검색
-
-
지구 자전축, 80cm 또 기울어진 이유는?
- 지구의 자전축 기울기가 약 80cm(약 31.5인치)나 또 어긋난 것으로 밝혀졌다. 최근에 '지구의 기울기'가 다시 화제가 되고 있는 가운데, 과학자들의 조사에 따르면 지구의 기울기 변동이 가속화되어 31.5인치(약 80 센치)나 변경된 것으로 확인됐다. 이 데이터는 2023년 6월 지구과학 저널 「지구물리학 연구 레터(Geophysical Research Letters)」에 게재된 연구에 따른 것으로, '지하수의 과도한 채취'가 지구 기울기의 주요 원인으로 보고됐다. 또한 이 연구에서는 "지구의 기울기 변화와 전 세계적인 해수면 상승(약 0.24인치 또는 약 6mm) 간에 연관성이 있다"고 지적했다 지구 자전축의 변화가 세계 해수면에 어떤 영향을 미치는지, 그리고 지하수 채취가 왜 자전축의 기울기에 영향을 주는지, 그리고 자전축의 기울기가 31.5인치로 커진 것이 실제로 얼마나 큰 문제인지에 대해 정리했다. 먼저 자전축의 기울기는 지구에 어떤 영향을 미칠까. 자전축의 기울기는 지구를 특징짓는 특징 중 하나다. 자전축이 기울어져 있기 때문에 지구에는 봄, 여름, 가을, 겨울과 같은 계절이 발생하는 지역이 있으며, 북극과 남극에서는 궁극적으로 극야(위도 66.55도 이상인 극지방에서 겨울철에 해가 뜨지 않고 밤만 계속되는 기간)와 극주야(?)/백야(해가 지지 않아 밤에 어두워지지 않는 현상)가 존재한다. 이 현상을 놀이기구를 떠올리면 쉽게 이해할 수 있다. 자전축이 공전 궤도에 수직이라면, '틸트 어 휠(Tilt-a-Whirl)' 놀이기구처럼 어느 북반구나 남반구에서도 일년 내내 일정한 일조 시간을 가지며, 태양의 궤도 위치가 항상 같아 시간의 흐름에 따른 변화가 없을 것이다. 이와 같은 상황은 북극점과 남극점에서도 동일한 상황이 지속될 것이다. 하지만, 지구는 기울어져 있기 때문에 '틸트 어 휠' 내부에 있는 것처럼 중심(태양)이나 수평선에 가까워질 때도 있고 멀어질 때도 있다. 우리가 평소에 단단하다고 느끼는 지구의 안정성은 실제로는 그렇지 않다. 지구의 지각은 주로 단단한 암석으로 구성되어 있으며, 대부분의 지역에서는 약 40킬로미터(약 25마일)의 깊이에 이른다. 1 평방피트(약 930㎠) 크기의 지표면 아래 40킬로미터 깊이의 지각 부분은 부피로 따지면 대략 1만1000톤으로 추정된다. 이것은 2012년 티레니아 해에서 전복된 호화 여객선 코스타 콘코르디아(약 11만4000톤)의 무게와 거의 비슷하며, 이 배를 원래의 상태로 세울 수 있는 무게와 동일하다. 그러나 태양계 내에서 밀도가 가장 높은 행성인 지구에서도 40킬로미터 두께의 지각은 지구 지름의 0.33% 정도에 불과하며, 1만1000톤은 지구의 총 질량인 5.972 ×10²⁴kg에 비하면 미미하다. 지구를 M&M 초콜릿 한 알로 비유하면, 얇은 설탕 코팅 부분이 지각에 해당한다. 그렇다면 과도한 지하수 채취는 어떤 문제를 야기할까. 지각 위에는 바다가 있고, 지각 바로 아래에는 광대한 지하 담수층이 있다. 그 아래에는 유동성 있는 암석을 포함한 맨틀이 있으며, 외피 아래의 외부 핵은 액체이다. 현재 지구의 내부 핵은 고체라는 주장이 유력하다. 최근 발표된 지하수 관련 논문에서는 특정 현상에 대한 조사가 진행되고 있다. "지하수를 얻기 위해 지하 또는 지각 내에 저장된 물을 얻으려고 구멍을 뚫으면 갑자기 지구 외부의 일부 무게가 크게 가벼워지며, 지구 전체의 균형 유지에 매우 간단한 형태로 영향을 미치게 된다"는 설명이다. 볼링 공이나 회전하는 스피너 외부에만 구멍을 뚫는다면 어떤 변화가 일어나는지 상상해보자. 볼링공은 여전히 회전은 가능하겠지만, 원래의 회전과는 달리 불규칙한 방식으로 회전할 것이다. 게다가 지구에는 대량의 물과 용해된 금속이 있으므로, 이러한 물질들이 새로운 회전 방향에 영향을 받아 추가적인 회전 특성을 나타낼 수도 있다. 지구의 기울기는 '자전축 기울기'라고도 하며, 약 4만 1000년마다 22.1도에서 24.5도 사이로 변동한다. 지구의 위도 1도당 거리는 대략 111.11킬로미터(약 69마일)이기 때문에, 80cm의 변화는 사실상 크게 중요하지 않다고 볼 수 있다. 이 논문은 지구의 기울기에 영향을 미치는 특정 요인에 집중하고 있다. 중요한 것은 이 변화가 자연적인 변동이 아닌 인간의 활동에 의한 결과라는 점이다. 인류는 약 4만 1000년 전부터 존재했지만, 그 당시 인간은 지하수를 채취하기 위해 지각을 깊게 파지 않았다. 반면, 정화된 물을 위한 우물의 역사를 살펴보면, 약 9000년 전 신석기 시대의 시리아 텔 사비 아비아드(Tell Seker al-Aheimar) 유적에서 발견된 것이 가장 오래된 것으로 기록되어 있다. 과도한 지하수 채취 문제는? 미국 지질 조사국(USGS)에 따르면 지표면 아래의 수층은 세계의 강과 호수의 수백 배 이상의 물량을 포함하고 있다. 여기서수층은 지하수를 저장하는 암석과 퇴적층을 의미한다. 이 지하수는 지구의 다양한 지역(사막 포함)에서 볼 수 있지만, 접근이 어렵거나 정화 처리가 필요한 경우가 많다. 지하수는 지표면 근처에 위치하며, 단지 몇 시간 정도만 축적되었을 수도 있고, 지하의 매우 깊은 곳에서 몇 천 년 동안 존재했을 수도 있다. 미국 과학·공학·의학 아카데미와 애리조나 주립 대학교의 '과학과 기술의 이슈(Issues in Science and Technology)' 간행물에 따르면, 호수와 강의 담수 부족 때문에 인간은 지하수를 채취하기 시작했다. 이러한 지하수는 음용, 관개, 그리고 광물 채굴 등 여러 목적으로 사용되고 있다. 그렇지만 지하수의 과도한 채취는 자연 환경과 습지에 큰 피해를 준다. 이는 땅이 건조해지는 것뿐만 아니라 토양의 붕괴, 야생동물과 물고기, 나무에 대한 부정적 영향, 그리고 일부 종의 멸종 위험을 가져온다. 더욱이, 최근의 연구에서는 지하수 채취가 지구의 기울기에도 영향을 주고 있음이 밝혀졌다. 지구 기울기가 변한 다른 요인 지구는 완벽한 균형을 가진 공이나 볼링 공처럼 완벽하게 균형 잡힌 상태를 유지할 필요가 없다. 사실, 과학자들은 '테이아(Theia)'라는 천체가 원시 지구와의 충돌로 인해 지구가 기울게 되어 자전하게 되었다는 가설을 제기하고 있다. 이 충돌에 의해 원시 지구에서 분리된 부분이 달이 되었다고 추측하고 있다. 당시 충돌로 인해 원시 지구의 한 쪽에는 커다란 스위스 치즈 같은 크레이터가 생겨나, 그 결과 회전 축이 변화했다고 본다. 그 이후로 지구의 자전축이 다시 원래대로 돌아온 적은 없다. 지구와 같은 행성은 자전으로 인해 시간이 지남에 따라 점차적으로 거의 완벽한 구형에 가까운 형태로 변화한다. 이 개념은 '정적압력 균형'이라고 불린다. 사실, 거의 완벽한 구형에 가까운 형태는 행성이나 천체의 기본적인 특성 중 하나이다. 이를 고려하면 '테이아'라는 천체의 충돌 이전의 울퉁불퉁한 지구는 자전 활동이 회복되기 전까지 '행성'으로 간주되지 않았을 수도 있다. 지구의 자전축 기울기는 지구의 구 형태를 유지하는 데 영향을 미치지 않는다고 여겨진다. 지구의 정적압력 균형은 이러한 기울기와 상관없이 각 행성의 자전 현상에 의해 결정되기 때문이다. 미국 항공우주국(NASA)은 2018년 "20세기에 지구의 기울기 변화를 초래한 3가지 주요 원인을 확인했다"고 보고했다. 나사에서 파악한 원인은 '그린란드의 얼음 해빙', 빙하의 이동 또는 해빙으로 인해 얼음의 무게가 사라져 지각이 서서히 상승하는 '빙하성 반동', 그리고 '맨틀 대류'이다. 맨틀 대류는 지각 아래에 있는 유동성 있는 암석 성분이 가열되어 상층으로 이동하고 표면 근처에서 냉각되어 밀어내는 운동이다. 온도가 다른 암석의 밀도가 서로 다르기 때문에 중심을 뒤흔드는 것. 한편, 과학자들은 지구의 기울기가 많은 다른 요인에 의해 변동된다는 사실을 알고 있지만, 이러한 요인을 동시에 연구하는 단계는 아직 확립되지 않았다고 말했다. 2020년 논문에서 과학자들은 "지구는 내부에서부터 외부로 이르기까지 다양한 시간 스케일에서 연속적인 변화가 진행 중이기 때문에 이러한 동적 매개변수는 모두 안정된 값을 갖지 않으며 시간이 지남에 따라 변화한다"고 지적했다. 또한 "이러한 변동은 상대적으로 작기 때문에 최근까지 관측하기 어려웠다"면서 "앞으로 몇 년 안에 지구의 기울기 변화가 특정 요인에 의해 크게 변할 것이라는 뉴스를 자주 접할 가능성은 낮을 것으로 생각된다"고 밝혔다.
-
- 산업
-
지구 자전축, 80cm 또 기울어진 이유는?
-
-
美 스탠퍼드대, 세계 최강 'X선 자유전자 레이저' 개발
- 미국 에너지부 소속 스탠퍼드 대학교 SLAC 국립 가속기 연구소에서 세계에서 가장 강력한 X-선 레이저를 발사할 수 있는 업그레이드된 'X선 자유전자 레이저(XFEL)'를 선보였다고 더 레지스터가 최근 보도했다. 11억 달러(약 1조 4680억 원)의 비용을 들여 10년의 노력 끝에 4세대 X선 자유전자 레이저인 이 연구소의 LCLS(Linac Coherent Light Source ) 원자 X-선 자유전자 레이저가 업그레이드(LCLS-II) 되어 초당 최대 백만 펄스를 전달할 수 있게 됐다. 이번에 업그레이드된 LCLS-II는 이전 제품보다 8000배 더 많은 초당 최대 100만 개의 X선 플래시를 통해 양자 물질부터 청정 에너지 기술, 의학 분야에 이르기까지 광범위한 응용 분야의 핵심인 원자 규모의 초고속 현상을 탐구할 수 있는 문이 열렸다. 미국 정부는 각 펄스는 이전 기기에서 방출되는 것보다 최대 1만배 밝아졌으며, 이는 이전 모델보다 8000배 강력하다고 밝혔다. LCLS의 책임자인 마이크 듄(Mike Dunne)과 LCLS-II 프로젝트 리더인 그렉 헤이즈(Greg Hays)는 "이 X-선의 파장은 원자 크기와 유사해, 이를 통해 분자의 내부 구조를 분석할 수 있다. 또한, 이 X-선이 초고속 펨토초(십억분의 일초) 버스트로 방출되기 때문에, 움직이는 것들을 마치 '정지화면'처럼 디스코 라이트와 비슷한 효과로 촬영할 수 있다"라고 말했다. 펨토초 레이저는 매우 짧은 진동 폭을 가진 펄스를 연속적으로 낼 수 있는 레이저로 수백 킬로미터(km)의 거리에서 1 나노미터(㎚, 10억 분의 1 미터)의 차이까지 정밀 측정이 가능해 행성 탐사를 비롯해 통신이나 기상, 환경 측정 등에 활용된다. 연구원들은 "우리는 주변 세계가 원자 분자 규모에서 어떻게 작동하는지에 대한 스톱모션 영화를 만들어 낸다. 화학 반응을 실시간으로 추적하거나 초전도와 같은 양자 현상의 발생을 관찰하는 것과 유사하다"고 덧붙였다. 새로운 LCLS-II는 자외선 빛의 펄스를 생성하여 포토캐소드(광전음극, 광선에 노출될 때 광전자를 생성)와 충돌시켜 광전자를 방출한다. 이 전자들은 섭씨 마이너스 271도로 냉각된 37개의 크라이오젠 모듈(극저온 환경에서 사용되는 모듈)을 통해 이동하게 되는데, 이 모듈 안에는 초전도자석이 포함되어 있어 전자가 광속에 근접한 속도로 가속된다. X-선은 분자를 관통하며, 이때의 굴절을 통해 그 구조의 세부적인 패턴이 만들어진다. 더 강한 X-선 레이저를 활용하면, 과학자들은 물질이나 화학 반응의 실시간 변화를 더욱 빠르고 상세하게 캡처할 수 있게 되어, 해당 과정을 직접 관찰하는 능력을 갖게 된다. 제니퍼 그랜홈(Jennifer Granholm) 미국 에너지부 장관은 "SLAC의 LCLS-II 빛은 우주의 가장 작고 빠른 현상들을 탐색하며, 건강부터 양자 재료 과학에 이르기까지 다양한 학문에서 중요한 발견을 이끌 것"이라고 전했다. 이 개선된 X-선 레이저는 두 개의 크라이오플랜트(액체 냉매를 생성하고 저장하기 위해 사용되는 설비)가 장착됐다. 이 장비는 전자로부터 X-선을 생성하는 데 필요한 언듈레이터(undulator, 자기장과 전기장을 사용하여 입자를 진동시키고 광자를 방출) 두 개를 탑재했고, 더 민감한 감지기와 센서를 포함하고 있다. 또한 이러한 데이터를 신속하게 처리하는 능력도 갖추고 있다. 과학자들은 이 레이저를 사용하여 광합성이나 응축 물질 내 원자 간 상호 작용과 같은 과정을 조사할 예정이다. 듄과 헤이즈는 "소프트 X-선은 분자 내 전자의 위치를 파악하는 데에 유용해, 에너지와 전하의 움직임을 이해하는 데 도움을 준다. 예컨대, 태양에서 에너지를 어떻게 효율적으로 활용할 수 있는지를 알려주게 된다. 반면 하드 X-선은 원자의 위치를 표현해줘서 물질의 구조를 나타낸다. 이는 주변 환경의 구성 방식을 이해하는 데 유용하다. 특히 단백질 구조나 질병 치료에 쓰이는 의약품이 좋은 예시"라고 말했다. 과학자들은 몇 주 안에 이 장비로 실험을 시작할 계획이며, 다른 연구자들도 레이저를 사용하기 위해 시간을 신청할 수 있다. 아스메렛 아세포 베르헤(Asmeret Asefaw Berhe) DOE 과학국 국장 "LCLS-II와 연구자 공동체가 국가 과학의 우선 순위에 어떤 영향을 미칠지 기대하고 있다. 화학, 재료, 생물학 등의 기본 과학 연구부터 청정 에너지연구와 양자 정보 과학과 같은 프로젝트를 통한 국가 안보 확보에 이르기까지 다양한 분야에서 중요한 발견을 이끌어 낼 것"이라고 강조했다.
-
- 산업
-
美 스탠퍼드대, 세계 최강 'X선 자유전자 레이저' 개발
-
-
전기차 시장, '전고체 배터리'가 뜬다…10대 리드 기업 어디?
- 최근 전기차 업계가 주목하는 기술 중 하나는 '전고체 배터리'다. 이 기술은 기존 리튬 이온 배터리보다 에너지 저장 용량이 뛰어나고, 충전 시간도 단축되는 등 탁월한 성능을 자랑한다. 그렇다면 이 전고체 배터리는 기존 배터리와 다른 점은 무엇일까. 전고체 배터리는 이름에서도 알 수 있듯이 액체 전해질이 아닌 고체 전극과 고체 전해질을 사용한다. 이로 인해 배터리의 누출이나 열 문제가 크게 줄어들어 사용자의 안전을 더욱 보장한다. 게다가 작은 크기로도 높은 에너지 밀도를 구현할 수 있어 휴대성과 효율성 모두에서 높은 점수를 받는다. 시장의 변화에 민감하게 반응하는 글로벌 자동차 기업들도 전고체배터리 개발에 발빠르게 뛰어들었다. 토요타와 폭스바겐은 이미 전고체 배터리 기술 개발에 속도를 내고 있다. 이러한 대기업들이 전고체 배터리의 선봉에 서게 될 것인가, 아니면 다른 참여 기업들이 이를 따라잡거나 앞질러 나갈 것인가. 전기차 시장의 미래는 어떻게 전개될지 기대된다. 폭스바겐과 퀀텀스케이프는 전기 자동차용 고체 상태 배터리 기술 개발에 손을 잡았다. 전기차의 두 가지 큰 걸림돌인 '주행 거리'와 '충전 시간'을 해결하기 위해서는 향상된 '에너지 저장 능력'과 '빠른 충전'이 선결과제다. 이 두 마리 토끼를 잡을 수 있는 전고체 배터리는 소비자의 전기차에 대한 인식을 크게 바꿔놓을 것으로 보인다. 전고체 배터리 개발 진행중인 선도적인 10개 기업은 다음과 같다. 1. 도요타 토요타는 21세기 자동차 혁신의 핵심으로 전고체 배터리를 지목하며, 2027년까지 상용화를 목표로 연구개발을 가속화하고 있다. 도요타의 이러한 움직임은, 배터리가 전기차 업계의 핵심 부품임을 감안하면, 전기차 시장에서의 선두 주자로의 복귀를 알리는 신호로 해석된다. 그들은 이미 2012년부터 전고체 배터리 기술 개발에 뛰어들었고, 현재 200명 이상의 전문가로 구성된 팀이 이를 주도하고 있다. 그 결과, 토요타는 1000개 이상의 특허를 보유하게 되었다. 이 기업의 최종 목표는 전고체 배터리의 장점을 살려 완충 상태에서 약 700km (435마일)의 주행 거리를 달성하는 전기차와 하이브리드 차량을 출시하는 것이다. 2. 폭스바겐(Volkswagen) 폭스바겐은 전고체 배터리 연구의 선구자 중 하나인 퀀텀스케이프와 파트너십을 맺고 전기 자동차용 고에너지 밀도 배터리를 개발하고 있다. 2018년 폭스바겐은 퀀텀스케이프와 함께 전기차용(EV) 배터리 기술 개발을 추진했고, 2020년 추가적으로 2억 달러의 투자를 통해 이 연구의 가속화를 선언했다. 퀀텀스케이프는 기존 배터리 대비 전고체 배터리가 약 80% 더 긴 주행 거리와 80% 더 많은 충전량을 제공한다고 주장했다. 2022년 말 현재, 퀀텀스케이프는 전고체 배터리 셀의 시험을 진행 중이다. 폭스바겐은 다른 기업들과 협업하여 고체 상태 기술 및 전극 건조 코팅 공정과 같은 다양한 배터리 기술을 연구 중이며, 이를 2030년에 대량 생산에 투입할 계획이다. 3. 파나소닉(Panasonic) 전세계적인 전기차 시장의 확대와 함께 배터리 기술의 중요성이 강조되는 가운데, '파나소닉'과 '도요타'의 조합이 눈길을 끈다. 두 기업은 2020년 '프라임 플래닛 에너지 솔루션(Prime Planet Energy & Solutions, Inc.)'이라는 이름의 합작기업을 설립, 생산성과 용량 모두에서 우수한 배터리 솔루션을 제공하기 위해 노력하고 있다. 도요타는 이미 전고체 배터리 기술 관련 1000개 이상의 특허를 보유하고 있으며, 파나소닉도 445개의 특허로 그 기술력을 과시하고 있다. 파나소닉은 지난 수십 년 동안 배터리 기술을 선도해 왔다. 특히 전고체 배터리 기술 연구에 주력하며, 액체 전해질로 인한 화재, 폭발 위험 등의 문제점을 해결하고자 고체 상태 배터리로의 전환에 큰 희망을 걸고 있다. 파나소닉은 기술에 대한 구체적인 일정을 제공하지는 않았지만, 연구 및 개발에 적극적으로 투자하고 있다. 특히 도요타, 테슬라, 포드와 같은 국제적인 자동차 기업들과의 협력은, 전고체 배터리의 시장 출시 때 그들이 이 분야의 혁신을 주도할 가능성을 제시한다. 4. 베이징 웨이란신에너지기술(Beijing WeLion New Energy Technology) 중국 기업 니오(Nio)는 배터리 제조업체인 중국 베이징 웨이란신에너지기술(北京卫蓝新能源科技·Beijing WeLion New Energy Technology, 이하 '웨이란'-WeLion)과 파트너십을 맺어 새로운 배터리 기술을 선보였다. 이들 두 기업은 전기 자동차에 대한 반고체 상태 배터리 셀을 생산했다. 반고체 상태 배터리는 리튬 이온 배터리의 젤 전해질과 고체 전해질을 결합한 것이다. 니오는 특히 이번 파트너십을 통해 웨이란으로부터 150 kWh 용량의 반고체 배터리 셀을 공급받게 되었으며, 이 배터리는 'Nio ET7' 전기자동차에 적용될 예정이다. 이러한 혁신적인 기술을 탑재한 세단 'Nio ET7'은 CLTC 기준으로 약 1000킬로미터(621 마일), EPA 기준으로는 740킬로미터(460 마일)의 높은 주행 거리를 자랑한다. 또한, 이 배터리는 'Nio ES6 SUV'에도 적용되어, 약 689킬로미터(428 마일)의 주행 거리를 제공하게 된다. 5. 중국 CATL(Amperex Technology Co. Limited) 중국 배터리 대기업 CATL은 2023년 4월 전기 항공기 전동화를 향한 새로운 움직임을 위해 고체 상태 배터리 기술의 한 형태인 압축형 배터리 셀을 출시했다. 이 배터리 셀은 에너지 밀도가 500 Wh/kg로 매우 높다. 중국의 배터리 대기업 'CATL'은 2023년 4월 전기 항공기의 전동화를 목표로 고채 상태 배터리 기술의 한 형태인 압축형 배터리 셀을 출시했다. 이번에 선보인 배터리 셀은 무려 500 Wh/kg의 높은 에너지 밀도를 자랑한다. 반면, 테슬라가 자랑하는 4680 배터리 셀의 에너지 밀도는 244 Wh/kg에 불과하다. 이를 비교하면 CATL의 신제품은 기존 리튬 이온 배터리에 비해 약 두 배의 충전량을 가지고 있음을 알 수 있다. 이렇게 혁신적인 배터리 기술은 중국 지리자동차(Geely)의 2023년 형 전기차 '지커-001(Zeekr-001 EV)'에도 적용될 수 있으며, 해당 차량은 CLTC 기준으로 641 마일의 주행 거리를 달성할 수 있다. CATL의 압축형 배터리 셀은 이보다 훨씬 더 긴 주행 거리를 제공할 전망이다. 6. 혼다 혼다는 2050년까지 탄소 중립을 목표로 하고 있으며, 이를 위해 제너럴 모터스(GM)와 소니 같은 기업들과 파트너십을 맺어 고체 상태 배터리 기술을 연구하고 있다. 또한 혼다는 일본의 사쿠라에 4300억 엔 (약 2950만 달러)을 투자해 2028년까지 전기 자동차에 고체 상태 배터리 셀을 도입하는 생산 라인을 구축하는 작업을 진행 중이다. 고체 상태 배터리 기술의 가장 큰 단점은 세포의 무결성을 위협하는 덴드라이트(dendrites)의 존재다. 혼다는 덴드라이트 문제를 해결하기 위한 새로운 연구를 진행하고 있다. 이를 통해 2030년까지 연간 200만 대의 배터리 전기 자동차 생산을 목표로 하고 있다. 7. 닛산 닛산은 2028년까지 고체 상태 배터리로 구동되는 차량을 시장에 선보이기 위한 연구를 본격화했다. 가나가와에 위치한 닛산의 연구 센터에서는 2024년까지 고체 상태 셀 프로토타입을 생산하기 위한 공장 건립 작업이 진행 중이다. 고체 상태 배터리 기술 도입 후, 닛산은 EV 배터리 비용을 최소 50% 절감하며, 충전 능력을 현존하는 기술의 세 배로 향상시키고, 에너지 밀도를 두 배로 늘리는 것을 목표로 삼고 있다. 시장에서 현재 주목받는 최고 성능의 배터리 셀은 에너지 밀도 240 Wh/kg을 제공하는데, 닛산의 목표는 이를 480~500 Wh/kg로 높이는 것이다. 이외에도 닛산은 액체 전해질을 사용하지 않는 올 고체 상태 배터리와 나트륨을 활용한 셀에 대한 연구를 활발히 진행하고 있다. 8. 솔리드에너지시스템(SolidEnergy Systems) 솔리드에너지시스템(SES)은 치차오 후 박사(Dr. Qichao Hu)가 2012년에 매사추세츠주 워본(Woburn)에 설립했다. 이 회사는 리튬 금속 기술을 사용하며, 리튬 이온 배터리 셀에서 발견되는 전통적인 젤 대신 분리 막으로 사용한다. SES 리튬 금속 배터리 셀은 에너지 밀도가 400 Wh/kg이며, 전통적인 리튬 이온 배터리 셀의 주행 거리를 두 배로 늘릴 수 있다. SES는 안전하고 효율적인 배터리 개발에 중점을 둔다. 인공 지능 알고리즘을 활용해 배터리의 안전성을 향상시켰고, 가볍고 비용 효율적으로 제작될 수 있다. 게다가 15분만에 배터리의 80%까지 빠르게 충전할 수 있다는 것은 큰 강점이다. 차량 제조업체들과의 협력도 활발한 편이다. 제너럴 모터스(GM), 혼다, 현대자동차, 지리, 기아와 같은 주요 자동차 기업들과 파트너십을 체결하고 있다. 특히 2021년에는 GM이 SES에 1억 3900만 달러를 투자했으며, 2025년부터는 SES의 리튬 금속 배터리 셀을 자동차에 적용할 계획이다. 9. 솔리드 파워(Solid Power) 솔리드 파워는 2011년 콜로라도 대학의 스핀오프로 탄생했으며 현대자동차, BMW, 포드와 같은 글로벌 자동차 제조업체들의 후원을 받으며 빠르게 성장했다. 2021년에는 콜로라도 주의 손턴(Thornton)에 7만5000평방 피트(약 6967제곱미터) 규모의 최첨단 생산 공장을 설립했다. 솔리드 파워의 주요 기술은 전통적인 리튬 이온 배터리의 액체 전해질을 황화물 기반의 고체 전해질로 교체하는 것이다. 이 고체 전해질은 액체 전해질보다 안전하며, 안정적인 성능을 제공한다. 이 회사는 2028년까지 연간 80만 대의 전기차 배터리 셀 생산을 목표로 하고 있으며, 그를 위한 생산 확장 계획을 세우고 있다. 또한, 솔리드 파워는 미국 에너지부의 "전기 자동차를 위한 미국 저탄소 생활 (EVs4ALL)" 프로그램에서 총 4200만 달러 중 560만 달러의 지원을 받아 연구 및 개발 활동을 지속적으로 진행하고 있다. 10. 실라 나노 테크놀로지스(Sila Nanotechnologies) 실라 나노 테크놀로지스는 BMW, 다임러 AG(Daimler AG), 지멘스(Siemens), CATL과 같은 세계적인 기업들과 전략적 파트너십을 체결해 전기 자동차용 고체 상태 배터리의 상용화를 위한 강력한 투자 지원을 확보했다. 산업 내 주요 플레이어들의 지원 아래, 이 회사는 2028년까지 150 GWh 이상의 대규모 배터리 셀 생산을 목표로 하는 로드맵을 구축하고 있다. 특히, 실라 나노는 20% 더 긴 주행 거리와 20분만에 10-80%까지 충전이 가능한 타이탄 실리콘(Titan Silicon) 배터리 셀을 선보였다. 이 기술은 메르세데스-벤츠의 EQG 모델에 적용될 예정이다. 더욱이, 회사는 기존 고체 상태 배터리 기술의 덴드라이트 현상과 부피가 큰 세라믹 전해질의 한계를 극복하기 위한 방안으로, 중간 온도에서 다공성 분리막-양극 스택에 고체 전해질을 용융 침투시키는 방식을 도입할 계획이다.
-
- IT/바이오
-
전기차 시장, '전고체 배터리'가 뜬다…10대 리드 기업 어디?
-
-
폐배터리 '블랙매스'에서 희토류 재탄생
- 전세계적으로 내연 자동차의 전동화 추세가 가속화되면서 폐배터리 폐기물 처리 문제가 점점 부각되고 있다. 특히 리튬, 코발트, 니켈 등의 중요한 자원이 한정적이라는 점에서 이러한 자원에 대한 과도한 의존이 환경적, 경제적 위험요소로 지적되어 왔다. 그러나 최근 업계는 이 문제의 해결책으로 배터리 재활용 기술에 주목하고 있다. 특히 배터리 폐기 과정에서 발생하는 '블랙매스(Black Mass)'라는 검은색 덩어리에서 희망의 신호가 보이고 있다. 프랑스의 주요 일간지 프레시트론(presse-citron)에 따르면, '블랙매스(Black Mass)'는 말 그대로 짙은 검정색의 분말 덩어리인데, 배터리 제조과정에서 발생하는 폐기물인 스카프(Scarp, 배터리 제조 공장에서 발생하는 불량품)와 폐배터리를 수거해 분쇄한 가루를 지칭한다. 이때 폐배터리를 기술적으로 안전하게 파쇄해야 하며, 이 과정에서 니켈, 코발트, 리튬, 망간 등 가치 있는 희토류 원소들을 고순도로 추출해 내는 기술이 매우 중요하다. 이러한 기술을 활용하면 희소 금속에 대한 의존성을 대폭 감소시킬 수 있을 것으로 보인다. 외신 보도에 따르면, 2030년까지 리튬은 15%, 니켈은 11%, 코발트는 44%의 재활용 소재 비중으로 증가할 것으로 예상된다. 유럽연합(EU)은 2023년까지 재활용 배터리 비율을 최대 73%까지 높이는 내용의 새로운 법안을 채택했다. 다만, EU에서는 국가별로 재료 분류가 달라 블랙매스의 대규모 생산 절차가 좀 복잡하다. '유해 폐기물'이라는 라벨이 부착되면 경제협력개발기구(OECD) 회원국만 수출할 수 있기 때문이다. 또 철, 리튬, 인산염 등을 기반으로 하는 새로운 유형의 배터리 출현도 걸림돌이다. 배터리 찌꺼기에 불과했던 블랙매스는 전기차 확산과 자원의 한계라는 측면에서 볼 때 상당한 이점을 가지고 있다. 이 분야에서 선두에 있는 한국 기업 SK에코플랜트는 경주에 첫 배터리 리사이클링 공장을 구축한 것으로 알려져 미래의 친환경 에너지 솔루션으로서의 가능성을 제시하고 있다. SK에코플랜트는 2026년까지 매년 1만 톤의 블랙매스를 처리할 계획이다. 이는 한국에서 처음으로 건설된 이차전지 재활용 공장이다. 이 회사는 자체 개발한 용매추출 공정을 활용하여 후처리 공정의 경쟁력을 강화하겠다는 전략이다. 또한, 유럽, 미국, 아시아와 같은 배터리 산업의 중심지와 전기차가 널리 보급된 지역에 거점을 마련했다. 박경일 SK에코플랜트 사장은 "전기차 확산 본격화와 한정적인 자원 속에서 이차전지 리사이클링 사업은 선택이 아닌 필수"라며, "글로벌 폐배터리 수거망을 확보한 SK에코플랜트는 이번 경주 리사이클링 사업 추진으로 국내는 물론 글로벌 배터리 리사이클링 시장을 선점해 나갈 것"이라고 밝혔다.
-
- IT/바이오
-
폐배터리 '블랙매스'에서 희토류 재탄생
-
-
항공업계, 제로탄소 위해 '수소에너지'로 눈 돌렸다
- 롤스로이스와 에어버스를 비롯한 주요 항공사와 에너지 대기업들이 탄소 중립을 위한 동맹을 형성, 항공 탈탄소화 움직임에 속도를 내고 있다. 현대차와 기아를 비롯해 일본과 독일의 주요 자동차 제조사들이 수소 에너지 투자에 앞장서는 가운데, 항공 및 에너지 기업들도 탄소 배출 감소 목적으로 손을 맞잡고 항공업의 탈탄소화 노력을 가속화하고 있다. 에너지 전문 매체 '오일프라이스닷컴'에 따르면, 항공기 엔진의 대표 제조사 롤스로이스, 대형 항공기 제작사 에어버스, 이지젯, 그리고 덴마크의 국영 에너지 기업 외르스테드(Ørsted) 등 주요 항공 및 재생 에너지 기업들이 수소를 활용한 항공 추진을 위한 방안 마련을 위해 영국에서 협력하고 있다. 항공기 관련 주요 기업들은 '수소항공연합(HIA)'을 설립해 영국이 글로벌 리더가 되기 위해 필요한 인프라 건설 지원하고 나섰다. 이들은 항공 규제 체제가 수소 기술에 대비하도록 보장하고 수소 항공 연구 및 개발(R&D)을 위한 자금을 10년 프로그램으로 전환해야 한다고 강조했다. 이 연합에는 항공 및 항공 우주 부품의 주요 제조사 GKN 에어로스페이스와 브리스톨공항도 참여했다. 이 기업들은 수소가 단거리 항공용 연료로서 큰 잠재력을 가졌다고 밝혔다. 에어버스는 오는 2035년 상용 서비스 시작을 목표로 새로운 수소 동력 항공기를 개발 중이다. 롤스로이스는 2022년에 수행한 지상 테스트를 통해 수소를 제트 엔진의 동력원으로 활용할 수 있음을 성공적으로 입증했다. 그러나 지속 가능한 항공 연료(SAF) 사용 확대를 통해 탄소 배출을 감소시키려는 노력이 확산되고 있음에도 불구하고, SAF의 생산 및 도입에 대한 지원에도 석유 기반의 제트 연료 대체에 대한 공급, 비용, 그리고 원료 문제 등 다양한 어려움이 여전히 존재한다는 것이 전문가들의 지적이다. 한편, 유럽연합(EU)은 2025년부터 EU 내에서 이륙하는 모든 항공기에 대해 SAF 혼합 사용을 의무화하는 방침을 세웠다. 이때의 혼합 비율은 2025년에 5%부터 시작하여 2050년까지 63%까지 점차 증가할 예정이다. 한국에서는 대한항공이 2017년 처음으로 SAF를 혼합해 시카고에서 인천까지의 노선을 운행한 적이 있으며, 이후 파리에서 인천까지의 정기편에도 SAF를 사용하기 시작했다. 추가로, 2021년에는 현대오일뱅크와 함께 바이오항공유의 제조 및 사용 기반을 마련하기 위해 협력했다. HIA 초대 회장이자 이지젯 CEO 요한 룬드그렌(Johan Lundgren)은 "항공 업계와 같이 탈탄소화가 어려운 분야에서는 협력을 통한 급진적인 해결책이 필요하다"며 "영국 정부와의 협력을 통해 탄소중립 항공을 위한 자금 및 정책 지원을 확대해 나갈 것을 희망한다"고 밝혔다. 롤스로이스의 최고 기술 책임자 그라치아 비타디니(Grazia Vittadini)는 "우리는 이미 녹색 수소 기반의 최신 항공기 엔진을 성공적으로 테스트했으며, 이것이 중장기적으로 탈탄소화의 주요 해결 방안이 될 것이라고 확신한다"고 강조했다.
-
- 산업
-
항공업계, 제로탄소 위해 '수소에너지'로 눈 돌렸다
-
-
마이크로소프트, AI 탑재 백팩 특허 획득
- 기술 대기업 마이크로소프트(MS)는 스마트 센서가 탑재된 인공지능(AI) 기반 백팩 디자인에 대한 특허를 취득했다. 미국 기술 전문매체 톰스 하드웨어(Tom's Hardware)에 따르면 미국 특허청(USPTO)은 지난 5월 출원된 마이크로소프트의 AI 기반 백팩 특허를 최근 승인했다. MS파워유저(MSPowerUser)가 처음 보도한 마이크로소프트의 디지털 비서가 장착된 백팩 특허는 '인공 지능 지원 웨어러블'에 대한 것으로 명시되어 있다. 공개된 AI 탑재 백팩 특허 삽화와 주요 예시 대부분은 독특한 디자인으로 시선을 끌고 있다. MS 스마트 백팩의 주요 디자인 특징으로 암 스트랩(Arm strap)에 여러 개의 센서가 내장됐다. 착용자의 정면을 향하고 있는 이 센서들은 각각 카메라, 마이크, GPS, 나침반 등의 기능을 포함한다. 마이크로소프트는 백팩의 스트랩(strap, 끈)에 햅틱 액추에이터(haptic actuator, 촉각적 피드백을 생성하기 위해 사용하는 장치)뿐만 아니라 LED와 스피커를 추가했다. 스마트 웨어러블에는 일부 실시간 처리가 필요한 것으로 보인다. 따라서 이미지, 텍스트, 음성, 얼굴 및 인지 인식을 제공하기 위해 다양한 인식 모듈이 들어 있다. 백팩에 탑재된 시스템은 AI 스마트 기능을 위해 내장된 처리 능력에 데이터를 공급하는 실시간 모니터뿐만 아니라 기록 장치(온보드 스토리지 사용), 무선 연결, 배터리 전원/충전 등의 기능도 갖추고 있다. 착용자는 위의 모든 감지 및 처리 기능을 갖춘 디지털 백팩을 통해 AI의 향상된 사물 식별과 분석, 주변 기기와의 상호 작용, 상황별 인사이트 확보 등의 혜택을 누릴 수 있을 것으로 예상된다. 위 그림에서 데이터 플로(Flow) 차트는 백팩과 데이터 피드가 개인용 컴퓨터 및 클라우드 서버와 함께 작동하는 방식을 보여준다. 또 다른 삽화(아래 그림)에서는 디지털 백팩을 메고 돌아다니는 사람이 스키장을 탐색하고 슈퍼마켓 가격을 확인하고 콘서트 티켓 예매를 고려하는 모습을 보여준다. 사용자는 때때로 "헤이 백팩, 이 포스터를 내 캘린더에 추가해 줘"와 같이 음성을 통해 백팩에 내장된 AI와 상호 작용할 수 있다. 또는 스트랩의 센서와 상호 작용해 일부 AI 동작 또는 상황에 맞는 작업을 실행할 수도 있다. 마이크로소프트의 특허는 주로 집 밖에서 디지털 비서의 유용성에 대해 집중한 면모가 돋보인다. PC 프로세서는 이제 전용 AI 가속 하드웨어를 갖추기 시작했으며, 마이크로소프트는 사무실 생산성 및 협업 도구에 AI를 빠르게 통합한 것으로 보인다. 그러나 톰스 하드웨어는 마이크로소프트의 AI 백팩은 개발 과정에서 드러난 시장성 부족이나 기타 단점으로 인해 많은 특허가 취소되었기 때문에 실현되지 않을 수도 있다고 전했다.
-
- IT/바이오
-
마이크로소프트, AI 탑재 백팩 특허 획득
-
-
네이버, 생성형 AI '하이퍼클로바X' 공개…11월 검색엔진에 통합
- 한국판 생성형 인공지능(AI)이 드디어 베일을 벗었다. 한국 대표 인터넷 대기업 네이버가 최근 생성형 AI '하이퍼클로바 X(HyperCLOVA X)'를 공개하며 세계 AI 경쟁 무대에 데뷔했다. 네이버의 대규모 언어모델(Large Language Model, LLM)은 챗GPT와 유사한 인공지능 챗봇인 '클로바 X'와 마이크로소프트 빙(Bing)에 해당하는 생성형 AI 기반 검색 엔진인 '큐(Cue)'등의 서비스를 제공한다. 세계는 현재 생성형 AI 분야에서의 경쟁이 가열되고 있다. 네이버의 생성형 AI 출시는 다른 글로벌 기업들의 AI 강화 움직임에 발맞춰 이루어진 것이다. 오픈AI는 마이크로소프트의 지원을 받으며 이 경쟁을 선도하고 있다. 구글은 '바드'라는 AI 챗봇을 출시하고 미국 인공지능 스타트업 '앤트로픽'(Anthropic)에 투자하는 한편, 중국의 바이두는 '어니봇'을 선보였다. 메타와 아마존 같은 기업들 또한 자신들만의 AI 챗봇을 곧 선보일 계획이다. 미국이 생성형 AI 분야를 선도하는 가운데, 네이버의 한국판 생성형 AI 출시는 국내외에서 높은 관심을 받고 있다. 해외 IT 전문 매체 테크크런치 보도에 따르면, 네이버 클라우드에서 출시한 '하이퍼클로바 X'는 지난 8월 24일부터 한국어와 영어로 베타 서비스를 시작했다. 그리고 '큐'는 9월의 베타 테스트를 마치고 11월에는 네이버의 기존 검색 엔진과 통합될 계획이다. 네이버 측은 "하이퍼클로바 X는 크리에이터와 기업 고객 모두가 사용 가능하다"라며, 이는 2021년에 출시된 한국어 LLM 하이퍼클로바의 업그레이드 버전이라고 설명했다. 또한, 하이퍼클로바는 2400억 개 이상의 파라미터를 가지고 있음을 공개했지만, 하이퍼클로바 X에 얼마나 많은 파라미터가 학습되었는지는 구체적으로 공개하지 않았다. 네이버 최수연 대표는 주주에게 보낸 서한에서 "회사는 AI 전문가 500명을 보유하고 있으며, 1000억 개 이상의 파라미터로 구성된 대규모 언어 모델을 독자적으로 개발한 전 세계 5개 기업 중 하나"라고 밝혔다. 네이버 클라우드의 기술 및 하이퍼스케일 AI 책임자인 성낙호 총괄은 "네이버 클라우드는 텍스트부터 이미지, 동영상, 오디오에 이르기까지 다양한 데이터를 분석하고 생성하는 다중 모드 언어 모델의 개발을 진행 중"이라고 밝혔다. 즉, 클로바 X는 텍스트, 이미지, 음성 등의 다양한 데이터 형태를 통합해 학습함으로써 기존 언어 모델보다 더 깊은 정보 인식과 풍부한 정보 제공이 가능하다. 네이버는 한국, 일본, 동남아시아뿐만 아니라 중동, 스페인, 멕시코와 같은 비영어권 국가와 정치적으로 민감한 지역에서도 맞춤형 AI 애플리케이션을 제공하려고 한다. 이를 통해 경쟁사들이 아직 진출하지 않은 지역에 주목하고 있다는 점을 강조했다. 네이버의 최수연 대표는 컨퍼런스에서 11월에 60만 대의 서버로 구축된 'GAK 세종'이라는 두 번째 데이터 센터를 한국에서 오픈할 예정이라고 밝혔다. 네이버는 지난해 12월부터 삼성과 함께 하이퍼스케일 AI를 위한 AI 칩 개발에 착수했고, 삼성 또한 곧 기업용 생성형 AI를 출시할 계획이다. 네이버는 판매자, 창작자, 광고주를 포함한 파트너들을 위한 AI 기술 도구를 선보일 예정이다. '클로바 for Writing'이라는 글쓰기 도구와 '클로바 for AD'라는 광고 상품을 통해 다양한 네이버 서비스에 생성형 AI를 신속하게 통합할 계획이다. 또한 네이버 클라우드는 AI 기반의 B2B 상품을 출시하며, '뉴로클라우드'라는 완전 관리형 하이브리드 클라우드 서비스와 '클로바 스튜디오'라는 AI 개발 도구로 고객 기업들의 자체 생성형 AI 구축을 지원할 방침이다. 전문가들은 네이버의 강점이 다양한 서비스와 파트너들이 연계되어 성장을 이끌어내며, 그 결과로 플랫폼의 발전이 이루어지는 '위닝 루프' 구조에 있다고 지적하며, "하이퍼클로바X가 이 과정을 가속화시킬 것"이라고 전망했다.
-
- IT/바이오
-
네이버, 생성형 AI '하이퍼클로바X' 공개…11월 검색엔진에 통합
-
-
[퓨처 Eyes(1)] 가트너 선정, 미래를 바꾸는 7가지 기술
- 포커스온경제는 창간을 맞이하여 '퓨처 아이즈(Future Eyes)'를 통해 지금까지 경험하지 못한 혁신 기술이 어떻게 새로운 세상을 창조하는지 탐색한다. 애플의 아이폰은 휴대폰 산업의 판도를 바꾸었으며, 오픈AI의 챗GPT는 AI의 유행을 일으키며 우리의 일상과 기업 환경에 변화를 가져왔다. 메타버스부터 플라잉카, 휴머노이드 로봇, 양자 컴퓨팅, 핵 융합에 이르기까지, 이 시리즈는 혁신적인 기술과 그것이 우리 생활에 미치는 영향을 짚어본다. [편집자 주] 오픈AI에서 출시한 생성형AI의 일종인 챗GPT는 지난해 11월까지 존재하지 않았다. 2009년 출시된 블록체인 기술을 바탕으로 하는 가상화폐 비트코인은 불과 14년 만에 전통 금융 기관이 인정하는 투자 자산으로 자리잡았다. 가상 현실(VR) 기반의 메타버스, 하늘을 나는 자동차(플라잉 카), 그리고 디지털 휴먼과 같은 혁신적인 기술들이 현실 세계로 빠르게 진출하며 사람들의 일상을 바꾸기 시작했다. 플라잉 카와 디지털 휴먼은 공통점이 거의 없어 보이지만, 이들은 미래를 예측하며 세상에 큰 변화를 가져올 기술 혁신으로 평가받고 있다. 미래를 전망하는 전문 매체 '가트너'는 2023년에서 2028년에 이르는 5년 사이에 주목해야 할 기술 혁신 7가지를 발표해 관심을 모으고 있다. 1. 메타버스 메타버스는 가상 또는 초월을 의미하는 '메타(meta)'와 '유니버스(universe)'의 합성어로, 현실과 연동된 가상의 세계를 가리킨다. 컴퓨터 그래픽, 가상현실(VR), 증강현실(AR) 등의 첨단 기술로 구현된다. 메타버스는 현재 업무 환경을 재구성하고 있다. 이 디지털 세계는 사용자에게 몰입감 있는 경험을 제공하며, 재무모델부터 구매 및 판매, 조직의 운영 방식, 협업의 형태에 이르기까지 비즈니스의 다양한 영역에 변화를 가져오고 있다. 그러나 VR 기술이 미디어부터 업무 협업에 이르는 현실의 다양한 분야에 도전하면서 일부에서는 그 혁신적인 가능성에 대한 우려의 목소리도 높아지고 있다. IT 서비스 업체들은 이러한 VR의 잠재력을 실현하고 최대한 활용하기 위해, 고객들이 새로운 VR 환경에서의 업무 프로세스와 시스템을 재구성하고 최적화할 수 있도록 지원하는 다양한 컨설팅과 개발 제품을 선보이며 경쟁력을 강화하고 있다. 2. 플라잉 카, 곧 실현될 '미래의 교통수단' 영화에서나 볼 법했던 하늘을 나는 자동차 즉 플라잉 카가 현실로 다가오고 있다. 다양한 스타트업은 물론 대형 교통 관련 기관에서 이를 위한 연구와 시제품 개발에 속도를 내고 있다. 플라잉 카의 등장은 저고도 영공의 지형을 근본적으로 바꿀 전망이다. 이로 인해 지상 도로의 혼잡이 줄어들 것이며, 새로운 교통 패러다임이 형성될 것으로 예상된다. 플라잉 카가 가져올 간접적인 변화로는 △복잡해질 항공로에 따른 항공 교통 관제 시스템의 변화 △수직 도로가 도입될 도시 구조 △출퇴근 시간의 단축으로 교외 지역이 더 넓게 확장될 가능성 등이 대두되고 있다. 하지만 이런 혁신적인 변화를 위해서는 상당한 기술적 투자와 연구가 필요하다는 의견도 있다. 3. 디지털 휴먼, '가상과 현실의 경계' 허물다 '디지털 휴먼'이란 말 그대로 디지털로 재현된 인간의 모습과 행동을 의미한다. 이는 3D 가상 인간으로, 인공지능, 빅데이터, 클라우드 컴퓨팅과 같은 첨단 기술의 결합으로 탄생했다. 최근 디지털 휴먼 기술은 기하급수적으로 발전하며 실제 인간과 더욱 닮아가고 있다. 사용자와의 상호작용이 간편하게 이루어지며, 다양한 서비스 문제 해결부터 즉각적인 고객 서비스 제공에 이르기까지 그 활용범위가 넓어지고 있다. 특히, 자연어 처리와 로봇 프로세스 자동화 도구와의 통합으로 디지털 휴먼은 더욱더 강력한 존재감을 발휘할 전망이다. 디지털 휴먼의 활용 가능성은 의사와의 상담, 세무사와의 면담, 뉴스 시청, 연례 업무 평가 등 일상에서 인간 간의 상호작용이 이루어지는 거의 모든 분야에서 그 잠재력을 발휘할 수 있을 것으로 전망된다. 4. 블록체인 기반 '분산형 자율 조직(DAO)' 블록체인은 암호화폐의 기술적 기반일 뿐만 아니라 다양한 분야의 혁신을 주도하는 핵심 기술로 부상했다. 특히 이 중심에서 '분산형 자율 조직(DAO)'이 주목받고 있다. 블록체인이란, 데이터를 '블록'이라는 작은 단위로 나누고 이를 전체 네트워크에 참여하는 사용자들과 공유하는 기술을 의미한다. 이로 인해 데이터 조작이 어렵게 되어 투명하고 안전한 거래 기록이 가능하다. 그 가능성은 암호화폐뿐만 아니라 음악, 보험, 정부, 게임 등 광범위한 영역으로 확장되고 있다. DAO는 블록체인 위에서 운영되는 디지털 조직이다. 기존의 인적 관리가 필요 없이 다른 DAO, 디지털 에이전트, 심지어 기업과도 자동으로 상호 작용을 이어간다. DAO는 게임, 투자, 수집, 소셜 등 다양한 분야에서 활용될 수 있다. 특히 근로자들에게 오픈소스 스타일의 창작 활동으로 수익 창출의 새로운 기회를 제공한다. 이는 기존의 비즈니스 방식과 커뮤니케이션 구조에 변화를 가져올 것으로 보인다. 이러한 DAO의 접근방식은 고객의 다양한 요구에 빠르게 대응하려는 기업과 조직에게 큰 매력으로 작용하고 있다. 5. 무선충전 전기 자동차 전기 자동차(EV)는 최근 몇 년 동안 엄청난 속도로 성장해 전 세계 신차 판매량의 약 4.6%를 차지하고 있다. 하지만 충전 시설의 부족은 여전히 전기차 보급의 큰 장벽이다. 무선 충전 기술은 전기차가 도로에 설치된 코일이나 충전 상태가 좋은 다른 차량으로부터 전력을 공유받아 이동 중에도 충전할 수 있게 해준다. 이는 전기차의 운행 거리를 늘리고, 배터리 용량을 줄여 차량의 중량과 비용을 낮출 수 있는 장점을 가지고 있다. 그러나 무선 충전 기술을 보급하기 위해서는 '스마트' 도로와 자동차 소프트웨어의 개선이 필요하다. 도로에는 전력을 공급하고 관리할 수 있는 코일과 센서가 설치되어야 하며, 자동차에는 무선 충전을 인식하고 조절할 수 있는 소프트웨어가 탑재되어야 한다. 6. 컴퓨팅 분야에서 실리콘 대체하는 그래핀(Graphene) 그래핀은 탄소 원자가 벌집 모양의 2차원 구조를 이룬 나노 소재로, 열과 전기를 매우 효율적으로 전도한다. 그래핀은 컴퓨팅 및 전자 기술을 향상시키기 위한 소재로서 많은 장점을 가지고 있다. 그래핀은 실리콘과 같은 기존 반도체 소재보다 저렴하고 성능이 뛰어나며, 무어의 법칙을 따르는 고밀도 집적 회로의 발전을 이끌 수 있다. 그래핀은 이미 투명전극과 에너지 저장소재 등의 분야에서 상용화 단계에 접어들었으며, 앞으로도 다양한 응용 분야에서 활용될 가능성이 높다. 이에 IT 및 비즈니스 컨설팅 회사의 총괄 관리자는 그래핀이 반도체 기술에 미칠 영향을 파악해야 한다. 또한 고객이 공급업체의 최신 기술을 평가하고 활용할 수 있도록 지원하는 것도 중요하다. 7. 일회용 기술로 교환 가능한 IT IT 분야에서는 컴포저블(composable)과 디스포저블(disposable)이라는 개념이 빠르게 부상하고 있다. 이는 기술 혁신을 가속화하고 사용자 수요를 충족하기 위해 기술을 서로 교체하거나 폐기할 수 있도록 하는 방식이다. 일회용 기술은 모든 기술에 영향을 미치지만, 특히 소비자나 고객의 요구에 따라 변화하는 기술에 적용될 수 있다. 일회용 기술은 제품과 서비스를 장기적으로 판매하고자 하는 모든 기술 공급업체에게도 영향을 준다. 복잡한 기술을 위한 비즈니스 모델이나 유지보수 비용 등이 변화할 수 있기 때문이다. 예를 들어, 일회용 원심분리기는 바이오의약품 제조 과정에서 교차 오염을 예방하고, 에너지 사용을 줄이고, 공정 유연성을 갖출 수 있는 장점을 가지고 있다. 하지만 이러한 일회용 원심분리기를 공급하는 업체는 장비의 설계, 제작, 배송, 폐기 등의 과정에서 새로운 비즈니스 모델을 개발해야 할 수 있다. 가트너는 미래의 가장 큰 디지털 혁신 중 일부는 오늘날에는 멀게만 느껴지거나 터무니없어 보이는 기술에서 비롯될 가능성이 높다고 전망했다. 벤 프링 가트너 부사장 겸 애널리스트는 "지각 변동은 하루 아침에 일어나지 않는다"면서 "초기 단계에서 혁신을 무시하면 일반적으로 혁신의 개발 주기 후반에 진입 비용이 더 많이 들기 때문에 전략적, 재정적, 존재론적으로 더 많은 비용이 든다"고 말했다.
-
- 포커스온
-
[퓨처 Eyes(1)] 가트너 선정, 미래를 바꾸는 7가지 기술
-
-
에너지 비용·탄소 배출 확 줄여주는 페인트 나왔다
- 미국 SLAC 국립가속기 연구소에서 최근 에너지 소비량과 탄소배출량을 줄여주는 신개념 페인트를 개발했다. 미국 매체 인터레스팅엔지니어링에 따르면 이 페인트는 건물의 에너지 소비량을 획기적으로 절감해 탄소 배출량 감소에 크게 기여할 것으로 전망된다. 특히 여름철 냉방과 겨울철 난방 에너지 비용을 절감하면서도 환경에 미치는 부담을 최소화하는 것이 이 페인트의 주요 장점이다. SLAC 연구소(스탠퍼드 대학교 운영, 미국 에너지부 소속)에서 진행한 이번 연구에서는 건물의 난방 에너지 소비량을 무려 36% 절감했다. 냉방 에너지 소비량 역시 21% 감소시킴으로써, 건물 전체의 에너지 사용량을 짧은 기간 동안 7.4% 줄일 수 있다는 결과를 도출했다. 이 연구를 주도한 추이이(Yi Cui, 崔屹) 교수는 “기존 에너지 절감 기술들이 제한된 색상에만 적용되었던 반면, 이번 페인트 기술은 8가지 다양한 색상을 포함하여 개발되었다”며, 그 혁신성을 강조했다. 또한, 이 페인트는 중적외선을 효과적으로 반사해 에너지 절약 효과를 극대화하며, 기존 페인트보다 10배 이상 높은 반사율을 보여 다양한 분야에 적용될 수 있을 전망이다. 기존의 에너지 절약 기술들은 '창문용 저방사막 필름' 등이 존재했으나, 이들은 주로 금속색과 회색으로 제한됐다. 그러나 이번 혁신을 통해 흰색, 파란색, 빨간색, 노란색, 초록색, 주황색, 보라색, 어두운 회색 등 8가지 다양한 색상의 페인트가 개발되었다. 청결을 유지하는 특성과 함께 고온 및 저온에도 견디는 내구성도 이 페인트의 또 다른 장점이다. 공동 연구자 펑 위찬(Yucan Peng, 彭雨粲) 박사는 환경 친화적인 페인트 기술의 지속적 발전을 강조하며, 이를 통한 환경 보호와 에너지 절감에 대한 연구소의 노력을 약속했다. 이러한 혁신적 페인트 기술의 도입으로, 건물에서의 에너지 소비 절감 및 환경 보호 측면에서의 큰 발전이 기대되며, 앞으로 건물의 에너지 관리에 있어 큰 패러다임 변화가 예상된다.
-
- 생활경제
-
에너지 비용·탄소 배출 확 줄여주는 페인트 나왔다
-
-
美 미시간 주립대, 생분해성 플라스틱 대체재 개발
- 미국 미시간 주립대학교의 연구원들이 퇴비화하기 쉬운 새로운 생분해성 플라스틱 대체재를 개발했다. USA투데이에 따르면 이 대학 포장학부 연구팀은 8월 초 동료 심사를 거친 ACS 출판 저널에 가정과 산업 환경 모두에서 퇴비화가 가능한 바이오 기반 폴리머 블렌드를 개발했다고 게재했다. 이 연구팀은 10년 넘게 포장재에 사용되어 온 폴리락트산(PLA)을 연구했다. PLA는 석유 대신 식물성 당분을 사용하여 물, 이산화탄소, 젖산으로 분해된다. 고온의 산업용 퇴비기에서 분해 가능 하지만 PLA는 고온의 산업용 퇴비기에서만 분해될 수 있으며, 가정용 퇴비기에서는 분해되지 않는 단점이 있다. 산업용 퇴비기에서도 PLA가 단 시간에 완전히 분해되는 것은 아니다. 연구자들은 산업용 퇴비 환경에서 미생물에 의해 PLA가 분해되기 시작하기까지 최대 20일이 걸릴 수 있다고 말했다. 이 과정을 가속화하기 위해 연구팀은 '열가소성 전분'이라고 불리는 것을 PLA에 혼합했다. 이 탄소 기반 전분은 퇴비 속 미생물이 바이오 플라스틱을 더 쉽게 분해하도록 도와준다. 연구원들은 열가소성 전분을 첨가해도 PLA의 강도, 투명도와 같은 품질이 손상되지 않고 유지된다고 말했다. 또한 이 바이오 플라스틱은 음식물 찌꺼기와 함께 퇴비화할 수 있다. 즉, 일회용 용기나 컵에 담긴 음식이나 음료를 따로 버리지 않아도 함께 분해된다. 이 연구는 퇴비화 가능한 바이오 기반 플라스틱 포장이 가능하다는 것을 보여 주지만, 실제로 적용하기에는 어려움이 있을 것으로 예상된다. 연구팀을 이끈 라파엘 아우라스는 "사실 많은 산업 퇴비화 업체는 여전히 PLA와 같은 바이오 플라스틱을 받아들이는 것을 꺼리고 있다"고 지적했다. 생분해 플라스틱 연구 사례 지난달 워싱턴 대학의 한 연구팀은 '스피룰리나'라고도 알려진 청록색 남조류 세포로 가정용 퇴비통에서 바나나 껍질이 분해되는 것과 같은 시간 안에 분해되는 바이오 플라스틱을 만들었다고 발표했다. 그보다 앞서 2021년 캘리포니아 버클리 대학교는 연구진이 생분해성 플라스틱을 더 빨리 분해할 수 있는 방법을 발명했다고 밝혔다. 연구진은 퇴비화 과정에서 발생하는 열과 물 등의 조건에서 플라스틱이 분해되는 데 도움이 되는 폴리에스테르를 먹는 효소를 바이오 플라스틱 자체에 삽입했다. 그렇지만 이같은 연구 결과가 우리가 쓰레기를 함부로 버려도 괜찮다는 것을 의미하는 것은 아니다. 연구팀은 퇴비화할 수 있는 플라스틱은 어떤 조건에서도 무조건 생분해된다는 것은 일반적인 오해라며 우려했다. 아우라스는 "우리가 생분해성 물질을 개발했기 때문에 사람들이 쓰레기를 함부로 버릴 수 있다고 생각하면 문제가 더 악화될 것"이라고 말했다. 그러면서 아우라스는 "생분해성 바이오 플라스틱은 빨대나 물병과 같은 일회용 플라스틱으로 인한 폐기물을 줄일 수 있다"면서 이번 연구가 플라스틱 폐기물을 줄이기 위한 전 세계적인 노력에 기여할 수 있기를 희망한다고 말했다.
-
- 생활경제
-
美 미시간 주립대, 생분해성 플라스틱 대체재 개발