검색
-
-
[기후의 역습(105)] 북극 툰드라, 이산화탄소 배출 근원지 부상
- 수천 년 동안 얼어붙은 토양에 이산화탄소를 저장해 온 북극 툰드라가 잦은 산불로 인해 대기 중으로 배출되는 탄소 공급원으로 변하고 있다. 이미 기록적인 수준의 열을 가두는 화석연료 오염을 흡수하고 있다고 NOAA(미국 해양대기청)가 홈페이지를 통해 밝혔다. 북극이 탄소 흡수원에서 탄소 공급원으로 전환되는 변화는 NOAA의 ‘2024년 북극 보고서’ 기록에서 그대로 나타나고 있다. 보고서는 기후 변화로 인해 식물 및 야생 동물과 이에 의존하는 사람들은 따뜻하고 습하며 불확실한 환경에 신속하게 적응해야 할 것이라고 권고한다. NOAA 관리자 릭 스핀라드 박사는 "관측 결과 온난화와 산불 증가로 인해 북극 툰드라는 현재 저장하는 것보다 더 많은 탄소를 배출하고 있으며, 이는 기후 변화의 영향을 악화시킬 것"이라고 말했다. 또 "이는 과학자들이 얘축헌 화석연료 오염을 적절히 줄이지 않는 결과의 또 다른 신호"라고 설명했다. 11개국의 과학자 97명이 참여한 2024년 북극 보고서의 새로운 연구는 북극 지역의 육지와 바다를 포함, 북극에서 발생하는 지속적인 변화의 근간이 되는 기록적인 관찰 결과를 보여준다. 여기에는 ▲계속되는 높은 기온과 산불 ▲대규모 내륙 순록 무리의 감소 ▲강수량 증가 등이 지적되고 있다. 강수량 증가의 경우 눈이나 비가 많이 내리면서 풍경이 얼음으로 뒤덮여 사람들의 여행과 야생 동물의 먹이 활동을 어렵게 만든다. 관찰 결과는 또 사람, 식물, 동물에게 지역 및 지역 환경 변화를 예측하기 어렵게 만드는 뚜렷한 지역적 차이도 보여주고 있다. 보고서 편집자인 국립 눈과 얼음 데이터 센터(National Snow and Ice Data Center)의 트와일라 문 박사는 "올해의 보고서는 기후 조건이 빠르게 변화함에 따라 적응이 시급하다는 것을 보여준다"라고 말했다. 2024년 북극 보고서의 결과는 주목할만한 결과를 다수 보여주고 있다. 먼저 북극의 연간 표면 기온은 1900년 이후 두 번째로 높았다. 2023년 가을과 2024년 여름은 북극 전역에서 특히 따뜻했으며, 기온은 각각 역대 2위와 3위였다. 2024년 8월 초의 폭염으로 인해 알래스카 북부와 캐나다의 여러 지역에서는 역대 최고의 일일 기온을 기록했다. 또 지난 9년은 북극에서 기록상 가장 따뜻한 9년이었다. 이로 인해 2024년 여름은 북극 전역에서 기록상 가장 많은 비가 내렸다. 바다의 변화도 심각했다. 2024년 9월 극지방에 큰 영향을 미치는 북극 해빙의 범위는 위성 기록이 시작된 45년 동안 여섯 번째로 낮았다. 해빙 범위가 가장 낮았던 18곳은 모두 지난 18년 동안 발생했다. 얼음이 없었던 8월의 북극해 지역은 1982년 이후 10년마다 섭씨 0.3도의 속도로 온난화되었다. 북극해의 얕은 바다에서 8월 평균 해수면 온도는 1991~2020년 평균보다 섭씨 2~4도 더 높았다. 해양 먹이 사슬의 기반인 플랑크톤은 2003~2024년 전체적으로 계속 증가하고 있다. 산불 활동 증가의 영향을 포함하면 북극 툰드라 지역은 토양에 탄소를 저장하는 기능에서 대기의 탄소 공급원으로 전환되었다. 2003년 이후 산불로 인한 탄소 배출량은 연평균 2억 700만 톤에 달했다. 알래스카 영구 동토층 온도는 기록상 두 번째로 높았다. 북극 이주 툰드라 순록 개체 수는 지난 2~30년 동안 65% 감소했다. 규모가 작은 서부 북극의 해안 순록 무리는 지난 10년 동안 어느 정도 회복세를 보였지만, 대규모 내륙 순록 무리는 장기적으로 감소세를 지속하거나 가장 낮은 개체 수에 머물러 있다. 순록에 대한 여름 더위의 영향은 향후 25~75년 동안 확대될 것으로 예상된다. 2023~2024년 겨울 동안 유라시아와 북미 북극 지역 적설량은 평균 이상이었다. 평균 이상의 적설량에도 불구하고, 눈 시즌은 중부와 동부 북극 캐나다 일부 지역에서 26년 만에 가장 짧았다. 북극에서 눈이 녹는 시기는 5월과 6월 내내 과거에 비해 1~2주 일찍 발생했다. '기온 상승으로 인한 관목 지대 확장'을 측정하는 툰드라 녹색도는 25년 동안의 위성 기록에서 2위를 차지했다. 알래스카 생물학 연구(Alaska Biological Research)의 제럴드 프로스트 박사는 "우리가 추적하는 북극의 생명 징후 중 상당수는 거의 매년 기록적인 최고치 또는 최저치에 도달하거나 근접하고 있다"면서 "이는 최근의 극단적인 현상이 기후 시스템의 일시적 변동성이 아니라 장기적이고 지속적인 변화의 결과라는 것을 나타낸다"라고 우려했다.
-
- ESGC
-
[기후의 역습(105)] 북극 툰드라, 이산화탄소 배출 근원지 부상
-
-
[기후의 역습(39)] 그린란드 빙상서 화석 발견…빙하 상실로 해수면 상승 위험 증가
- 그린란드 빙상은 과거에도 녹았었지만 기후가 따뜻해짐에 따라 앞으로는 더 빠른 속도로 녹을 것으로 보인다. 과학자들은 이로 인해 해수면이 6~7.6m까지 상승할 수 있다고 경고한다. 그런 가운데, 지난 110만 년 동안 한 때 따뜻한 시기에 그린란드의 거대 빙하 가장자리가 아닌 중심부가 녹아 내렸고, 다양한 곤충과 식물의 서식지였던 건조하고 척박했던 툰드라 지형이 바뀌었다는 새로운 연구 결과가 나와 주목된다고 CBS뉴스가 보도했다. 이 연구 결과는 미국 국립과학원 회보에 게재됐다. 빙하가 처음 녹기 시작했을 때 대기 중 온실 가스 농도는 오늘날보다 낮았다. 과학자들은 대기 중 이산화탄소가 더 많이 발생하면서 그린란드의 빙하가 이전에 생각했던 것보다 더 쉽게 녹을 것으로 우려하고 있다. 새로운 연구를 공동으로 수행한 버몬트 대학교의 폴 비어먼 박사팀은 "그린란드는 270만 년 동안 빙하가 존재해 왔지만, 이제 그 빙하가 취약해져 깨질 수 있다는 증거가 나왔다"고 밝혔다. 연구팀은 2014년부터 그린란드 빙상 아래에서 다양한 물질을 수집해 연구를 진행해 왔다. 그들은 거의 30년 전, 빙하의 중심부 표면 아래 3.2km 떨어진 곳에서 추출한 GISP2라고 불리는 빙핵 바닥의 퇴적물을 조사했다. 분석 결과 퇴적물 샘플에는 그린란드의 과거에 대한 정보와 단서들로 가득 차 있었다. 현미경으로 들여다 본 샘플의 작은 검은 반점에서는 곤충의 눈, 북극 양귀비 씨앗, 북극 버드나무 조각, 토양 곰팡이와 이끼의 작은 부분들이 발견됐다. 이들은 여러 화석들로, 비어먼은 이를 "얼음 아래에 얼어붙은 생물 생태계"라고 불렀다. 이 화석은 빙하의 90%가 한때 사라졌었다는 것을 직접적으로 확인해 준다고 한다. 비어먼은 "일단 빙상의 중심을 잃게 되면 모든 것을 잃게 되는데, 빙상의 중심에서 이 화석들을 발견한 것은 그린란드의 얼음이 과거에 사라졌었다는 명백한 증거"라고 말했다. 이 발견은 이른바 '취약한 그린란드'라는 가설을 뒷받침한다. 비어먼은 인간의 영향을 받지 않는 자연이 빙하가 형성된 이후 적어도 한 번은 녹은 적이 있다고 말했다. 65만6000평방마일의 그린란드 빙하는 현재 섬 전체의 약 80%를 덮고 있다. 이는 미국 텍사스주의 약 3배에 달하는 면적이다. 그린란드의 얼음 손실을 지도로 만든 나사(NASA)는 이 빙하가 지난 몇 년 동안 빠르게 감소했으며, 이로 인해 지구 해수면이 연간 약 0.03인치(약 0.0762cm) 상승했다고 밝혔다. 비어먼에 따르면 그린란드의 녹는 얼음은 현재 해수면 상승의 첫번째 주요 원인이다. 비어먼은 그린란드 얼음 전체가 녹기까지는 수천 년이 걸릴 수 있지만, 그 결과는 매우 끔찍할 것이라고 경고했다. 수억 명의 사람들이 집과 사업을 잃을 수 있고, 유서 깊거나 아름다운 도시를 포함해 엄청난 면적의 땅이 사라질 수 있다는 것이다.
-
- 포커스온
-
[기후의 역습(39)] 그린란드 빙상서 화석 발견…빙하 상실로 해수면 상승 위험 증가
-
-
도요타 미국내 가솔린차 증산위해 5억 달러 투자
- 일본 도요타자동차는 21일(현지시간) 도요타 툰드라 픽업트럭과 세쿼이아 SUV를 생산하는 미국 텍사스 공장에 모두 5억3170만달러(7250억원)를 투자할 계획이라고 밝혔다. 이날 로이터통신 등 외신들에 따르면 도요타 북미부문은 도요타 툰드라 픽업트럭과 세쿼이아 SUV를 생산하는 텍사스 공장에 이같은 규모의 투자를 할 계획이라고 밝표했다. 도요타는 수요 증가추세가 정체된 EV 대신 마진 확보가 보다 나은 하이브리드 및 가솔린 구동 차량에 대한 투자에 다시 집중하고 있다. 도요타는 새 공장을 짓고 411개의 일자리를 추가하며 텍사스주 샌안토니오에 있는 기존 공장을 확장할 계획이라고 밝혔다. 도요타는 2003년부터 샌안토니오 공장에 42억 달러를 투자해 2006년부터 생산을 시작했으며 현재 이 공장에 3700명 이상의 직원을 고용하고 있다. 한편 닛산 자동차는 미국에서 EV 라인업을 5개 차량으로 확장하는 동시에 배터리 구동 세단 모델의 개발은 중단하고 SUV의 출시를 서둘 것이라고 말했다. 미국 시장용 라인업에는 배터리 구동식 크로스오버 SUV도 포함된다. 크로스오버 SUV 및 픽업트럭은 미국인들이 세단 및 기타 형태보다 선호하는 차량형태이다. 회사는 또 미시시피주 캔톤 공장이 차세대 차량 제조를 지원할 것이라고 밝혔다.
-
- 산업
-
도요타 미국내 가솔린차 증산위해 5억 달러 투자
-
-
그린란드 빙하서 자라는 식물, 온실가스 배출 '위험'
- 기후 전문가들이 그린란드의 빙하 지역에서 발견된 식물 생장에 대해 우려를 표명했다. 이는 그린란드 전역에서 메탄을 배출하는 습지 지역이 거의 4배나 증가했기 때문이다. 영국 일간지 가디언은 지난 13일(현지시간), 그린란드의 녹아내린 빙하 지역에서 식물이 자라고 있으며, 이것이 온실가스 배출 증가, 해수면 상승, 그리고 지형의 불안정성 증가 위험을 초래한다고 보도했다. 한 연구는 1980년대 이후의 변화를 기록해, 광범위한 지역에서 얼음이 불모의 암석, 습지, 관목의 성장으로 대체되었으며 이로 인해 환경에 중대한 변화가 일어났음을 보여줬다. 위성 자료 분석 결과, 지난 30년 간 그린란드의 빙상과 빙하에서 약 1만1000 평방마일의 얼음이 녹아내렸다. 이는 알바니아의 국토 면적과 비슷하며 전체 얼음 면적의 1.6%에 해당하는 양이다. 위성 기록을 분석한 결과, 지난 30년 동안 그린란드 빙상과 빙하의 약 1만1000평방마일(약 3327만5000평)이 녹았다. 이는 알바니아 크기와 맞먹고 전체 얼음 면적의 1.6%에 해당하는 규모다. 그린란드에 얼음이 사라지면서 식물이 자라는 땅의 크기는 3만3774평방마일로 증가했는데, 이는 연구가 시작되었을 때 면적의 두 배가 넘는다. 특히, 그린란드 전역에서 습지의 면적이 거의 4배 증가했으며, 이러한 습지가 메탄 배출의 주요 원인으로 지목되고 있어 우려의 대상이 되고 있다. 습지 식생의 밀도가 높아진 주요 지역은 남서쪽에 위치한 캉게르루스수아크(Kangerlussuaq, 그린란드에서 가장 큰 공항이 위치한 지역) 인근과 북동쪽의 고립된 지역에서의 밀집도가 특히 높게 나타났다. 과학자들은 기온 상승으로 인해 얼음이 녹고 있으며, 1970년대 이후로 이 지역의 온도 상승률이 전 세계 평균의 두 배에 달한다고 밝혔다. 또한, 2007년부터 2012년 사이의 그린란드의 연평균 기온은 1979년부터 2000년까지의 평균 기온보다 3도 높았다. 또한, 식물의 증가가 얼음 손실을 가속화하는 것으로 보이는 연구 결과도 발표됐다. 이번 연구의 공동 저자이자 리즈 대학의 지구 과학자 조나단 캐리빅(Jonathan Carrivick)은 '사이언티픽 리포트(Scientific Reports)' 저널에 얼음 손실이 추가적인 얼음 손실을 유발하는 연쇄 반응을 일으키는 징후를 관찰했다고 밝혔다. 그는 얼음이 감소하면서 맨 암석이 드러나고, 이어서 툰드라와 관목이 자라나면서 그린란드의 '녹화' 현상이 진행되고 있다고 설명했다. 그와 동시에, 녹아내리는 얼음으로부터 방출되는 물은 침전물과 토사를 이동시키며, 결국에는 습지와 축축한 지역을 형성한다고 주장했다. 연구팀은 연구 결과를 활용해 미래에 변화가 예상되고 그 변화의 속도가 빨라질 수 있는 그린란드 지역을 예측하고, 이러한 상황을 지속적으로 모니터링하기 위한 모델을 개발했다. 이번 연구의 주요 저자인 마이클 그라임스(Michael Grimes) 박사는 "빙하 및 빙상의 후퇴와 함께 발생하는 식생의 확장은 연안 해역으로의 퇴적물과 영양분 유입을 크게 변화시키고 있다"고 우려했다. 이 변화는 전통적인 수렵 생활을 유지하는 원주민 인구에게 특히 중대한 영향을 미친다. 이들은 섬세한 생태계의 안정에 크게 의존하고 있다. 또한, 그라임스 박사는 그린란드의 얼음 손실이 전 세계 해수면 상승에 상당한 영향을 주고 있으며, 이는 현재뿐만 아니라 미래에도 심각한 문제를 야기할 것이라고 주장했다.
-
- 산업
-
그린란드 빙하서 자라는 식물, 온실가스 배출 '위험'
-
-
플라스틱 먹는 '효소' 연구 활성화⋯고비용 과제
- 플라스틱을 먹는 효소가 개발이 활성화돼 폐플라스틱 처리에 힘을 보탤 전망이다. 환경오염 주범으로 꼽히는 지구를 뒤덮은 폐플라스틱을 재활용하기 위해 수 많은 연구팀들은 다양한 해결책을 찾고 있다. 특히, 벌집나방 애벌레와 같은 생물학적 자원 활용은 소각이나 매립보다 환경친화적으로 플라스틱을 처리하는 유용한 도구가 될 수 있다. 미국 생화학·분자 생물학 매거진 'ASBMB 투데이'에 따르면, 스페인 생물학자 페데리카 베르토치니(Federica Bertocchini)는 약 10년 전 벌집나방의 애벌레가 플라스틱의 일종인 폴리에틸렌을 먹어 치운다는 사실을 발견했다. 폴리에틸렌은 플라스틱 용기 등을 만드는 데 흔하게 이용되지만, 잘 분해 되지 않는 특성이 있어 폐기가 어렵다는 단점이 있다. 최근 과학자들은 매립지나 자동차폐차장 등을 찾아다니면서 플라스틱을 분해할 수 있는 유기체를 찾고 있다. 이를 채취해 플라스틱의 구성 요소를 회수하는 효율적인 방법을 찾길 기대하고 있는 것. 이후 새로운 재료를 조합해 ‘무한 재활용’이 가능하도록 한다는 계획이다. 영국 포츠머스대 효소혁신센터 존 맥기한(John McGeehan)은 "놀랍게도 전 세계의 수백 개 그룹과 수천 명의 과학자들이 이 문제를 연구하고 있다"고 설명했다. 폐플라스틱, 환경오염 주범 플라스틱은 1950년대 들어 본격적으로 생산됐고 생산량도 급증했다. 매년 약 4억6000만 톤에 가까운 플라스틱이 생산되는 것으로 추정된다. 하지만 이렇게 생산된 플라스틱은 아쉽게도 소각하거나 매립지에 묻히고 있다. 플라스틱은 지구상의 심해나 극지방을 비롯해 비를 타고 내려오거나, 심지어 태반이나 모유, 사람의 혈액에서도 흔적이 보고 되는 등 우리 눈에 보이지 않는 구석구석까지 침투했다. 이처럼 플라스틱은 건강과 환경 문제와 직접 연결되어 있다. 그럼에도 수요는 줄어들지 않고 있으며, 생산량은 오는 2050년까지 10억 톤을 넘길 것으로 예상된다. 플라스틱은 가볍고, 형태를 잡기 쉬운 특성 때문에 이를 대체할 마땅한 소재가 없기 때문이다. 현실적으로 모든 플라스틱을 교체하거나 재활용할 수 없다는 점에서 차선책은 덜 만드는 것이다. 또 약 9%에 불과한 전 세계 플라스틱 재활용률을 높이는 것이 과제다. 하지만, 재활용 과정에서 유해한 화학물질을 흡수할 수 있으며, 수천 가지의 플라스틱 유형에는 각각 고유한 구성과 화학 첨가물이나 착색제가 들어 있어 대다수는 재활용할 수 없는 것이 문제다. 효소 재활용 회사 버치 바이오사이언스(Birch Biosciences) 공동 창립자이자 합성 생물학자인 요한 커스(Johan Kers)는 "우리는 심각한 플라스틱 순환성 문제를 안고 있다"며 "알루미늄과 종이 등은 재활용할 수 있지만 플라스틱 재활용은 힘들다"고 지적했다. '자연'에서 착안한 '효소' 주목 캘리포니아대학교 버클리 캠퍼스 고분자 과학자 팅 쉬(Ting Xu)는 "효소를 통한 접근법은 폐플라스틱을 폐기물의 원천이 아닌 귀중한 자원으로 전환시킬 수 있다"고 설명했다. 이미 1970년대에 플라스틱을 먹는 효소에 대한 연구가 시작됐다. 그러다가 2016년 일본 과학자팀이 사이언스 학술지에 플라스틱을 먹는 획기적인 박테리아의 새로운 변종에 대한 논문을 발표하면서 효소 연구에 다시 불을 지폈다. 교토공과대학 미생물학자 코헤이 오다(Kohei Oda)가 이끄는 연구팀은 이데오넬라 사카이엔시스(Ideonella sakaiensis) 201-F6이라고 불리는 미생물이 음료수병과 섬유에 널리 사용되는 폴리에스터인 PET 플라스틱을 주요 에너지와 식품 공급원으로 사용한다는 사실을 발견했다. 그 이후로 과학자들은 독일 라이프치히 묘지의 퇴비 더미, 그리스 하니아(Chania) 해변 등 전 세계 여러 장소에서 플라스틱을 먹는 미생물을 발견했다. 그리고 바다, 북극 툰드라 표토, 사바나 및 다양한 숲을 포함한 환경에서 자유롭게 떠다니는 DNA에서 발견된 2억 개 이상의 유전자에 대한 대규모 분석을 통해 플라스틱 분해 가능성이 있는 3만 개의 다양한 효소가 있다는 것을 찾아냈다. 맥기한은 콜로라도를 포함해 다른 지역의 국립 재생 에너지 연구소(National Renewable Energy Laboratory)의 동료들과 함께 이데오넬라 사카이엔시스의 플라스틱 섭취 능력을 담당하는 두 가지 효소를 조작해 성능을 높이고 연결해 플라스틱을 분해할 수 있는 효소 칵테일을 만들었다. 그 결과 이전보다 6배 더 빠르게 PET를 분해할 수 있었다. 최근 과학자들은 인공지능(AI)을 사용해 플라스틱을 더 빠르게 해중합[해중합은 유색 페트(PET)병이나 폴리에스터 섬유 등 플라스틱 분자를 화학적으로 분해하는 기술]하고, 표적 기질에 대해 덜 까다롭고, 더 높은 온도를 견딜 수 있는 효소를 찾아내고 있다. 초기 데이터에 따르면 생물학적 효소를 이용한 재활용은 플라스틱을 새로 만드는 것보다 탄소 배출량이 더 적은 것으로 알려졌다. 탄소와 산소가 얽혀 있는 PET 재활용 플라스틱은 생물학적 재활용에 가장 적합하다. 영국 포츠머스 대학교의 분자 생물물리학자 앤디 픽포드(Andy Pickford)는 이 물질이 '일종의 아킬레스건'이라고 말했다. PET은 탄소가 산소와 얽혀 있다. 직물과 음료수병에서 흔히 발견되며 매년 생성되는 플라스틱의 약 5분의 1을 차지하는 PET는 생물학적 재활용 업체들 사이에서 인기 있는 대상이자 상업적으로 이용 가능한 제품이기도 하다. 실제로 프랑스 회사 카르비오(Carbios)는 연간 5만 톤의 PET 폐기물을 재활용하는 것을 목표로 2025년 프랑스 북부에 바이오 재활용 공장을 열 계획이다. 호주에 본사를 둔 삼사라에코(Samsara Eco)는 2024년 멜버른에 PET에 초점을 맞춘 2만 톤 규모의 재활용을 계획하고 있다. 플라스틱 유형을 연구하고 있는 픽퍼드(Pickford)는 "PET와 유사한 화학적 구성을 가진 폴리아미드와 폴리우레탄도 본질적으로 효소에 의해 분해되기 쉬워 효소 재활용의 유망한 대상"이라고 말했다. 삼사라에코는 합성 폴리아미드의 일종인 나일론을 연구하고 있다. 지난 5월 버려진 옷으로 '세계 최초의 무한 재활용' 나일론-폴리에스테르 의류를 생산하기 위해 인기 운동복 브랜드 룰루레몬(Lululemon)과 다년간의 파트너십을 발표했다. 아직은 연구가 미진하지만 연구원들은 폴리우레탄을 분해하는 미생물에 대해서도 연구 중이다. '슈퍼웜' 유충 활용 기술 향상 효소 재활용은 순수 탄소 골격을 가진 플라스틱의 경우 전망은 흐리다. 비닐봉지를 만드는 데 사용되는 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌 및 폴리에틸렌을 포함하는 제품은 기름기가 많아 투입된 효소를 붙잡을 수 없기 때문이다. 그런데 페데리카 베르토치니는 데메트라(Demetra)와 세레스(Ceres)라는 이름을 붙인 왁스 벌레 타액에서 플라스틱 분해 효소를 확인했다. 이 효소는 탄소 골격에 산소를 주입해 실온에서 몇 시간 내에 폴리에틸렌을 분해하는 것으로 나타났다. 폴리스티렌을 연구하는 호주 퀸즈랜드 대학교의 미생물학자 크리스 린케(Chris Rinke) 박사는 '슈퍼웜(Superworm)'이라고 불리는 미국왕딱지벌레(Zophobas morio) 유충을 발견했다. 플라스틱을 기계적으로 작은 조각으로 파쇄하고 산소 원자를 투입해 '노화'한 다음 특수 기술을 사용해 해당 조각을 해중화하는 두 가지 과정을 통해 폴리스티렌을 분해한다. 린케 박사는 "곤충에서 발견되는 효소가 열쇠를 쥐고 있을 수 있다"고 말했다. 반면, 일부 전문가들은 생물학적 재활용 전망에 대해 낙관적이지 않다. 픽포드는 "아직 폴리에틸렌, 폴리프로필렌, PVC와 같은 폴리올레핀이 대규모 효소 재활용을 위한 현실적인 목표가 될 것이라고 확신하지 못했다"며 "이런 경우 재활용이 가능한 새로운 플라스틱을 만드는 방향으로 전환하는 것이 더 현실적"이라고 말했다. 한국의 경우, 2020년 포스텍의 차형준 교수 팀은 '산맴돌이거저리(Plesiophthalmus davidis)'라고 불리는 검은 딱정벌레의 유충에서 폴리스티렌 소화 능력을 부여한 장내 세균인 '세라티아 폰티콜라(Serratia Fonticola)'에 대해 보고했다. 또 다른 그룹은 PLA를 포함한 특정 유형의 생분해성 플라스틱을 분해할 수 있는 두 가지 저온 적응성 곰팡이 균주[고산 토양과 북극 해안에서 분리된 라크네룰라(Lachnellula)와 네오데브리에시아(Neodevriesia)]를 발견했다고 보고했다. 하지만 효소를 활용하는 프로세스를 확장하는 것이 얼마나 쉬울지, 그리고 확장된 환경이 어떤 모습일지는 불분명하다. 한편, UN은 오는 2024년 세계 최초의 글로벌 플라스틱 오염 조약을 만들 예정이다. 플라스틱 오염을 억제하는 것을 목표로 하며, 특히 재활용을 더 쉽게 하기 위해 플라스틱 제품의 생산 과 설계에 대한 새로운 규칙을 도입할 것으로 예상된다. 다음 해에는 워싱턴과 캘리포니아, EU에서 플라스틱 용기와 음료수병 재료의 25%를 재활용 플라스틱으로 규정하는 법률이 시행될 예정이다. 그러나 추가적인 변화와 인센티브가 없다면 이러한 노력은 물거품이 될 수도 있다는 지적이다. 화석 연료의 저렴한 가격으로 인해 순수 플라스틱이 저렴하게 유지되는 한 생물학적 효소 활용은 비용 면에서 경쟁력이 없기 때문이다. 맥기한은 "과거 석유 및 가스 산업이 혜택을 누렸던 방식으로 PET 또는 기타 생분해성 공정에 인센티브를 부여해야 한다"며 "생물학적 재활용 기술이 향상되면 새로운 플라스틱과 경쟁할 수 있을 만큼 비용면에서 효율적일 것"이라고 강조했다. 그럼에도 그는 "효소가 전체 플라스틱 문제를 해결하지 못하지만 이제 막 첫 걸음을 뗐다"며 향후 발전에 기대감을 드러냈다.
-
- IT/바이오
-
플라스틱 먹는 '효소' 연구 활성화⋯고비용 과제