검색
-
-
맥주, 거품 많을수록 더 맛있다
- 맥주 거품이 많을 수록 풍미가 깊어 더욱 맛있다는 연구결과가 나왔다. 직장인들은 시원한 맥주로 하루 일과를 마무리하기를 기대한다. 특히, 맥주 거품이 입 안에서 퍼질 때의 그 특별한 느낌은 하루의 스트레스를 한방에 날려버릴 것 같은 효과가 있다. 또한 맥주 광고에는 시각과 미각을 자극하는 풍부한 거품이 빠지지 않고 등장한다. 이 맥주 거품에 관한 흥미로운 연구결과가 최근 발표됐다. 거품이 많을수록 맥주 맛이 더 좋아진다는 분석이 나온 것. 미국 매체 메일온라인(MailOnline)은 후쿠오카 규슈산교대학(Kyushu Sangyo University)과 일본 아사히 맥주 연구팀의 결과를 인용, 맥주에 풍부한 거품이 존재할 때 그 향미가 더욱 깊어진다고 전했다. 해당 연구팀이 실험실에서 테스트한 결과, 거품이 풍부할 때 맥주의 향기는 최대 2배까지 강화될 수 있다는 사실을 발견했다. 이 거품층 안에는 수백만 개의 거품이 있고, 이들 속에는 향미 화합물이 함유되어 있다. 그리고 이 거품들이 붕괴되면서 향미 화합물이 대기 중으로 방출되어 맥주의 향미를 강화시킨다. 연구팀은 맥주의 거품이 향미를 강화시키는 데 중요한 역할을 하며, 특정 향미 화합물의 방출을 촉진한다는 사실을 강조했다. 이 논문들을 통해 알 수 있는 사실은, 맥주의 거품이 구체적이며 매력적인 향미를 방출하며, 거품은 맥주를 마시는 사람의 후각에 직접 전달하는 중요한 역할을 한다는 것이다. 거품은 맥주의 신선함, 청량감, 그리고 건강함에 대한 첫 느낌을 주며, 그로 인해 우리는 맥주에 함유된 다양한 향기, 예를 들면 과일향, 맥아향 혹은 흙향 같은 향미를 코의 후각 수용체를 통해 감지하게 된다. 이것은 마신 사람에게 맥주의 맛, 신선함, 청량함 및 건강함에 대한 첫 번째 매혹적인 시작점을 제공한다. 과일향, 맥아향 또는 흙향 같이 다양한 향미를 맥주에서 감지할 수 있는 것도 코의 후각 수용체 덕분이다. 한편, 우리의 혀에 위치한 미뢰(혀에서 맛을 느끼는 미세포가 모여있는 미세구조)는맥주의 '맛'을 감지하는 부분으로, 달콤하거나, 시거나, 쓴 맛과 같은 다양한 맛과 향미를 구별하게 해준다. 맥주에는 양조 과정에서 발효를 통해 생성되는 수백 종류의 향미 화합물이 포함되어 있어 그 다양한 맛과 향을 느낄 수 있다. 예를 들면, 바나나나 배와 같은 냄새를 내는 화합물에는 초산이소아밀(이소아밀 아세테이트isoamyl acetate)이 있으며, 레몬이나 다른 과일의 향을 가진 에틸 데카노에이트(ethyl decanoate) 역시 포함되어 있다. 이 연구에서는 일본 현지 시장에서 구매한 맥주를 대상으로 실험을 진행했다. 비록 연구 참여자 중 3명이 아사히 회사 출신이었지만, 연구에서 사용된 맥주의 브랜드나 종류(에일 혹은 라거)는 공개되지 않았다. 맥주를 밀봉된 유리 실린더에 넣어 향기가 내부로 흐르는 질소의 도움을 받아 상단에 있는 유리 빨대를 통해서만 빠져나올 수 있도록 했다. 맥주는 밀봉된 유리 실린더 안에 담겨, 실린더 내부를 통해 흐르는 질소의 도움으로 유리 실린더 상단의 빨대를 통해서만 향기가 방출될 수 있게 만들어졌다. 이렇게 방출된 향기는 공기 샘플의 화합물을 실시간으로 측정해 특수한 유형의 질량 분석기(mass spectrometer)를 사용해 모니터링됐다. 과학자들은 초음파 파동을 활용해 주점에서 맥주를 유리잔에 따를 때 일어나는 물리적 현상을 재현했다. 이를 통해 거품이 많은 맥주와 거품이 없는 맥주에서 사람이 음식을 섭취할 때 코로 흡입되는 향기 화합물을 모두 모니터링했다. 연구팀은 거품이 있는 맥주에서 '향기 화합물의 집중도'가 거품이 없는 맥주에 비해 약 1.3~1.9배 높다는 것을 확인했다. 맥주의 풍성한 거품과 맛의 상관관계 비밀이 풀린 것이다.
-
- 생활경제
-
맥주, 거품 많을수록 더 맛있다
-
-
가정용 청소제품, 도 넘는 유해 화합물 방출
- 우리가 흔히 사용하는 가정용 청소제품에서 수백 개의 유해 화합물을 방출할 수 있다는 연구 결과가 발표됐다. 뉴욕포스트는 최근 환경 화학 저널 「케모스피어(Chemosphere)」에 발표된 새로운 연구 결과를 인용, 가정용 청소제품은 수백 개의 유해 화합물을 방출할 수 있으며, 이러한 화합물은 몇 달 동안 공기에 머무를 수 있으므로 친화경 제품과 무향 청소제를 구입하는 것을 권장한다고 전했다. 환경연구소(Environmental Working Group, EWG)의 과학자들은 일반적인 청소 제품과 친환경 '녹색' 제품을 포함한 30가지 일반적인 청소 제품 중에서 어떤 종류가 더 안전한지 평가하기 위해 향이 있는 제품과 무향 제품을 테스트했다. 연구자들은 하나의 방에 청소용품을 뿌린 뒤 4시간 동안 공기테스트를 통해 휘발성 유기 화합물(VOCs)의 잔류 여부를 확인했다. 환경연구소의 수석 독성학자 알렉시스 템킨(Alexis Temkin)은 “우리 연구는 VOCs의 유해한 영향을 줄이기 위한 방법을 중점적으로 제시하며, 특히 '친환경'과 '무향' 제품의 선택을 권장하고 있다”고 밝혔다. 연구자들은 30개 제품 중 530개의 고유한 VOCs를 감지했으며, 이 중 193개가 유해한 것으로 판명됐다. 유해한 유기 화합물은 천식, 암 위험 증가, 발육 부진과 생식 문제 등을 유발할 수 있다. 반면, '친화경' 제품에도 향이 있는 제품의 경우 평균적으로 유해한 물질이 4개 정도 방출했다. 일반적인 제품의 경우 15개 정도가 나왔다. 유기 화합물은 실내 공기를 실외 공기보다 2배에서 5배 더 오염시킨다. 일부 추정치에 따르면 오염치가 10배 더 높을 수 있다. 게다가 이들 유해 화학물질들은 몇 달 동안 집 안의 공기에 남아 있을 수 있다. EWG의 고문인 데이비드 앤드류스 박사는 'VOCs에 대한 명확한 안전 기준이나 노출 한도가 없으며, 청소 용품에서 방출되는 VOCs에 대한 건강 기준에 대한 구체적인 규제도 부재하다'고 데일리 메일에 전했다. 앤드류스 박사는 "VOCs 중 일부는 다른 것보다 훨씬 더 유해할 수 있지만, 어떤 VOC나 그 화합물이 가장 큰 위험을 초래하는지에 대한 명확한 판단 기준은 아직 확립되지 않았다"고 덧붙였다. 이전 연구에서는 이러한 화학물질에 장기간 노출되었을 때 중대한 건강 위험을 초래할 수 있다는 결과를 제시했다. 템킨 박사는 "이번 연구는 우리 실내 공기에 포함된 다양한 화학물질의 잠재적 위험성에 대해 소비자를 비롯해 연구자와 규제 관계자들이 더욱 주의를 기울여야 함을 알리는 경고"라고 말했다.
-
- 생활경제
-
가정용 청소제품, 도 넘는 유해 화합물 방출
-
-
리튬이온 배터리, 재활용 시장 성장세
- 중국의 리튬이온 배터리(LIB) 관련 기술이 날로 발전하고 있다. 게다가 폐배터리 재활용 연구도 활발해 제조와 생산에 이어 재활용까지 명실상부한 배터리 산업 세계 1위 종주국 자존심을 지키려 애쓰는 모습이 역력하다. 최근 널리 사용되고 있는 리튬이온 배터리는 모바일, 태블릿을 비롯해 전기자동차 등 다양한 분야에 쓰이고 있다. 현존하는 배터리 제품 중 에너지 저장능력이 탁월하다는 장점 등으로 그 수요가 증가하고 있다. 하지만, 리튬 가격 상승과 자원 고갈 문제, 독성 물질을 함유한 방전 배터리 처리 문제 등이 수면 위로 떠오르면서 리튬이온 배터리 재활용에 대한 다양한 연구가 진행되고 있다. 미국 산업 매체 오일프라이스(Oilprice)는 리튬이온 배터리의 재활용은 높은 품질의 리튬을 회수하기 복합하고 비용이 많이 들기 때문에, 대부분의 재활용 공정은 양극에서 리튬을 추출하는데 중점을 두고 있다고 지적했다. 리튬이온 배터리를 재활용하는 것은 매우 까다로운 공정이다. 다시 사용할 수 있을 만큼 높은 품질의 리튬을 회수하는 것은 복잡하고 비용이 많이 들어간다. 중국과학원(ICCAS) 화학연구소와 중국과학원(UCAS) 대학의 위궈궈(Yu-Guo Guo)와 칭하이 멍(Qinghai Meng)이 이끄는 연구팀은 리튬이온 배터리를 재활용 하는 대체 방법을 개발했다. 이 연구팀은 물 대신에 양극에서 리튬을 회수하기 위해 비양성자성 유기 용액을 사용했다. 양성자성 물질은 수소 이온을 방출할 수 없으므로 수소 가스가 생성되지 않는다. 대부분의 재활용 공정은 음극(방전된 배터리의 리튬 대부분이 위치한 곳)에서 리튬을 추출하는 것을 목표로 한다. 그러나 리튬은 음극에 포함된 다른 금속과 함께 침전되기 쉬워 분리하는데 까다로운 작업이 수반되기 마련이다. 주로 흑연(graphite)으로 이뤄진 양극에서 리튬 추출은 훨씬 효율적이며 배터리 방전 없이 수행할 수 있다. 그러나 수용액으로 침출되면 화재와 폭발 위험도 높다. 또 이러한 반응은 많은 양의 에너지를 방출하고 수소를 생성할 수 있다. 이에 연구팀은 양극에서 리튬을 회수하기 위해 물 대신 유기 용매를 사용했다. 유기 용매 물질은 수소 이온을 방출할 수 없어, 수소 가스가 생성되지 않는다. 이 용매는 다환 방향족 탄화수소(PAH)와 에테르를 포함한다. 특정 PAH는 양극의 양성 리튬 이온과 전자 하나를 함께 흡수할 수 있으며, 온화한 조건에서 이 환원 반응은 효과적으로 제어고 매우 효율적이라는 설명이다. 또 연구팀은 PAH 피렌(네 개의 벤젠 고리로 된 여러 고리 방향족 탄화수소)을 테트라에틸렌글리콜디메틸 에테르와 함께 사용하면 양극에서 활성 리튬을 거의 완전히 용해 시킬 수 있었다고 부연했다. 추가로, 얻어진 리튬-PAH 용액은 새로운 양극에 리튬을 추가하거나 전처리 또는 사용된 양극을 재생하는 데 사용될 수 있다. PAH 용매 시스템은 처리되는 물질에 최적화하기 위해 다양하게 조절될 수 있다. PAH는 석탄, 기름, 가스, 쓰레기, 담배, 고기나 기타 물질이 연소될 때 형성되는 화학물질의 한 종류다. 오일프라이스는 "중국의 새로운 리튬 회수 공정은 효율적이고 비용이 저렴하며 안전 위험을 낮추고, 폐기물을 방지하며 리튬이온 배터리의 지속 가능한 재활용에 대한 새로운 전망을 열어준다"며 "아마도 전 세계 해변과 폐기물에 있는 수백만 개의 배터리를 재활용하는 해결책일 수 있다"고 평했다. 그러나 가장 큰 문제가 아직 남아있다. 재활용을 위해서는 먼저 배터리를 회수해야 한다. 어떤 공정을 사용하더라도 배터리를 수거하지 않으면 재활용 자체가 불가능하다. 게다가 화학 물질 사용도 문제다. 대부분의 사람들은 자신의 동네에 불쾌한 화학 물질이 들어오는 것을 원하지 않기 때문이다. PAH와 에테르를 포함한 것은 가스 밀폐 시설이 필요하며 원격 제어 기능이 반드시 필요하다. 한편, 오리온 마켓 리서치(Orion Market Research)에 따르면, 세계의 리튬이온 배터리 재활용 시장은 2022년~2028년까지 약 18.5% 성장할 것으로 예상하고 있다. 리튬이온 배터리 가격 하락에 의한 사용량 증가와 폐기물 처리에 대한 우려, 그리고 정부 정책 등이 재활용을 견인할 것으로 보여진다. 또한 LG에너지솔루션 자료에 따르면 세계 배터리 재활용 시장 규모는 2023년 108억 달러로 추정된다. 아울러 2024년 424억 달러, 2040년 2089억 달러 등으로 연평균 17% 성장할 것으로 전망되고 있다. 오일프라이스는 "하지만 무엇이든지 빨리 (대응을) 해야 한다"며 "사용된 리튬이온 배터리의 재앙적인 사고가 언젠가는 발생할 것이기 때문"이라며 리튬이온 배터리 재활용 방안 마련을 서둘러야 한다고 말했다.
-
- 산업
-
리튬이온 배터리, 재활용 시장 성장세
-
-
美 스탠퍼드대, 세계 최강 'X선 자유전자 레이저' 개발
- 미국 에너지부 소속 스탠퍼드 대학교 SLAC 국립 가속기 연구소에서 세계에서 가장 강력한 X-선 레이저를 발사할 수 있는 업그레이드된 'X선 자유전자 레이저(XFEL)'를 선보였다고 더 레지스터가 최근 보도했다. 11억 달러(약 1조 4680억 원)의 비용을 들여 10년의 노력 끝에 4세대 X선 자유전자 레이저인 이 연구소의 LCLS(Linac Coherent Light Source ) 원자 X-선 자유전자 레이저가 업그레이드(LCLS-II) 되어 초당 최대 백만 펄스를 전달할 수 있게 됐다. 이번에 업그레이드된 LCLS-II는 이전 제품보다 8000배 더 많은 초당 최대 100만 개의 X선 플래시를 통해 양자 물질부터 청정 에너지 기술, 의학 분야에 이르기까지 광범위한 응용 분야의 핵심인 원자 규모의 초고속 현상을 탐구할 수 있는 문이 열렸다. 미국 정부는 각 펄스는 이전 기기에서 방출되는 것보다 최대 1만배 밝아졌으며, 이는 이전 모델보다 8000배 강력하다고 밝혔다. LCLS의 책임자인 마이크 듄(Mike Dunne)과 LCLS-II 프로젝트 리더인 그렉 헤이즈(Greg Hays)는 "이 X-선의 파장은 원자 크기와 유사해, 이를 통해 분자의 내부 구조를 분석할 수 있다. 또한, 이 X-선이 초고속 펨토초(십억분의 일초) 버스트로 방출되기 때문에, 움직이는 것들을 마치 '정지화면'처럼 디스코 라이트와 비슷한 효과로 촬영할 수 있다"라고 말했다. 펨토초 레이저는 매우 짧은 진동 폭을 가진 펄스를 연속적으로 낼 수 있는 레이저로 수백 킬로미터(km)의 거리에서 1 나노미터(㎚, 10억 분의 1 미터)의 차이까지 정밀 측정이 가능해 행성 탐사를 비롯해 통신이나 기상, 환경 측정 등에 활용된다. 연구원들은 "우리는 주변 세계가 원자 분자 규모에서 어떻게 작동하는지에 대한 스톱모션 영화를 만들어 낸다. 화학 반응을 실시간으로 추적하거나 초전도와 같은 양자 현상의 발생을 관찰하는 것과 유사하다"고 덧붙였다. 새로운 LCLS-II는 자외선 빛의 펄스를 생성하여 포토캐소드(광전음극, 광선에 노출될 때 광전자를 생성)와 충돌시켜 광전자를 방출한다. 이 전자들은 섭씨 마이너스 271도로 냉각된 37개의 크라이오젠 모듈(극저온 환경에서 사용되는 모듈)을 통해 이동하게 되는데, 이 모듈 안에는 초전도자석이 포함되어 있어 전자가 광속에 근접한 속도로 가속된다. X-선은 분자를 관통하며, 이때의 굴절을 통해 그 구조의 세부적인 패턴이 만들어진다. 더 강한 X-선 레이저를 활용하면, 과학자들은 물질이나 화학 반응의 실시간 변화를 더욱 빠르고 상세하게 캡처할 수 있게 되어, 해당 과정을 직접 관찰하는 능력을 갖게 된다. 제니퍼 그랜홈(Jennifer Granholm) 미국 에너지부 장관은 "SLAC의 LCLS-II 빛은 우주의 가장 작고 빠른 현상들을 탐색하며, 건강부터 양자 재료 과학에 이르기까지 다양한 학문에서 중요한 발견을 이끌 것"이라고 전했다. 이 개선된 X-선 레이저는 두 개의 크라이오플랜트(액체 냉매를 생성하고 저장하기 위해 사용되는 설비)가 장착됐다. 이 장비는 전자로부터 X-선을 생성하는 데 필요한 언듈레이터(undulator, 자기장과 전기장을 사용하여 입자를 진동시키고 광자를 방출) 두 개를 탑재했고, 더 민감한 감지기와 센서를 포함하고 있다. 또한 이러한 데이터를 신속하게 처리하는 능력도 갖추고 있다. 과학자들은 이 레이저를 사용하여 광합성이나 응축 물질 내 원자 간 상호 작용과 같은 과정을 조사할 예정이다. 듄과 헤이즈는 "소프트 X-선은 분자 내 전자의 위치를 파악하는 데에 유용해, 에너지와 전하의 움직임을 이해하는 데 도움을 준다. 예컨대, 태양에서 에너지를 어떻게 효율적으로 활용할 수 있는지를 알려주게 된다. 반면 하드 X-선은 원자의 위치를 표현해줘서 물질의 구조를 나타낸다. 이는 주변 환경의 구성 방식을 이해하는 데 유용하다. 특히 단백질 구조나 질병 치료에 쓰이는 의약품이 좋은 예시"라고 말했다. 과학자들은 몇 주 안에 이 장비로 실험을 시작할 계획이며, 다른 연구자들도 레이저를 사용하기 위해 시간을 신청할 수 있다. 아스메렛 아세포 베르헤(Asmeret Asefaw Berhe) DOE 과학국 국장 "LCLS-II와 연구자 공동체가 국가 과학의 우선 순위에 어떤 영향을 미칠지 기대하고 있다. 화학, 재료, 생물학 등의 기본 과학 연구부터 청정 에너지연구와 양자 정보 과학과 같은 프로젝트를 통한 국가 안보 확보에 이르기까지 다양한 분야에서 중요한 발견을 이끌어 낼 것"이라고 강조했다.
-
- 산업
-
美 스탠퍼드대, 세계 최강 'X선 자유전자 레이저' 개발
-
-
발각시 액화되는 '스파이 로봇' 개발
- 서울대 재료공학부 강승균 교수팀 연구원들이 자외선(UV)과 열에 반응해 자가 붕괴하는 '에퍼멀 로봇(Ephemeral Robot)'의 프로토타입(본격적인 상품화에 앞서 성능을 검증 및 개선하기 위해 간단히 핵심 기능만 넣어 제작한 기본모델)을 개발했다. 연구원들이 개발한 이번 에퍼멀 로봇은 자외선(UV)과 열에 접촉하면 스스로 분해 될 수 있는 실리콘 엘마스토머(silicone elastomer)를 이용해 제작했다. 임무 중에는 기능을 유지하고 필요에 따라 액화해 수명 주기를 제어하여 중요한 데이터의 보안을 유지 할 수 있다. 이 로봇은 적에게 노출되면 스스로 녹아 사라질 수 있는 장점을 보유하고 있어 정찰 로봇 등 군사적 활용도가 높을 것으로 기대된다. 그러나 애퍼멀 로봇의 대표적인 소재인 열경화 실리콘은 내열성 및 내화학성이 강해 소재 분해에 적합하지 않는 지적이다. 열경화 실리콘 기반의 소프트 로봇의 분해를 위해서는 300°C까지의 극한 온도와 유사한 극단적인 pH 수준에 견뎌야 하는 문제를 먼저 해결해야 한다. 서울대 연구팀은 자외선 감응형 소재를 활용해 본연의 장점을 유지하면서 강한 자외선을 통해 가교 고분자를 쉽고 빠르게 분해할 수 있으며, 큰 열에너지나 극단적인 pH 조건이 갖춰지지 않아도 로봇이 스스로 액화될 수 있다고 말했다. 개발 소재를 소프트 로봇에 적용해 분해를 쉽게 함으로써 다양한 분야로의 응용 가능성을 열었다. 광 감응형 플루오린 발생제를 첨가한 실리콘 탄성 복합체 기반 자외선 감응형 소재는 복구할 수 없는 분해 가능한 소재다. 기존 실리콘과 같은 간단한 합성 프로세스와 뛰어난 기계적 특성을 가졌으며, 가교 구조의 고분자를 쉽고 빠르게 분해할 수 있도록 설계됐다. 연구팀은 해당 재료 시스템을 기반으로 소프트 로봇을 제작하고 주위 환경을 정찰할 수 있는 초박형 전자소자를 제작·탑재해 자외선, 온도, 로봇의 움직임까지 실시간으로 측정하는 로봇 시스템을 구현했다. 프로젝트 주요 저자인 서울대학교 재료과학 및 공학부의 오민하 박사는 "유연한 로봇이 주어진 미션을 완료 후에 붕괴가 필요한 상황이 되면, 로봇이 스스로 붕괴 절차를 밟으며 2시간 이내에 붕괴된다"고 설명했다. 이번에 개발한 로봇의 소재는 경직되지 않은 실리콘 엘라스토머(실리콘 수지)를 기반으로 한다. 내부에는 자외선으로 활성화되는 디페닐요오노늄 플루오라이드(DPI-HFP) 생성기가 분산되어 있으면서, 작은 LED를 통해 자외선 빛에 노출되면 실리콘 소재는 플루오라이드 이온(F −)을 방출하여 구조 전체가 즉시 붕괴된다. 자외선 자극에 반응해 Si-O-Si 결합이 F− 이온을 통해 균열되며 전체 구조가 파괴된다. 연구자들은 이 장치를 테스트하기 위해 다양한 전자 기기(온도 및 자외선을 측정하는 응력 센서 등)에 장착해 테스트를 진행했다. 로봇의 형태는 생분해성 폴리락틱 애씨드(생분해성 폴리머) 형태의 몰드 내에서 DPI-HFP-실리콘 혼합물을 60°C에서 30분 동안 경화시켰으며, 자가파괴 과정은 자외선을 활성화하고 60분 동안 120°C로 녹이는 것으로 시작된다. 이 시스템이 적용돼 파괴된 로봇은 실리콘 복합물과 기능이 없는 얇은 전자 부품을 포함한 오일 형태의 잔여물만 남긴다. 연구팀은 이 기술이 로봇 폐기물을 줄이는 데 도움을 주는 것뿐만 아니라 군사 작전과 접근하기 힘든 지역의 탐사 로봇에도 적용될 수 있다고 예상하고 있다. 연구원들은 사용자 안전을 고려한 액화 로봇 후속 연구를 계속 진행할 계획이라고 전했다.
-
- IT/바이오
-
발각시 액화되는 '스파이 로봇' 개발
-
-
스위스 연구지원회사(BTRY), 전고체 배터리 시장 진출
- 스위스 연방재료 과학기술연구소(EMPA)가 혁신적인 배터리 기술로 전고체 배터리 시장에 진출한다. 금속산업 및 광업 전문 매체인 '마이닝(MINING)'에 따르면, EMPA는 전고체 배터리 시장 진입을 목표로 새 회사 'BTRY'를 설립할 예정이다. 이 매체에 따르면, '전고체 배터리(solid state battery)'는 기존 리튬 이온 배터리와 달리 1분 이내의 빠른 충전과 방전이 가능하고 수명이 10배 이상 지속된다. 게다가 온도 변화에도 안정적인 성능을 보인다. 또한 전고체 배터리는 인화성이 없어 안전하다. 기존의 리튬 이온 셀은 부주의하게 취급하거나 손상될 경우 유독한 가스가 방출되거나, 진화가 어려운 위력적인 화재가 발생하기도 했다. 전고체 배터리의 한 예로 박막 배터리(Thin Film battery)가 있다. 이는 반도체 공정기술인 진공증착 방식을 사용해 얇은 기판 위에 양극재, 고체 전해질, 음극재를 순차적으로 적층하여 제작하는 2차 전지를 지칭한다. 고비용으로 대량 생산 난항 박막 배터리는 두께가 단지 0.15mm로, 종이처럼 휘어지는 특성을 가지고 있다. 기존 전지에 비해 고온에서의 안정성이 우수하며, 수명도 매우 길다. 그러나 단위 부피당 충전 용량은 리튬 이온 배터리보다 낮고, 제조 비용은 3배 이상 더 비싸기 때문에 대량 생산에 어려움이 있다. 마이닝에 따르면 BTRY의 책임 연구원인 압데살렘 아리비아(Abdessalem Aribia)와 모리츠 푸셔(Moritz Futscher)가 개발한 이 새로운 배터리는 에너지 저장 용량을 늘리는데 성공했다. 푸셔 연구원은 "박막 배터리 제조 시 사용되는 박막셀의 생산 방법은 현재 반도체 칩과 유리 코팅 제작 기술을 활용하므로, 새로 개발한 박막 배터리의 제조에 큰 어려움이 없을 것"이라고 설명했다. 박막 배터리 저장 용량 향상 박막 배터리는 고정밀 제조 방식을 사용을 하는데 독성 용매가 필요하지 않은 환경 친화적인 장점을 가지고 있으나 아직까지 대량 생산 하기엔 원가 대비 효율성이 낮은 부분이 있다. 이에 아리비아 연구원은 "스마트폰이나 스마트워치처럼 배터리 전체를 구동하는 것이 아니라 일부만을 담당하는 제품에 적합하다"고 밝혔다. BTRY사의 연구원들은 박막 배터리의 에너지 저장 용량 향상을 기반으로 원가 대비 효율성을 개선해 대량 상용화를 목표로 연구에 더욱 매진할 계획이다.
-
- 산업
-
스위스 연구지원회사(BTRY), 전고체 배터리 시장 진출
-
-
[퓨처 Eyes(2)] 인도, 태양 탐사선 '아디트야-L1' 발사 성공
- 인도가 달 정복에 이어 태양의 비밀 벗기기에 도전하고 있다. 인도 달 탐사 우주선 찬드라얀 3호가 달 남극에 착륙한 지 불과 10일 만에 첫 태양 탐사선 아디트야-L1(Aditya-L1)이 태양을 향해 성공적으로 발사됐다. 무게가 약 1480kg(3264 파운드)로 초경량급 우주선인 '아디트야-L1'은 지난 9월 2일 오전 11시 50분(GMT 06시 20분)에 인도 남부 스리하리코타에 있는 사티시 다완 우주센터에서 44.4미터 높이의 극지 위성 발사체(PSLV-XL)를 이용해 태양을 향해 장대한 여행을 시작했다. 이 우주선은 '라그랑주 5'점 중 하나를 중심으로 후광 궤도를 돌며 지구에서 150만km를 비행할 예정이다. 이는 지구-태양 거리의 1%에 해당한다. 인도 우주국은 태양 탐사선이 이 거리를 여행하는 데 4개월(약 125일)이 걸릴 것이라고 밝혔다. 태양계에서 가장 큰 천체를 연구하기 위한 인도 최초의 우주 기반 태양 관측 임무는 '아디티야'라고도 알려진 힌두교의 태양신 수리아의 이름을 따서 명명됐다. BBC에 따르면 우주선 '아디티야-L1'에서 'L1'은 '라그랑주점 1'의 약자로, 인도 우주선이 향하고 있는 태양과 지구 사이의 정확한 지점을 의미한다. 유럽우주국에 따르면 라그랑주 지점은 태양과 지구와 같은 두 개의 큰 물체의 중력이 서로 상쇄되어 우주선이 '호버링(hovering, 정지 비행)'할 수 있는 지점을 말한다. 태양 활동·우주 날씨 실시간 관측 미국 기술 전문매체 테크 크런치에 따르면 인도의 우주 기관인 인도우주연구기구(ISRO)는 아디트야-L1 우주선에 원격 감지용 4개와 현장 실험용 3개 등 총 7개의 과학장비(페이로드, payload)를 설치했다. 탑재된 장비에는데이터를 수집하고 관측을 하기 위해 가시 방출선 코로나그래프, 태양 자외선 영상 망원경, X-선 분광기, 태양풍 입자 분석기, 플라즈마 분석기 패키지, 3축 고해상도 디지털 자력계 등이 장착되어 있다. ISRO는 이 우주선에 태양 코로나(가장 바깥층), 광권(태양 표면 또는 지구에서 보이는 부분), 염색권(광권과 코로나 사이에 있는 얇은 플라즈마 층)을 관찰하고 연구할 7가지 페이로드를 탑재했다고 밝혔다. 코드명 'PSLV-C57'인 이 우주선 임무의 전반적인 목적은 태양 활동과 그것이 우주 날씨에 미치는 영향을 실시간으로 관측하는 것이다. 이륙 한 시간여 만에 아디트야-L1 우주선은 146×12,117마일의 타원형 궤도에 진입시켰다. 인도가 발사체 상단이 두 번의 연소 과정을 거쳐 의도했던 궤도에 우주선을 진입시킨 것은 이번이 처음이다. ISRO의 S. 소마나스 회장은 우주국의 임무 통제 센터에서 참석자들에게 "이제 아디트야-L1은 몇 가지 지구 기동을 거친 후 여정을 시작할 것"이라면서 "아디트야 우주선이 긴 여정을 마치고 L1의 후광 궤도에 진입할 수 있도록 최선을 다하길 기원한다"라고 말했다. 아디트야-L1은 L1을 향해 발사되기 전에 지구를 여러 번 돌게 된다. 그리고 일식 동안 태양이 숨겨져 있더라도 지속적으로 태양을 관찰하고 과학적 연구를 수행할 수 있다. 이번 연구는 과학자들이 태양풍과 태양 플레어와 같은 태양 활동과 그것이 지구와 우주 날씨에 미치는 영향을 실시간으로 이해하는 데 도움이 될 것이다. 태양 탐사 비용 4600만달러 이번 태양 탐사선의 비용이 얼마인지 밝히지 않았지만, 인도 언론의 보도에 따르면 37억 8000만 루피(4600만 달러, 약 615억 원)가 소요될 것으로 예상된다. 아디트야-L1 미션의 프로젝트 책임자인 니가르 샤지는 "아디트야-L1 팀에게는 꿈이 실현된 것"이라고 말했다. 샤지는 "아디트 [임무]가 시운전되면 이 나라의 헬리오피직스는 물론 전 세계 과학계의 자산이 될 것"이라고 기대했다. 과거에는 미국, 유럽, 중국이 태양을 연구하기 위해 우주에서 태양 관측소 임무를 수행했다. 지금까지 지상 망원경을 이용한 태양 관측에 주력해 온 인도가 이 분야에 뛰어든 것은 이번이 처음이다. 아디트야-L1이 성공하면 인도는 이미 태양을 연구하고 있는 일부 극소수 국가 그룹에 합류하게 된다. 일본은 1981년 태양 플레어를 연구하기 위해 최초로 탐사선을 발사했다. 미국 우주국 나사(NASA)와 유럽우주국(ESA)은 1990년대부터 태양을 관찰해 왔다. 나사와 ESA는 2020년 2월, 공동으로 태양 궤도선을 발사해 가까운 거리에서 태양을 연구하고 있다. 과학자들은 태양의 역동적인 행동을 이해하는 데 도움이 될 데이터를 수집하고 있다고 밝혔다. 아울러 나사의 최신 우주선인 파커 태양 탐사선은 최초로 2021년 태양의 외기권인 코로나를 통과해 새로운 역사를 썼다. 유엔 우주국(UNOOSA)에 따르면 지구 궤도에는 약 1만290개의 위성이 남아 있으며, 그 중 약 7800개의 위성이 현재 작동 중이다. 한편, 인도의 태양 탐사선은 지난 8월 말 세계 최초로 달 남극 근처에 탐사선을 성공적으로 착륙시킨 것에 연이은 쾌거다. 이로써 인도는 미국, 구소련, 중국에 이어 세계에서 네 번째로 달에 연착륙한 국가가 되었다. 달 남극에는 인류 생존의 필수 자원인 물이 존재하고 있는 것으로 알려졌다. 나사에 따르면 달에서 물을 최초로 발견한 것은 인도 탐사선이다. 2008년 인도 탐사선 찬드라얀 1호가 달 표면에 퍼져 있고 극지방에 집중된 수산기 분자를 감지한 것이 물 발견에 결정적으로 기여했다. 현재 인도는 우주에 50개 이상의 위성을 보유하고 있으며 통신 링크, 날씨 데이터, 해충 침입, 가뭄 및 임박한 재난 예측 등 여러 가지 중요한 서비스를 제공한다. ISRO는 아디트야-L1과 함께 2025년으로 예정된 인간 우주 비행 임무인 가가냥(Gaganyaan) 발사를 오랫동안 준비해 오고 있다. 또 인도 우주국은 금성을 향한 무인 탐사선 발사도 계획하고 있다.
-
- 포커스온
-
[퓨처 Eyes(2)] 인도, 태양 탐사선 '아디트야-L1' 발사 성공