳'에서 왔다?
-
-
[기후의 역습(75)] 2024년 북극 해빙, 사상 최저치 기록…지구 위기 심화
- 북극과 남극은 2024년 대규모의 빙하를 잃었으며, 북극 해빙(바다위 빙하)은 기록상 7번째로 낮은 수준에 도달했다고 사이테크데일 리가 전했다. 극지방 얼음의 지속적인 감소는 얼음 반사에 의해 일어나는 광범위한 생태계 변화와 지구 온난화를 심화시킨다. 북극 해빙은 지난 여름 북반구에서 거의 역사적으로 가장 낮은 수준으로 후퇴, 지난 9월 11일 올들어 최소 수준으로 녹았다. 이는 나사(NASA) 및 국립 눈과 얼음 데이터 센터(NSIDC: National Snow and Ice Data Center)에서 밝혀낸 것으로, 수십 년 동안 지속되어 온 북극해의 얼음 감소 추세를 극명하게 드러내고 있다. 북극 해빙은 연중 계절 변화에 따라 확장과 수축을 반복한다. 전문가들은 이러한 변화를 관측해 북극이 기온과 해수 온도 상승, 계절에 따른 얼음의 변화를 추적한다. 지난 46년 동안 위성에서 수집한 데이터 관측은 일관된 패턴을 보여준다. 여름철에는 당연히 더 많이 녹고 겨울철에는 얼음 형성이 과거에 비해 크게 줄어들었다는 사실이다. ◇ 북극 해빙 감소의 영향 해빙 변화를 실시간 추적한 결과, 극지 야생동물 서식지의 손실과 변화부터 북극 지역사회와 국제무역로에 미치는 영향에 이르기까지 광범위한 영향이 드러났다. 올해 북극 해빙은 최소 428만 평방킬로미터까지 줄었다. 이는 1981~2010년 여름이 끝날 무렵의 평균인 622만 제곱킬로미터보다 약 194만 제곱킬로미터 정도 줄어든 수치다. 이는 알래스카주보다 더 넓은 면적이다. 해빙 면적은 얼음 비중이 최소 15% 이상인 바다의 총면적을 말한다. 참고로 알래스카 주는 미국에서 가장 큰 주이며 서울 면적의 약 770배, 한반도 전체 면적의 약 7.7배에 달하는 엄청난 크기이다. ◇ 해빙의 추세와 측정 위성 기록에서 7번째로 낮았던 올해의 최소치는 2012년 9월에 기록된 역대 최저치인 339만 제곱킬로미터보다 높은 수준이었다. 해빙 면적은 해마다 변동이 있을 수 있지만, 1970년대 후반 위성의 기록이 시작된 이후 감소 추세를 보였다. NSIDC에 따르면, 그 이후로 해빙 손실은 연간 약 7만 7800제곱킬로미터에 달했다. 과학자들은 현재 미국 국방기상위성 프로그램의 위성에 탑재된 수동 마이크로파 센서 데이터와 나사 및 국립해양대기청(NOAA)이 공동으로 운영하는 님버스-7 위성의 과거 데이터를 사용해 해빙 범위를 측정한다. 나사 고다드 우주비행센터의 빙하권 과혁연구실 소장인 네이선 커츠는 해빙이 줄어들 뿐만 아니라 점점 젊어지고 있다고 지적한다. 커츠는 "현재 북극해의 얼음 대부분은 얇으며 1년차 얼음으로, 더운 계절을 견뎌내기 어렵다. 3년 이상 된 얼음은 훨씬 적다"고 말했다. 위성의 우주 고도계로 수집한 얼음 두께 측정 결과, 가장 오래되고 두꺼운 얼음의 대부분이 이미 사라졌다. 나사의 제트추진연구소에서 실시한 새로운 연구에 따르면 해안에서 멀리 떨어진 북극 중앙의 가을 해빙은 현재 두께가 약 1.3m로, 1980년의 최고치인 2.7m에 비해 크게 얇아졌다. ◇ 남반구의 얼음 상태도 위험 남극 지역의 해빙도 2024년에 낮아졌다. 과학자들은 남반구의 가장 어둡고 추운 계절, 얼음이 광범위하게 늘었어야 할 시기에 해빙이 기록적으로 낮았음을 발견했다. 남극 대륙 주변의 얼음은 지난 9월 19일 올해 최대 면적에 도달했을 가능성이 높다. 그 때를 기준한 얼음의 증가는 1716만 제곱킬로미터에서 멈췄다. 올해의 최대 얼음 면적은 위성 기록 기존으로 두 번째로 낮았으며 지난해 9월에 기록된 겨울철 최저 기록인 1696만 제곱킬로미터보다 높았다. 1981~2010년 사이의 평균 최대 면적은 1871만 제곱킬로미터였다. 2024년의 미미한 증가는 최근의 하락 추세를 연장하고 있다. 2014년 이전까지만 해도 남극의 해빙은 10년마다 약 1%씩 증가하고 있었다. 2014년 이후 얼음 성장은 급격히 감소했다. 과학자들은 이런 역전의 원인을 파악하는데 주력하고 있다. 이어지는 얼음 손실은 남극해의 상황이 장기적으로 변하고 있음을 암시하며, 이는 전 지구적 기후 변화로 인한 것으로 보인다. 남극해에 지구 온난화가 본격화되고 있는 것이다. 북극과 남극 모두에서 얼음 손실이 상황을 악화시키고 있다. 해빙은 태양 에너지의 대부분을 우주로 반사하는데, 얼음이 녹은 바닷물은 태양빛의 90%를 흡수하기 때문이다. 햇빛에 노출된 바다가 많아질수록 수온이 상승하고 해빙 성장은 더욱 지연된다. 해빙 손실은 북극의 열을 올리고 있으며, 북극의 기온은 전 세계 평균의 약 4배 상승했다.
-
- 포커스온
-
[기후의 역습(75)] 2024년 북극 해빙, 사상 최저치 기록…지구 위기 심화
-
-
[우주의 속삭임(72)] 화성, 얼음 아래 생명체 존재 가능성⋯NASA 연구 결과 발표
- 화성에 과연 생명체가 존재할 수 있을까? 화성은 태양계에서 지구와 가장 닮은 행성으로, 붉은색 표면과 극지방의 만년설, 과거 물이 흘렀던 흔적 등 다양한 특징을 가지고 있다. 화성은 표면에 산화철이 풍부해 붉게 보인다. 이 때문에 '붉은 행성'이라는 별명을 가지고 있다. 과거에 물이 존재했던 흔적이 발견되면서 생명체가 존재했거나, 존재할 가능성이 제기되고 있다. 미국 항공우주국(나사·NASA)은 최근 홈페이지를 통해 화성 표면의 얼음 아래에 미생물이 서식할 수 있는 환경이 조성될 수 있다는 가능성을 제시했다고 밝혔다. NASA 연구진은 컴퓨터 모델링을 통해 화성의 얼음을 투과하는 햇빛의 양이 얼음 아래 얕은 물웅덩이에서 광합성을 일으키기에 충분하다는 것을 보여주었다. 지구에서도 얼음 내부에 형성된 유사한 물웅덩이에서 조류, 균류, 미세한 시아노박테리아(남조류) 등 광합성을 통해 에너지를 얻는 다양한 생명체가 발견됐다. 이 연구의 주요 저자인 NASA 제트추진연구소의 아디티아 쿨러는 "우주 어딘가에서 생명체를 찾고 있다면, 화성의 얼음층은 가장 근접하기 쉬운 장소 중 하나일 것"이라고 말했다. 화성 먼지 쌓인 얼음층 주목 연구진은 화성의 먼지가 섞인 얼음층에 주목했다. 나사에 따르면 화성에는 얼어붙은 물과 얼어붙은 이산화탄소라는 두 가지 얼음이 존재한다. 쿨러와 그의 동료 연구진은 네이처 커뮤니케이션즈 지구와 환경(Nature cummunications Earth & Environment)에 게재된 논문에서 과거 수백만년 동안 화성의 빙하기에 눈과 먼지가 섞여 표면에 떨어져 형성된 얼음층을 조사했다. 먼지 입자는 깊은 곳까지 햇빛이 도달하는 것을 막을 수 있지만, 표면 근처에서는 햇빛을 흡수해 얼음을 녹이고 얕은 웅덩이를 만들 수 있다. 지구에서도 먼지가 섞인 얼음에서 '크라이오코나이트(Cryconite) 구멍' 이라는 작은 공간이 형성되는 현상이 흔히 관찰된다. 바람에 날린 먼지 입자가 얼음에 쌓이고 햇빛을 흡수하면서 얼음이 녹아 물 웅덩이가 만들어지는 것이다. 어두운 먼지는 주변 얼음보다 더 많은 햇빛을 흡수해 얼음이 따뜻해지고 표면 아래 몇 피트까지 녹을 가능성이 있다. 이러한 물웅덩이는 조류 등 단순한 생명체에게 생존에 필요한 환경을 제공한다. 연구진은 이러한 현상이 화성에서도 일어날 수 있으며, 먼지가 섞인 얼음층 아래 3m 깊이까지 광합성이 가능할 정도의 햇빛이 도달할 수 있다고 분석했다. 또한, 얼음층은 얕은 물웅덩이의 증발을 막고 유해한 방사선으로부터 생명체를 보호하는 역할도 할 수 있다. 연구진은 화성의 북반구와 남반구의 위도 30도에서 60도 사이 지역에서 이러한 얼음층이 존재할 가능성이 높다고 예측했다. 쿨러는 앞으로 실험실에서 화성의 먼지가 섞인 얼음을 재현해 추가 연구를 진행하고, 화성에서 얕은 물웅덩이가 존재할 가능성이 높은 지역을 지도로 만들어 미래의 탐사 목표를 설정할 계획이다.
-
- IT/바이오
-
[우주의 속삭임(72)] 화성, 얼음 아래 생명체 존재 가능성⋯NASA 연구 결과 발표
-
-
"우주인은 프라다를 입는다"…아르테미스 달 탐사복 제작
- 이탈리아의 고급 패션 브랜드 프라다(Prada)가 액시엄 스페이스(Axiom Space)와 손잡고 나사(NASA)의 아르테미스 III(Artemis III) 미션을 위한 차세대 우주복을 제작했다고 와이어드 등 전문 매체들이 전했다. 1972년 이후 최초의 달 착륙이라는 역사를 쓸 아르테미스 III은 우주인을 달 표면으로 다시 보내면서 장인 정신과 최첨단 우주 공학을 결합한 혁신적인 첨단 우주복을 선보일 예정이다. 프라다의 우주복 디자인 분야 진출은 프라다는 물론 항공 산업으로서도 중요한 이정표다. 프라다 브랜드는 오뜨 꾸뛰르(소수 고객층을 위한 맞춤 패션)의 대명사이지만, 이 파트너십은 완전히 새로운 기술적 도전에 적응할 수 있음을 보여준다. 프라다의 엔지니어들은 액시엄 스페이스와 협력해 내구성, 기능성 및 편안함을 향상시키는 새로운 우주복의 소재와 디자인을 개발할 계획이다. 아르테미스 III 미션에 대한 이들의 참여는 항공 우주 이외의 산업이 우주 탐사에 참여할 새로운 길과 가능성을 열어준 것이다. 프라다는 명품 산업에서 오랫동안 갈고 닦은 고성능 직물 제조의 전문 지식을 우주복에 적용하는 데 중점을 둔다는 목표다. 프라다 그룹 마케팅 이사인 로렌조 베르텔리는 우주복 제작의 의미를 "인류를 위한 프라다의 미래지향적인 정신이 모험에 대한 열망과 새로운 지평인 우주에 대한 도전으로 확대된 결과"라고 정의했다. 베르텔리는 "90년대 루나 로사가 아메리카스 컵에 도전하면서 시작된 수십 년간의 실험, 최첨단 기술 및 디자인 노하우가 이제 아르테미스 시대의 우주복 디자인에 적용될 것“이라고 설명했다. 프라다는 달의 혹독한 환경을 염두에 두고 온도 변화와 미세 운석 충돌을 포함한 극한의 달 환경을 견딜 수 있는 새로운 소재를 통합해 우주인의 이동성을 최적화한다는 구상이다. 이 우주복은 달 탐사 임무를 지원하도록 맞춤화된 차세대 우주복 계획인 액시엄 스페이스의 AxEMU(Axiom Extravehicular Mobility Unit) 프로그램의 일부다. 액시엄 스페이스의 CEO인 마이클 서프레디니는 "프라다의 원자재, 제조 기술, 혁신적인 디자인에 대한 기술적 전문성은 달 표면에서 우주인의 편안함뿐만 아니라 기존 우주복에는 없는 필수 인적 요소를 고려하는 첨단 기술을 제공할 것이다"라고 밝혔다. 우주복은 극한의 기온과 달의 거친 먼지를 포함한 달의 적대적인 환경을 견뎌야 한다. 이 요구 사항을 충족하기 위해 두 회사는 우주복이 극한 조건에서도 내구성을 유지하는 동시에 우주인이 작업을 보다 효율적으로 수행할 수 있도록 혁신적인 원단 기술을 개발하고 있다. 이 협업은 패션과 기술 양자의 관계에 새로운 장을 열 것으로 보인다. 프라다의 소재 혁신 및 디자인 전문성과 액시엄 스페이스의 우주 비행 기능에 대한 집중력이 결합돼 미래 우주복 디자인의 새로운 벤치마크를 만들 것이라는 기대다. 인간이 달로 눈을 돌리고, 화성과 같은 훨씬 더 먼 목적지를 목표로 삼으면서 이전에는 우주 탐사와 관련이 없었던 산업 간의 협업이 더 보편화될 수 있을 것이다. 프라다라는 럭셔리 브랜드의 영향력은 이제 지구를 넘어 확장되고 있다. 우주 탐사가 광범위하게 진행됨에 따라 두 회사의 하이테크 협업은 우주 여행의 미래에 예상치 못한 파트너가 참여할 수 있음을 보여 주었다.
-
- IT/바이오
-
"우주인은 프라다를 입는다"…아르테미스 달 탐사복 제작
-
-
[우주의 속삭임(71)] 나사, 태양 11년 주기의 극대기 도달
- 나사(NASA)와 국립해양대기청(NOAA), 국제 태양주기예측패널은 태양이 태양 극대기에 도달했으며, 이는 내년에도 지속될 수 있다고 발표했다. 발표의 자세한 내용이 나사 홈페이지에 게재됐다. 태양 주기는 태양이 낮은 자기 활동과 높은 자기 활동을 반복하면서 거치는 자연스러운 주기다. 대략 11년마다 태양 주기가 최고조에 달할 때 태양의 자기극이 뒤집힌다. 지구에서는 북극과 남극이 10년마다 자리를 바꾸는 것과 같으며, 태양은 고요한 상태에서 활동적이고 폭풍우가 몰아치는 상태로 전환된다. 나사와 NOAA는 태양 흑점을 추적해 태양 주기의 진행 상황을 파악하고 궁극적으로 태양 활동을 예측한다. 태양 흑점은 자기장 선이 집중돼 발생하는 태양의 차가운 영역이다. 태양 흑점은 태양의 활동 영역, 즉 태양의 강렬하고 복잡한 자기장 영역의 가시적 구성 요소로, 태양 폭발의 원천이다. 워싱턴 소재 나사 본부의 우주 날씨 프로그램 책임자인 제이미 파보스는 "태양 활동 극대기에는 흑점 수가 증가하고, 이에 따라 태양 활동량도 증가한다"면서 "활동의 증가는 가장 가까운 별에 대해 새로운 지식을 쌓을 수 있는 기회를 제공하는 동시에 지구와 태양계 전체에 실제적인 영향을 미친다"고 말했다. 태양 활동은 우주 날씨라고 알려진 우주의 조건에 큰 영향을 미친다. 이는 우주의 위성과 우주인, 라디오와 GPS 등 통신 및 항법 시스템, 지구의 전력망에 영향을 미칠 수 있다. 태양이 가장 활발할 때 우주 기상 현상이 더 빈번해진다. 태양 활동으로 인해 최근 몇 달 동안 오로라 현상이 증가했음은 물론 위성과 인프라에 영향을 미쳤다. 2024년 5월, 대규모 태양 플레어와 코로나 질량 방출(CME)이 일어나면서 하전 입자와 자기장 구름이 지구를 향해 발사돼 20년 만에 지구에서 가장 강력한 지자기 폭풍을 일으켰으며, 지난 500년 동안 기록된 가장 강력한 오로라가 하늘을 수놓았다. NOAA의 우주 기상 운영 책임자인 엘세이드 탈라트는 "지금이 이번 태양 주기에서 볼 수 있는 태양 활동의 정점이라는 것을 의미하지는 않는다"라고 말했다. 그는 "태양이 극대기에 도달했지만, 태양 활동이 정점에 도달하는 달은 몇 달 또는 몇 년 동안 확인되지 않을 것"이라고 언급했다. 태양 극대기의 정확한 정점을 여러 달 동안 결정할 수 없을 것이라는 의미다. 정점 이후 태양 활동이 지속적으로 감소한 것을 추적한 후에야 식별할 수 있게 된다. 다만 전문가들은 최근 2년이 태양 주기의 활동적인 단계의 일부였음을 확인했는데, 이는 이 기간 동안 태양 흑점이 지속적으로 많았기 때문이다. 학자들은 태양이 감소 단계에 들어가 태양 최소기로 돌아가기 전까지 최대 단계가 1년 정도 더 지속될 것으로 예상했다. 1989년부터 나사와 NOAA가 후원하는 전문가로 구성된 국제 패널인 태양 주기 예측 패널은 태양 주기에 대해 예측하기 위해 협력해 왔다. 천문학자들은 갈릴레오가 1600년대에 처음으로 흑점을 관찰한 이래 태양 주기를 추적해 왔다. 각 태양 주기는 다르다. 때로는 더 크고 짧은 시간 동안 최고조에 도달하고, 다른 경우에는 최고조가 더 작고 더 오래 지속되기도 한다. 지금까지 태양 주기에서 가장 강력한 플레어는 지난 10월 3일 발생한 X9.0이었다. X 등급 숫자는 강렬한 플레어의 단계를 나타낸다. NOAA는 이번 태양 극대기 동안 추가적인 태양 및 지자기 폭풍이 있을 것이며, 향후 몇 달 동안 오로라를 볼 수 있는 기회와 함께 기술 인프라에 대한 영향이 있을 것으로 예상했다. 나사와 NOAA는 우주 날씨 연구 및 예측의 미래를 준비하고 있다. 오는 12월, 나사의 파커 태양 탐사선 임무는 태양에 역사상 가장 가까이 접근해 관측을 수행하게 되는데, 이를 통해 우주 날씨를 더 깊이 이해할 수 있을 것으로 기대된다. 우주 날씨 예측은 나사의 아르테미스 미션에 참여하는 우주선과 우주인을 지원하는 데 필수적이다. 우주 환경을 탐사하는 것은 우주인이 우주 방사선에 노출되는 것을 막는 데 중요하다.
-
- IT/바이오
-
[우주의 속삭임(71)] 나사, 태양 11년 주기의 극대기 도달
-
-
[기후의 역습(72)] "지구 온난화 맞긴 맞는데"…통계가 드러낸 '불편한 진실'
- 최근 몇 년 동안 전 세계적으로 기록적인 폭염이 발생한 것을 감안하면 지구 온난화가 극심한 현실인 것으로 보인다. 통계학자를 포함한 국제 연구진이 이를 검증하는 연구를 진행했다고 전문 사이트 PHYS가 전했다. 연구진은 지난 반세기 동안 지구 온난화가 통계적으로 감지할 수 있는 속도로 증가했는지, 또는 급증했는지를 조사했다. 영국 랭커스터 대학교 통계학자와 미국 UC 산타크루즈 캠퍼스의 연구진이 주도한 국제 연구진에 따르면 지구가 점점 뜨거워지고 있는 것은 맞지만, 통계적으로 볼 때 안정적인 속도로 진행되고 있다는 결론이다. 통계적으로 '급속도'라고 정의할 수 있는 가속화된 속도는 아니라는 것이다. 이 연구 결과는 최근 커뮤니케이션스 지구와 환경(Communications Earth & Environment) 저널에 게재됐다. 최근 몇 년 동안 전 세계적으로 기록적인 기온과 폭염이 발생했다. 데이터에 따르면 2023년은 1850년 측정과 기록이 시작된 이래 가장 더운 해였다. 역사상 가장 더웠던 10년이 모두 최근 10년 동안 발생했다. 이러한 기록적인 온도는 지구 온난화 속도가 급증했는지에 대한 논쟁을 불러일으켰다. 일부 전문가는 최근 15년 동안 가속화되었다고 주장했다. 그러나 이번 연구진의 연구 결과는 '급증' 또는 '가속'이라고 정의할 수 있는 통계적 증거가 부족하다는 사실을 보여준다. 연구진을 이끈 UC 산타크루즈의 해양 과학부문 클로디 불뢰외 교수는 "최근 기록적인 온도가 발생한 것은 엄연한 사실이고 지구 온난화가 가속화되고 있을 가능성은 여전히 있다. 그러나 우리는 가속도의 규모가 통계적으로 너무 작거나 아직 강력하게 감지할 수 있는 충분한 데이터가 없다는 것을 발견했다"고 밝혔다. 연구진은 나사(NASA)와 미국해양대기청(NOAA) 등 지구 표면의 평균 온도를 추적하는 4대 주요 기관의 지구 표면 온도 평균을 엄밀하게 분석했다. 온도 추적은 1850년부터 시작됐다. NOAA에 따르면 1850년 이후 지구 온도는 10년마다 화씨 0.11도(0.0556℃)씩 상승했다. 연구는 기후 변화를 모니터링하기 위해 널리 사용하는 '지구 평균 표면 온도(GMST)'를 분석했다. GMST는 시간이 지남에 따라 상승하는 경향이 있는데, 주요 화산 폭발 및 엘니뇨 현상 등 지구 온도에 영향을 미치는 자연 현상으로 인해 장기적인 추세를 중심으로 변동하는 문제점도 보인다. 따라서 온난화 속도의 자연적 변동성과 진정한 근본적 변화를 구별하는 것은 통계학적 과제다. 연구진은 일시적인 변동이 상당 기간에 걸쳐 유지하면 온난화 급증을 통계적으로 감지할 수 있다고 간주했다. 온도 그래프의 기울기가 급격히 상승하고 상당 기간 유지되면 뚜렷하게 관측된다. 연구진은 단기 평균 온도 변동을 고려하고 다양한 통계적 방법을 사용, 조사 대상 연도의 온난화 증가 수준을 파악해 임계값을 결정했다. 임계치를 넘어서면 온난화가 '급속히' 진행되었음을 나타낸다. 연구진은 1970년대 이후 최근까지의 온도 기록 분석에 이 임계값을 적용, 온도 변화 추세가 임계치를 넘었는지 확인했다. 그 결과 임계값을 넘었던 해는 없었던 것으로 드러났다. 랭커스터 대학교의 레베카 킬릭 통계학 교수는 "일반적으로 사용되는 통계적 접근 방식을 적용해 보았을 때 온난화가 가속화되고 있다는 엄격한 통계적 증거는 없다"고 지적했다. 연구진은 분석 결과가 지구 온난화 급증의 한가운데에 있다는 통계적 증거를 보여주지는 않지만, 기후 변화의 현실까지 반박하는 것은 아니라고 강조했다. 보고서는 "지구는 인간 활동으로 인해 현재 가장 뜨겁다. 우리의 분석도 지구가 분명히 지속적으로 온난화되고 있음을 보여준다"고 지적했다.
-
- 포커스온
-
[기후의 역습(72)] "지구 온난화 맞긴 맞는데"…통계가 드러낸 '불편한 진실'
-
-
스페이스X, 스타십 5차 발사 성공…화성 탐사 새 역사 쓰나
- 일론 머스크가 이끄는 우주기업 스페이스X의 달·화성 탐사용 대형 우주선 '스타십(Starship)'이 13일(현지시간) 5번째 지구궤도 시험 비행에 성공했다. 특히 이번 시험비행에서는 '젓가락 팔' 기술을 이용해 로켓을 회수하는 데 성공, '스타십' 개발에 새로운 이정표를 세웠다. 해당 내용에 대해서는 스페이스닷컴. 아르스 테크니카 등 다수 외신이 자세하게 다루었다. 이날 오전 7시 25분(미 중부시간) 텍사스주 남부 보카치카 해변의 우주발사시설 '스타베이스'에서 발사된 '스타십'은 약 3분 만에 1단 로켓 추진체인 '슈퍼 헤비'와 분리됐다. 이후 약 7분 만에 '슈퍼 헤비'는 우주에서 지구로 돌아와 수직 착륙하는 데 성공했다. 이로써 스페이스X는 그동안 목표로 내걸었던 '슈퍼헤비 로켓 재활용'이 실현 가능해졌다. 스페이스X는 이 모든 과정을 온라인으로 생중계했다. '젓가락 팔' 기술 첫 시도⋯로켓 회수 성공 이번 시험비행에서 가장 주목할 만한 점은 발사탑의 '젓가락 팔'을 이용해 '슈퍼 헤비' 로켓을 회수하는 기술을 처음으로 시도했다는 것이다. '슈퍼 헤비'는 지상의 발사탑 쪽으로 근접하면서 엔진 역추진을 통해 속도를 줄였고, '젓가락 팔'은 마치 거대한 로봇팔처럼 '슈퍼 헤비'를 붙잡아 발사대에 안착시켰다. 스페이스X는 이 기술을 통해 로켓 재활용 및 비용 절감 효과를 기대하고 있다. 젓가락 팔로 로켓을 잡는 것만이 이번 비행의 유일한 목표는 아니었다. 스페이스X는 또한 높이 50m(165피트)의 우주선 2단부, 또는 간단히 우주선이라고 부라는 스타십의 상부 스테이지를 우주로 보내 인도양에 추락시켜 지구로 돌아오는 것을 목표로 삼았다. 2단부 우주선, 75분 비행후 지구 귀환 성공 슈퍼 헤비가 분리돼 젓가락 팔에 착지되는 동안 두 번째 목표였던 스타십의 2단부인 우주선도 약 75분동안 계획된 비행에 성공했다. 스타십 우주선은 시속 2만6225㎞ 안팎으로 고도 210㎞에 도달해 예정된 지구 궤도 항로를 비행한 뒤 발사 40여분간 지난 시점부터 고도를 낮추며 대기권에 재진입해 인도양 해역 목표 입수 지역에 착수(스플래시 다운), 폭발 없이 비행을 마쳤다. 앞서 스페이스X는 지난 6월 4차 시험 비행에서 스타십 상단 재진입에 이미 성공한 적이 있지만, 당시에는 기체가 많이 파괴됐었다. 이번 5번째 스타십 비행은 우주비행사가 탑승하거나 화물이 적재되지 않은 무인 비행이었다. 스페이스X는 지난해 4월과 11월, 올해 3월과 6월 등 네 차례에 걸쳐 스타십의 지구궤도 시험 비행을 시도했지만 모두 성공한 것은 아니었다. 지난해 두 차례 시험비행에서는 우주선이 발사 후 각각 4분, 10분 만에 폭발했다. 3번째 비행에서는 스타십이 약 48분 동안 비항하며 예정된 궤도에 도달했지만 목표 지점에 낙하하는 데 실패한 채 실종됐다. 지난 6월에 실시된 4차 비행에서는 스타십이 예정된 비행에는 성공했지만, 대기권에 재진입하는 과정에 기체가 심하게 손상됐다. 한편, 슈퍼헤비 로켓은 정상적으로 작동할 경우 추진력이 1700만 파운드에 달해 역대 가장 강력한 로켓으로 평가된다. 미국 항공우주국(나사·NASA)이 보유한 발사체 중 가장 힘이 센 '우주 발사 시스템(SLS·추진력 880만 파운드)'보다 2배 더 강력하다. 스페이스X는 앞으로 2단 우주선까지 완벽하게 회수해 재활용하는 것을 목표로 하고 있다. 머스크 CEO는 비행이 끝난 후 엑스(X·옛 트위터)에 "스타십이 목표 지점에 정확히 착륙했다"며 "두 가지 목표 중 하나가 달성됐다"고 밝혔다. 또한 "오늘 인류가 여러 행성에서 살수 있도록 하는데 중요한 진전을 이루었다"고 평가했다. 스페이스X는 인류가 달과 화성에 정착하게 하기 위해 스타십을 개발하고 있다. 나사는 이 우주선을 달에 인류를 보내려고 하는 '아르테미스' 프로젝트 3단계 임무에도 사용할 계획이다.
-
- IT/바이오
-
스페이스X, 스타십 5차 발사 성공…화성 탐사 새 역사 쓰나
-
-
[우주의 속삭임(70)] 달 내부에 녹은 암석층 존재 가능성…중력 측정 분석 결과 뒷받침
- 달의 지각 아래 내부 구조는 무엇으로 이루어져 있을까. 지구 내부에는 녹은 암석층이 존재하며, 이는 지표면의 지각판 운동을 일으키는 원인으로 알려져 있다. 과학자들은 그동안 달에도 지구처럼 핵과 고체 외층 사이에 녹음 암석층이 존재하는 지에 대한 연구를 진행해왔다. 미 항공우주국(나사·NASA) 고다드 우주 비행 센터와 애리조나 대학의 연구팀은 최근 지구와 태양의 중력에 대한 달의 반응을 분석한 결과, 달 내부의 깊은 곳에 녹은 암석층이 존재할 가능성을 뒷받침하는 새로운 증거를 제시했다. 해당 내용에 대해서는 사이언스얼라트와 스페이스닷컴 등이 보도했다. 이번 연구를 통해 지구의 바닷물이 달과 태양의 중력에 의해 주기적으로 상승하고 하강하는 것처럼, 달도 조석력의 영향을 받는다는 것이 밝혀졌다. 다만, 지구처럼 바다가 없기 때문에 달의 조석 현상은 미묘하지만 모양과 중력의 변화를 통해 확인할 수 있다. 연구 결과 달의 맨틀은 조수처럼 오르락내리락하는 두껍고 끈적끈적한 영역을 갖고 있는 것으로 드러났다. 달의 조석력에 반응하는 방식은 내부 구조와 밀접한 관련이 있다. 연구팀은 지구와 태양에 대한 달의 조석 반응으로 분석하면 표면 아래에 무엇이 있는 지 단서를 얻을 수 있다는 점에 주목했다. 기존 연구에서는 한 달 동안 달의 조석 변화를 측정했지만, 이번 연구에서는 나사의 위성 기반 GRAIL(Gravity Recovery and Interior Laboratory) 미션과 달 정찰 궤도선(Lunar Reconnaissance Orbiter)을 통해 1년 동안의 데이터를 수집했다. 연구팀은 달의 월별 및 연간 형태 변화, 중력장 변화, 평균 밀도 등의 정보를 종합해 내부 구조를 시뮬레이션했다. 그 결과 달의 맨틀 하부에 부드러운 층을 포함했을 때 관측된 중력 측정값을 더 정확하게 재현할 수 있었다. 이는 달 내부 깊은 곳에 점성을 가진 물질 층이 존재할 가능성이 높음을 시사한다. 연구팀은 달 내부의 이러한 녹은 층이 티타늄이 풍부한 광물인 일메나이트(ilmenite)로 구성되었을 것으로 추측하고 있다. 하지만 이 층의 열원이 무엇인지, 정확한 구성 성분은 무엇인지 등이 여전히 풀어야 할 과제로 남아 있다. 해당 연구는 AGU 어드밴시스(AGU Advances)에 게재됐다. 한편, 일메나이트는 티타늄과 철의 산화 광물로 화학식은 FeTiO3이다. 일메나이트는 티타늄의 주요 광석이며, 이산화 티타늄(TiO2) 생산의 주원료다. 이산화 티타늄은 페인트, 잉크, 플라스틱, 종이, 선크림, 식품, 화장품 등 다양한 분야에서 사용된다. 일메나이트는 러시아의 일멘 산맥에서 처음 발견되어, 이름이 붙여졌다. 아폴로 우주선이 가져온 달에서 채취한 암석에서 상당량의 일메나이트가 발견됐다.
-
- IT/바이오
-
[우주의 속삭임(70)] 달 내부에 녹은 암석층 존재 가능성…중력 측정 분석 결과 뒷받침
-
-
강력한 태양 폭풍으로 오로라 남하…캘리포니아·앨라배마서도 관측 기회
- 미국 국립기상청 우주 기상 예측 센터에 따르면, 강력한 태양 폭풍으로 인해 오로라가 10일(현지시간) 저녁에 평소에 나타나던 지역보다 훨씬 남쪽인 앨라배마와 북부 캘리포니아 등지에서도 나타날 것으로 보인다고 CNN 등 외신이 전했다. 허리케인과 유사하게 태양 폭풍은 레벨 1~5 단계로 분류되는데, 이번 폭풍은 레벨 4로 분류돼 대단히 강력한 것으로 예측됐으며 이로 인해 통신, 전력망 및 위성 운영을 방해할 수도 있다. 태양 폭풍은 현지시간 10일 오전 지구에 도달하며, 이는 11일까지 지속될 가능성이 높다고 센터는 밝혔다. 시속 400만km 이상의 속도로 지구를 향하는 폭풍의 강도와 전체 특성은 지구에서 160만km떨어진 궤도를 도는 심우주 기후관측소(Deep Space Climate Observatory)와 'Advanced Composition Explorer' 위성 관측을 통해 밝혀진다. 우주 기상 예측 센터는 이 위성이 폭풍의 속도와 자기 강도를 측정할 것이며, 폭풍은 우주 관측소에 도착한 후 15~30분 지나 지구에 도착할 것으로 예상했다. X급 플레어로 알려진 가장 강렬한 태양 플레어(태양 표면에서 일어나는 폭발)가 이번 주 태양에서 방출되었으며, 이 플레어는 8일의 코로나 질량 방출과 일치했다. 코로나 질량 분출은 태양의 외기권인 코로나에서 방출되는 플라스마와 자기장이라고 하는 이온화된 가스의 큰 구름이다. 강력한 폭발이 지구로 향하면 지자기 폭풍 또는 지구 자기장의 교란을 일으킬 수 있다. 이번 폭발은 대단히 강력한 것으로 측정됐다. 우주 기상 예측 센터에 따르면 지자기 폭풍은 지구 근처 궤도와 통신망 등 지구 표면의 인프라에 영향을 미칠 수 있다. 이에 따라 센터는 연방 비상관리청, 북미 전력망 및 위성 운영자들에게 교란 및 일시적 중단에 대비할 것을 통보했다. 역사적으로 레벨 4단계의 태양 폭풍은 흔하게 발생하지만, 지난 5월 10일 발생한 레벨 5단계 또는 극심한 지자기 폭풍은 매우 드물다. 센터는 이번 태양 폭풍이 5단계가 될 확률이 25%라고 말했다. ◆ 태양 활동의 증가 태양이 올해 예상되는 11년 주기의 정점인 태양 극대기에 가까워짐에 따라, 태양 활동은 더욱 활발해지고 있다. 전문가들은 불타는 태양에서 점점 더 강렬한 태양 플레어가 분출되는 것을 관찰했다. 태양 활동이 증가하면 지구의 극지방에서는 춤추는 오로라가 발생한다. 북극의 경우 이를 북극광 또는 오로라 보레알리스라고 하며, 남극은 남극광 또는 오로라 오스트랄리스라고 한다. 코로나 질량 분출로 인해 활성화된 입자가 지구 자기장에 도달하면 대기 중의 가스와 상호 작용해 하늘에 다양한 색상의 빛을 생성한다. 이 오로라는 최고의 관광 상품이기도 하다. 예측 센터 관계자는 눈에 보이는 오로라가 동부 및 중부 주와 중서부 남부에서 나타날 가능성이 높다고 판단하고 있다. 그러나 태양 폭풍이 지난 5월처럼 전 세계적인 오로라 현상을 일으킬지는 아직 알 수 없다고 밝혔다. 이번 태양 폭풍이 5단계로 올라가면 미국의 남부 주와 전 세계의 다른 지역에서도 오로라를 볼 수 있다. 미국 해양대기청(NOAA)은 센터의 오로라 대시보드를 이용해 내가 거주하는 지역에서 오로라를 볼 수 있을 것인지 확인할 것을 권했다. 대시보드는 지속적으로 업데이트되며 정보가 제공된 후 몇 분 이내에 오로라가 나타날 수 있는 위치를 보여준다. ◆ 교란 가능성 NOAA는 이번 태양 폭풍이 5월의 폭풍 수준을 능가할 것으로는 생각하지 않는다고 말했다. 지난해 이전에 지구를 강타했던 마지막 5단계 폭풍은 2003년으로, 스웨덴에서 정전이 발생했고 남아프리카에서는 변압기가 손상됐다. 지난 5월의 지자기 폭풍에서는 농기구 회사인 존 디어(John Deere)가 정밀 농업에 GPS를 사용하는 일부 고객이 교란을 겪었다고 보고했다. 그러나 대부분의 전력망과 위성은 적절한 관리로 문제를 일으키지 않았다. 전문가들은 태양 활동의 급증에 따라 신중한 모니터링을 이어가고 있다. 이번주 태양의 코로나 질량 분출 속도는 지금까지 이 태양 주기에서 측정된 가장 빠른 속도였다고 한다. 물론 이것이 '태양 활동의 최고점이 지금 발생하고 있다'는 의미는 아니다. 이전 태양 주기에서는 가장 큰 폭풍 중 일부가 최고점 이후에 발생할 수 있다는 것을 보여주고 있다. 센터는 "우리는 지금 태양 극대기의 중심에 있다. 정점에 도달했는지 아직 모른다. 올해 어느 시점이 될 수도 있고 내년 초가 될 수도 있다. 심지어 2026년 초까지 태양 주기 활동이 계속될 것이다"라며 지속적인 관심과 추적이 있어야 할 것이라고 지적했다.
-
- 포커스온
-
강력한 태양 폭풍으로 오로라 남하…캘리포니아·앨라배마서도 관측 기회
-
-
[우주의 속삭임(69)] 화성, 왜 생명체가 살 수 없게 됐나?
- 현재 화성의 게일 분화구를 탐사하고 있는 나사(NASA)의 탐사선 큐리오시티가 초기 화성의 기후가 생명체가 살기에 적합했던 상황(표면에 광범위한 물이 있다는 증거)에서 어떻게 생명체가 살기에 부적합한 곳으로 바뀌었는지에 대한 새로운 세부 정보를 제공하고 있다고 나사가 홈페이지를 통해 밝혔다. 화성 표면은 매우 차갑고 오늘날 생명체가 살기에는 부적합하지만, 전문가들은 나사의 화성 탐사선은 먼 과거에 화성에 생명체가 살았을 수 있는지에 대한 단서를 찾고 있다. 그런 가운데 연구진이 큐리오시티에 탑재된 장비를 이용해 게일 분화구에서 발견된 탄소가 풍부한 광물(탄산염)의 동위원소 구성을 측정했고, 화성의 고대 기후가 어떻게 변화했는지에 대한 새로운 정보를 찾아냈다. 메릴랜드주에 소재한 나사 고다드 우주비행센터의 데이비드 버트 박사는 최근 미국 국립과학원회보에 발표된 연구 논문에서 "이 탄산염의 동위원소 값은 극심한 양의 증발이 있었음을 알려주며, 탄산염은 일시적인 액체 상태의 물만을 지탱할 수 있는 기후에서 형성되었을 가능성이 높다“라고 말했다. 그는 "채취한 탄산염 샘플은 화성 표면에서 생명체가 살았던 고대 환경(생물권)과 일치하지는 않지만, 탄산염이 형성되기 전 생물권이 있었을 가능성을 배제하지는 않는다"고 덧붙였다. 즉, 화성은 탄산염이 생성되기 전 물이 풍부했을 때에는 생물권이 있었을 가능성이 있지만, 갑작스러운 액체 상태 물의 대규모 증발로 인해 물이 마르고 그 과정에서 탄소가 풍부한 탄산염이 만들어졌을 가능성이 있다는 것이다. 동위원소는 원자 번호는 같지만, 질량이 다른 원자를 말한다. 물이 급속도로 증발함에 따라 가벼운 탄소와 산소는 대기 중으로 빠져나가고, 무거운 탄소 원자는 남아 더 많은 양이 축적되어 결국 탄산염 암석과 결합됐다. 과학자들이 탄산염에 관심을 갖는 이유는 기후에 대한 기록, 즉 증거로 작용할 수 있기 때문이다. 이러한 광물은 물의 온도와 산성도, 물과 대기의 구성을 포함, 광물이 형성된 당시 환경의 특징을 그대로 보존한다. 이 논문은 게일 분화구에서 발견된 탄산염에 대한 두 가지 형성 가능성을 제안하고 있다. 첫 번째는 탄산염이 게일 분화구 내에서 일련의 습윤-건조 순환을 통해 만들어졌다는 것이다. 두 번째는 탄산염이 게일 분화구에서 극저온 조건 아래 매우 염분이 많은 물에서 형성됐을 것이라는 가능성이다. 공동 연구자인 나사의 제니퍼 스턴 박사는 "이러한 형성 메커니즘은 서로 다른 생명체 거주 가능성 시나리오를 제시하는 두 가지 다른 기후 체제를 보인다"며 "첫 번째 시나리오인 습윤-건조 순환은 더 살기 좋은 환경과 덜 좋은 환경 사이의 교차를 나타낸다. 반면, 두 번째 시나리오에서 화성 중위도의 극저온 기온은 대부분의 물이 얼어 있고 염분이 많아 거주 가능성이 낮은 환경을 보인다"고 말했다. 첫 번째 시나리오에서 생명체의 거주 가능성이 높음을 시사한다. 고대 화성에 대한 이 같은 기후 시나리오는 특정 광물의 존재, 대규모의 모델링 및 암석층 형성의 식별을 기반으로 제안됐다. 이 결과는 시나리오를 뒷받침하는 암석 샘플의 동위원소 증거를 추가한 최초의 결과다. 화성 탄산염의 중금속 동위원소 값은 지구의 탄산염 광물보다 매우 높으며, 화성 광물에서 기록된 가장 무거운 탄소 및 산소 동위원소 값이다. 연구진에 따르면 습윤-건조 또는 차갑고 염분이 많은 두 가지 기후 시나리오는 모두 중금속 탄소와 산소가 풍부한 탄산염을 형성하는 데 필요하다. 이 발견은 큐리오시티 탐사선에 실린 화성 샘플분석(SAM) 및 레이저분광기(TLS) 장비를 사용해 이루어졌다. SAM은 샘플을 섭씨 900도까지 가열한 다음 TLS를 사용해 가열 단계에서 생성되는 가스를 분석한다. 한편, 이 작업에 대한 자금 지원은 나사의 화성 탐사 프로그램을 통해 지원됐다.
-
- IT/바이오
-
[우주의 속삭임(69)] 화성, 왜 생명체가 살 수 없게 됐나?